summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/ceg_instantiator.h
blob: 88b3465ad83818576228a15207b06bc568538531 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*********************                                                        */
/*! \file ceg_instantiator.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Tim King
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief counterexample-guided quantifier instantiation
 **/


#include "cvc4_private.h"

#ifndef __CVC4__CEG_INSTANTIATOR_H
#define __CVC4__CEG_INSTANTIATOR_H

#include "theory/quantifiers_engine.h"
#include "util/statistics_registry.h"

namespace CVC4 {
namespace theory {

namespace arith {
  class TheoryArith;
}

namespace quantifiers {

class CegqiOutput {
public:
  virtual ~CegqiOutput() {}
  virtual bool doAddInstantiation( std::vector< Node >& subs ) = 0;
  virtual bool isEligibleForInstantiation( Node n ) = 0;
  virtual bool addLemma( Node lem ) = 0;
};

class Instantiator;

//stores properties for a variable to solve for in CEGQI
//  For LIA, this includes the coefficient of the variable, and the bound type for the variable
class TermProperties {
public:
  TermProperties() : d_type(0) {}
  // type of property for a term
  //  for arithmetic this corresponds to bound type (0:equal, 1:upper bound, -1:lower bound)
  int d_type;
  // for arithmetic
  Node d_coeff;
  // get cache node 
  // we consider terms + TermProperties that are unique up to their cache node (see doAddInstantiationInc)
  virtual Node getCacheNode() const { return d_coeff; }
  // is non-basic 
  virtual bool isBasic() const { return d_coeff.isNull(); }
  // get modified term 
  virtual Node getModifiedTerm( Node pv ) const {
    if( !d_coeff.isNull() ){
      return NodeManager::currentNM()->mkNode( kind::MULT, d_coeff, pv );
    }else{
      return pv;
    }
  }
  // compose property, should be such that: 
  //   p.getModifiedTerm( this.getModifiedTerm( x ) ) = this_updated.getModifiedTerm( x )
  virtual void composeProperty( TermProperties& p ){
    if( !p.d_coeff.isNull() ){
      if( d_coeff.isNull() ){
        d_coeff = p.d_coeff;
      }else{
        d_coeff = Rewriter::rewrite( NodeManager::currentNM()->mkNode( kind::MULT, d_coeff, p.d_coeff ) );
      }
    }
  }
};

//Solved form
//  This specifies a substitution:
//  { d_props[i].getModifiedTerm(d_vars[i]) -> d_subs[i] | i = 0...|d_vars| }
class SolvedForm {
public:
  // list of variables
  std::vector< Node > d_vars;
  // list of terms that they are substituted to
  std::vector< Node > d_subs;
  // properties for each variable
  std::vector< TermProperties > d_props;
  // the variables that have non-basic information regarding how they are substituted
  //   an example is for linear arithmetic, we store "substitution with coefficients".
  std::vector< Node > d_non_basic;
  // push the substitution pv_prop.getModifiedTerm(pv) -> n
  void push_back( Node pv, Node n, TermProperties& pv_prop ){
    d_vars.push_back( pv );
    d_subs.push_back( n );
    d_props.push_back( pv_prop );
    if( !pv_prop.isBasic() ){
      d_non_basic.push_back( pv );
      // update theta value
      Node new_theta = getTheta();
      if( new_theta.isNull() ){
        new_theta = pv_prop.d_coeff;
      }else{
        new_theta = NodeManager::currentNM()->mkNode( kind::MULT, new_theta, pv_prop.d_coeff );
        new_theta = Rewriter::rewrite( new_theta );
      }
      d_theta.push_back( new_theta );
    }
  }
  // pop the substitution pv_prop.getModifiedTerm(pv) -> n
  void pop_back( Node pv, Node n, TermProperties& pv_prop ){
    d_vars.pop_back();
    d_subs.pop_back();
    d_props.pop_back();
    if( !pv_prop.isBasic() ){
      d_non_basic.pop_back();
      // update theta value
      d_theta.pop_back();
    }
  }
public:
  // theta values (for LIA, see Section 4 of Reynolds/King/Kuncak FMSD 2017)
  std::vector< Node > d_theta;
  // get the current value for theta (for LIA, see Section 4 of Reynolds/King/Kuncak FMSD 2017)
  Node getTheta() {
    if( d_theta.empty() ){
      return Node::null();
    }else{
      return d_theta[d_theta.size()-1];
    }
  }
};

class CegInstantiator {
private:
  QuantifiersEngine * d_qe;
  CegqiOutput * d_out;
  bool d_use_vts_delta;
  bool d_use_vts_inf;
  //program variable contains cache
  std::map< Node, std::map< Node, bool > > d_prog_var;
  std::map< Node, bool > d_inelig;
  //current assertions
  std::map< TheoryId, std::vector< Node > > d_curr_asserts;
  std::map< Node, std::vector< Node > > d_curr_eqc;
  std::map< TypeNode, std::vector< Node > > d_curr_type_eqc;
  //auxiliary variables
  std::vector< Node > d_aux_vars;
  // relevant theory ids
  std::vector< TheoryId > d_tids;
  //literals to equalities for aux vars
  std::map< Node, std::map< Node, Node > > d_aux_eq;
  //the CE variables
  std::vector< Node > d_vars;
  //index of variables reported in instantiation
  std::vector< unsigned > d_var_order_index;
  //atoms of the CE lemma
  bool d_is_nested_quant;
  std::vector< Node > d_ce_atoms;
  //collect atoms
  void collectCeAtoms( Node n, std::map< Node, bool >& visited );
private:
  //map from variables to their instantiators
  std::map< Node, Instantiator * > d_instantiator;
  //cache of current substitutions tried between register/unregister
  std::map< Node, std::map< Node, std::map< Node, bool > > > d_curr_subs_proc;
  std::map< Node, unsigned > d_curr_index;
  //stack of temporary variables we are solving (e.g. subfields of datatypes)
  std::vector< Node > d_stack_vars;
  //used instantiators
  std::map< Node, Instantiator * > d_active_instantiators;
  //register variable
  void registerInstantiationVariable( Node v, unsigned index );
  void unregisterInstantiationVariable( Node v );
private:
  //for adding instantiations during check
  void computeProgVars( Node n );
  // effort=0 : do not use model value, 1: use model value, 2: one must use model value
  bool doAddInstantiation( SolvedForm& sf, unsigned i, unsigned effort );
  // called by the above function after we finalize the variables/substitution and auxiliary lemmas
  bool doAddInstantiation( std::vector< Node >& vars, std::vector< Node >& subs, std::vector< Node >& lemmas );
  //process
  void processAssertions();
  void addToAuxVarSubstitution( std::vector< Node >& subs_lhs, std::vector< Node >& subs_rhs, Node l, Node r );
private:
  /** can use basic substitution */
  bool canApplyBasicSubstitution( Node n, std::vector< Node >& non_basic );
  /** apply substitution
  * We wish to process the substitution: 
  *   ( pv = n * sf )
  * where pv is a variable with type tn, and * denotes application of substitution.
  * The return value "ret" and pv_prop is such that the above equality is equivalent to
  *   ( pv_prop.getModifiedTerm(pv) = ret )
  */
  Node applySubstitution( TypeNode tn, Node n, SolvedForm& sf, TermProperties& pv_prop, bool try_coeff = true ) {
    return applySubstitution( tn, n, sf.d_vars, sf.d_subs, sf.d_props, sf.d_non_basic, pv_prop, try_coeff );
  }
  /** apply substitution, with solved form expanded to subs/prop/non_basic/vars */
  Node applySubstitution( TypeNode tn, Node n, std::vector< Node >& vars, std::vector< Node >& subs, std::vector< TermProperties >& prop, 
                          std::vector< Node >& non_basic, TermProperties& pv_prop, bool try_coeff = true );
  /** apply substitution to literal lit 
  * The return value is equivalent to ( lit * sf )
  * where * denotes application of substitution.
  */
  Node applySubstitutionToLiteral( Node lit, SolvedForm& sf ) {
    return applySubstitutionToLiteral( lit, sf.d_vars, sf.d_subs, sf.d_props, sf.d_non_basic );
  }
  /** apply substitution to literal lit, with solved form expanded to subs/prop/non_basic/vars */
  Node applySubstitutionToLiteral( Node lit, std::vector< Node >& vars, std::vector< Node >& subs, std::vector< TermProperties >& prop, 
                                   std::vector< Node >& non_basic );
public:
  CegInstantiator( QuantifiersEngine * qe, CegqiOutput * out, bool use_vts_delta = true, bool use_vts_inf = true );
  virtual ~CegInstantiator();
  //check : add instantiations based on valuation of d_vars
  bool check();
  //presolve for quantified formula
  void presolve( Node q );
  //register the counterexample lemma (stored in lems), modify vector
  void registerCounterexampleLemma( std::vector< Node >& lems, std::vector< Node >& ce_vars );
  //output
  CegqiOutput * getOutput() { return d_out; }
  //get quantifiers engine
  QuantifiersEngine* getQuantifiersEngine() { return d_qe; }

//interface for instantiators
public:
  void pushStackVariable( Node v );
  void popStackVariable();
  bool doAddInstantiationInc( Node pv, Node n, TermProperties& pv_prop, SolvedForm& sf, unsigned effort );
  Node getModelValue( Node n );
public:
  unsigned getNumCEAtoms() { return d_ce_atoms.size(); }
  Node getCEAtom( unsigned i ) { return d_ce_atoms[i]; }
  // is eligible
  bool isEligible( Node n );
  // has variable
  bool hasVariable( Node n, Node pv );
  bool useVtsDelta() { return d_use_vts_delta; }
  bool useVtsInfinity() { return d_use_vts_inf; }
  bool hasNestedQuantification() { return d_is_nested_quant; }
};


// an instantiator for individual variables
//   will make calls into CegInstantiator::doAddInstantiationInc
class Instantiator {
protected:
  TypeNode d_type;
  bool d_closed_enum_type;
public:
  Instantiator( QuantifiersEngine * qe, TypeNode tn );
  virtual ~Instantiator(){}
  virtual void reset( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) {}

  //  Called when the entailment:
  //    E |= pv_prop.getModifiedTerm(pv) = n
  //  holds in the current context E, and n is eligible for instantiation.
  virtual bool processEqualTerm( CegInstantiator * ci, SolvedForm& sf, Node pv, TermProperties& pv_prop, Node n, unsigned effort );
  //  Called about process equal term, where eqc is the list of eligible terms in the equivalence class of pv
  virtual bool processEqualTerms( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& eqc, unsigned effort ) { return false; }

  // whether the instantiator implements processEquality
  virtual bool hasProcessEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
  //  term_props.size() = terms.size() = 2
  //  Called when the entailment:
  //    E ^ term_props[0].getModifiedTerm(x0) = terms[0] ^ term_props[1].getModifiedTerm(x1) = terms[1] |= x0 = x1
  //  holds in current context E for fresh variables xi, terms[i] are eligible, and at least one terms[i] contains pv for i = 0,1.
  //  Notice in the basic case, E |= terms[0] = terms[1].
  //  Returns true if an instantiation was successfully added via a recursive call
  virtual bool processEquality( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< TermProperties >& term_props, std::vector< Node >& terms, unsigned effort ) { return false; }

  // whether the instantiator implements processAssertion for any literal
  virtual bool hasProcessAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
  // whether the instantiator implements processAssertion for literal lit
  virtual bool hasProcessAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort ) { return false; }
  // Called when the entailment:
  //   E |= lit 
  // holds in current context E. Typically, lit belongs to the list of current assertions.
  // Returns true if an instantiation was successfully added via a recursive call
  virtual bool processAssertion( CegInstantiator * ci, SolvedForm& sf, Node pv, Node lit, unsigned effort ) { return false; }
  // Called after processAssertion is called for each literal asserted to the instantiator.
  virtual bool processAssertions( CegInstantiator * ci, SolvedForm& sf, Node pv, std::vector< Node >& lits, unsigned effort ) { return false; }

  //do we use the model value as instantiation for pv
  virtual bool useModelValue( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
  //do we allow the model value as instantiation for pv
  virtual bool allowModelValue( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return d_closed_enum_type; }

  //do we need to postprocess the solved form for pv?
  virtual bool needsPostProcessInstantiationForVariable( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return false; }
  //postprocess the solved form for pv, returns true if we successfully postprocessed, lemmas is a set of lemmas we wish to return along with the instantiation
  virtual bool postProcessInstantiationForVariable( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort, std::vector< Node >& lemmas ) { return true; }

  /** Identify this module (for debugging) */
  virtual std::string identify() const { return "Default"; }
};

class ModelValueInstantiator : public Instantiator {
public:
  ModelValueInstantiator( QuantifiersEngine * qe, TypeNode tn ) : Instantiator( qe, tn ){}
  virtual ~ModelValueInstantiator(){}
  bool useModelValue( CegInstantiator * ci, SolvedForm& sf, Node pv, unsigned effort ) { return true; }
  std::string identify() const { return "ModelValue"; }
};

}
}
}

#endif
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback