summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/bv_inverter.cpp
blob: 9b84c8ecfd368dfd2f36727a5aedbdd84dc110fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*********************                                                        */
/*! \file bv_inverter.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief inverse rules for bit-vector operators
 **/

#include "theory/quantifiers/bv_inverter.h"

#include <algorithm>
#include <stack>

#include "theory/rewriter.h"
#include "theory/quantifiers/term_util.h"
#include "theory/bv/theory_bv_utils.h"


using namespace CVC4::kind;

namespace CVC4 {
namespace theory {
namespace quantifiers {

/* Drop child at given index from expression.
 * E.g., dropChild((x + y + z), 1) -> (x + z)  */
static Node dropChild(Node n, unsigned index) {
  unsigned nchildren = n.getNumChildren();
  Assert(index < nchildren);
  Kind k = n.getKind();
  Assert(k == AND || k == OR || k == BITVECTOR_MULT || k == BITVECTOR_PLUS);
  NodeBuilder<> nb(NodeManager::currentNM(), k);
  for (unsigned i = 0; i < nchildren; ++i) {
    if (i == index) continue;
    nb << n[i];
  }
  return nb.constructNode();
}

Node BvInverter::getSolveVariable(TypeNode tn) {
  std::map<TypeNode, Node>::iterator its = d_solve_var.find(tn);
  if (its == d_solve_var.end()) {
    std::stringstream ss;
    if (tn.isFunction()) {
      Assert(tn.getNumChildren() == 2);
      Assert(tn[0].isBoolean());
      ss << "slv_f";
    } else {
      ss << "slv";
    }
    Node k = NodeManager::currentNM()->mkSkolem(ss.str(), tn);
    // marked as a virtual term (it is eligible for instantiation)
    VirtualTermSkolemAttribute vtsa;
    k.setAttribute(vtsa, true);
    d_solve_var[tn] = k;
    return k;
  } else {
    return its->second;
  }
}

Node BvInverter::getInversionSkolemFor(Node cond, TypeNode tn) {
  // condition should be rewritten
  Assert(Rewriter::rewrite(cond) == cond);
  std::unordered_map<Node, Node, NodeHashFunction>::iterator it =
      d_inversion_skolem_cache.find(cond);
  if (it == d_inversion_skolem_cache.end()) {
    Node skv;
    if (cond.getKind() == EQUAL) {
      // optimization : if condition is ( x = v ) should just return v and not
      // introduce a Skolem this can happen when we ask for the multiplicative
      // inversion with bv1
      Node x = getSolveVariable(tn);
      for (unsigned i = 0; i < 2; i++) {
        if (cond[i] == x) {
          skv = cond[1 - i];
          Trace("cegqi-bv-skvinv")
              << "SKVINV : " << skv << " is trivially associated with conditon "
              << cond << std::endl;
          break;
        }
      }
    }
    if (skv.isNull()) {
      // TODO : compute the value if the condition is deterministic, e.g. calc
      // multiplicative inverse of 2 constants
      skv = NodeManager::currentNM()->mkSkolem("skvinv", tn,
                                               "created for BvInverter");
      Trace("cegqi-bv-skvinv")
          << "SKVINV : " << skv << " is the skolem associated with conditon "
          << cond << std::endl;
      // marked as a virtual term (it is eligible for instantiation)
      VirtualTermSkolemAttribute vtsa;
      skv.setAttribute(vtsa, true);
    }
    d_inversion_skolem_cache[cond] = skv;
    return skv;
  } else {
    Assert(it->second.getType() == tn);
    return it->second;
  }
}

Node BvInverter::getInversionSkolemFunctionFor(TypeNode tn) {
  NodeManager* nm = NodeManager::currentNM();
  // function maps conditions to skolems
  TypeNode ftn = nm->mkFunctionType(nm->booleanType(), tn);
  return getSolveVariable(ftn);
}

Node BvInverter::getInversionNode(Node cond, TypeNode tn) {
  // condition should be rewritten
  Node new_cond = Rewriter::rewrite(cond);
  if (new_cond != cond) {
    Trace("bv-invert-debug") << "Condition " << cond << " was rewritten to "
                             << new_cond << std::endl;
  }
  Node f = getInversionSkolemFunctionFor(tn);
  return NodeManager::currentNM()->mkNode(kind::APPLY_UF, f, new_cond);
}

bool BvInverter::isInvertible(Kind k) {
  // TODO : make this precise (this should correspond to all kinds that we
  // handle in solve_bv_lit/solve_bv_constraint)
  return k != APPLY_UF;
}

Node BvInverter::getPathToPv(
    Node lit, Node pv, Node sv, std::vector<unsigned>& path,
    std::unordered_set<TNode, TNodeHashFunction>& visited) {
  if (visited.find(lit) == visited.end()) {
    visited.insert(lit);
    if (lit == pv) {
      return sv;
    } else {
      // only recurse if the kind is invertible
      // this allows us to avoid paths that go through skolem functions
      if (isInvertible(lit.getKind())) {
        unsigned rmod = 0;  // TODO : randomize?
        for (unsigned i = 0; i < lit.getNumChildren(); i++) {
          unsigned ii = (i + rmod) % lit.getNumChildren();
          Node litc = getPathToPv(lit[ii], pv, sv, path, visited);
          if (!litc.isNull()) {
            // path is outermost term index last
            path.push_back(ii);
            std::vector<Node> children;
            if (lit.getMetaKind() == kind::metakind::PARAMETERIZED) {
              children.push_back(lit.getOperator());
            }
            for (unsigned j = 0; j < lit.getNumChildren(); j++) {
              children.push_back(j == ii ? litc : lit[j]);
            }
            return NodeManager::currentNM()->mkNode(lit.getKind(), children);
          }
        }
      }
    }
  }
  return Node::null();
}

Node BvInverter::eliminateSkolemFunctions(TNode n,
                                          std::vector<Node>& side_conditions) {
  std::unordered_map<TNode, Node, TNodeHashFunction> visited;
  std::unordered_map<TNode, Node, TNodeHashFunction>::iterator it;
  std::stack<TNode> visit;
  TNode cur;

  visit.push(n);
  do {
    cur = visit.top();
    visit.pop();
    it = visited.find(cur);

    if (it == visited.end()) {
      visited[cur] = Node::null();
      visit.push(cur);
      for (unsigned i = 0; i < cur.getNumChildren(); i++) {
        visit.push(cur[i]);
      }
    } else if (it->second.isNull()) {
      Trace("bv-invert-debug")
          << "eliminateSkolemFunctions from " << cur << "..." << std::endl;

      Node ret = cur;
      bool childChanged = false;
      std::vector<Node> children;
      if (cur.getMetaKind() == kind::metakind::PARAMETERIZED) {
        children.push_back(cur.getOperator());
      }
      for (unsigned i = 0; i < cur.getNumChildren(); i++) {
        it = visited.find(cur[i]);
        Assert(it != visited.end());
        Assert(!it->second.isNull());
        childChanged = childChanged || cur[i] != it->second;
        children.push_back(it->second);
      }
      if (childChanged) {
        ret = NodeManager::currentNM()->mkNode(cur.getKind(), children);
      }
      // now, check if it is a skolem function
      if (ret.getKind() == APPLY_UF) {
        Node op = ret.getOperator();
        TypeNode tnp = op.getType();
        // is this a skolem function?
        std::map<TypeNode, Node>::iterator its = d_solve_var.find(tnp);
        if (its != d_solve_var.end() && its->second == op) {
          Assert(ret.getNumChildren() == 1);
          Assert(ret[0].getType().isBoolean());

          Node cond = ret[0];
          // must rewrite now to ensure we lookup the correct skolem
          cond = Rewriter::rewrite(cond);

          // if so, we replace by the (finalized) skolem variable
          // Notice that since we are post-rewriting, skolem functions are
          // already eliminated from cond
          ret = getInversionSkolemFor(cond, ret.getType());

          // also must add (substituted) side condition to vector
          // substitute ( solve variable -> inversion skolem )
          TNode solve_var = getSolveVariable(ret.getType());
          TNode tret = ret;
          cond = cond.substitute(solve_var, tret);
          if (std::find(side_conditions.begin(), side_conditions.end(), cond) ==
              side_conditions.end()) {
            side_conditions.push_back(cond);
          }
        }
      }
      Trace("bv-invert-debug") << "eliminateSkolemFunctions from " << cur
                               << " returned " << ret << std::endl;
      visited[cur] = ret;
    }
  } while (!visit.empty());
  Assert(visited.find(n) != visited.end());
  Assert(!visited.find(n)->second.isNull());
  return visited[n];
}

Node BvInverter::getPathToPv(Node lit, Node pv, Node sv, Node pvs,
                             std::vector<unsigned>& path) {
  std::unordered_set<TNode, TNodeHashFunction> visited;
  Node slit = getPathToPv(lit, pv, sv, path, visited);
  // if we are able to find a (invertible) path to pv
  if (!slit.isNull()) {
    // substitute pvs for the other occurrences of pv
    TNode tpv = pv;
    TNode tpvs = pvs;
    slit = slit.substitute(tpv, tpvs);
  }
  return slit;
}

Node BvInverter::solve_bv_constraint(Node sv, Node sv_t, Node t, Kind rk,
                                     bool pol, std::vector<unsigned>& path,
                                     BvInverterModelQuery* m,
                                     BvInverterStatus& status) {
  NodeManager* nm = NodeManager::currentNM();
  while (!path.empty()) {
    unsigned index = path.back();
    Assert(index < sv_t.getNumChildren());
    path.pop_back();
    Kind k = sv_t.getKind();

    /* inversions  */
    if (k == BITVECTOR_CONCAT) {
      /* x = t[upper:lower]
       * where
       * upper = getSize(t) - 1 - sum(getSize(sv_t[i])) for i < index
       * lower = getSize(sv_t[i]) for i > index
       */
      unsigned upper, lower;
      upper = bv::utils::getSize(t) - 1;
      lower = 0;
      NodeBuilder<> nb(nm, BITVECTOR_CONCAT);
      for (unsigned i = 0; i < sv_t.getNumChildren(); i++) {
        if (i < index)
          upper -= bv::utils::getSize(sv_t[i]);
        else if (i > index)
          lower += bv::utils::getSize(sv_t[i]);
      }
      t = bv::utils::mkExtract(t, upper, lower);
    } else {
      Node s = sv_t.getNumChildren() == 2
        ? sv_t[1 - index]
        : dropChild(sv_t, index);
      /* Note: All n-ary kinds except for CONCAT (i.e., AND, OR, MULT, PLUS)
       *       are commutative (no case split based on index). */
      if (k == BITVECTOR_PLUS) {
        t = nm->mkNode(BITVECTOR_SUB, t, s);
      } else if (k == BITVECTOR_SUB) {
        t = nm->mkNode(BITVECTOR_PLUS, t, s);
      } else if (k == BITVECTOR_MULT) {
        /* t = skv (fresh skolem constant)
         * with side condition:
         * ctz(t) >= ctz(s) <-> x * s = t
         * where
         * ctz(t) >= ctz(s) -> (t & -t) >= (s & -s)  */
        TypeNode solve_tn = sv_t[index].getType();
        Node x = getSolveVariable(solve_tn);
        /* left hand side of side condition  */
        Node scl = nm->mkNode(
            BITVECTOR_UGE,
            nm->mkNode(BITVECTOR_AND, t, nm->mkNode(BITVECTOR_NEG, t)),
            nm->mkNode(BITVECTOR_AND, s, nm->mkNode(BITVECTOR_NEG, s)));
        /* right hand side of side condition  */
        Node scr = nm->mkNode(EQUAL, nm->mkNode(BITVECTOR_MULT, x, s), t);
        /* overall side condition  */
        Node sc = nm->mkNode(IMPLIES, scl, scr);
        /* add side condition  */
        status.d_conds.push_back(sc);

        /* get the skolem node for this side condition  */
        Node skv = getInversionNode(sc, solve_tn);
        /* now solving with the skolem node as the RHS  */
        t = skv;
      } else if (k == BITVECTOR_UREM_TOTAL) {
        /* t = skv (fresh skolem constant)  */
        TypeNode solve_tn = sv_t[index].getType();
        Node x = getSolveVariable(solve_tn);
        Node scl, scr;
        if (index == 0) {
          /* x % s = t
           * with side condition:
           * TODO  */
          Trace("bv-invert") << "bv-invert : Unsupported for index " << index
                             << ", from " << sv_t << std::endl;
          return Node::null();
        } else {
          /* s % x = t
           * with side conditions:
           * s > t
           * && s-t > t
           * && (t = 0 || t != s-1)  */
          Node s_gt_t = nm->mkNode(BITVECTOR_UGT, s, t);
          Node s_m_t = nm->mkNode(BITVECTOR_SUB, s, t);
          Node smt_gt_t = nm->mkNode(BITVECTOR_UGT, s_m_t, t);
          Node t_eq_z = nm->mkNode(EQUAL,
              t, bv::utils::mkZero(bv::utils::getSize(t)));
          Node s_m_o = nm->mkNode(BITVECTOR_SUB,
              s, bv::utils::mkOne(bv::utils::getSize(s)));
          Node t_d_smo = nm->mkNode(DISTINCT, t, s_m_o);

          scl = nm->mkNode(AND,
              nm->mkNode(AND, s_gt_t, smt_gt_t),
              nm->mkNode(OR, t_eq_z, t_d_smo));
          scr = nm->mkNode(EQUAL, nm->mkNode(BITVECTOR_UREM_TOTAL, s, x), t);
        }
        Node sc = nm->mkNode(IMPLIES, scl, scr);
        status.d_conds.push_back(sc);
        Node skv = getInversionNode(sc, solve_tn);
        t = skv;
      } else if (k == BITVECTOR_AND || k == BITVECTOR_OR) {
        /* t = skv (fresh skolem constant)
         * with side condition:
         * t & s = t
         * t | s = t */
        TypeNode solve_tn = sv_t[index].getType();
        Node x = getSolveVariable(solve_tn);
        Node scl = nm->mkNode(EQUAL, t, nm->mkNode(k, t, s));
        Node scr = nm->mkNode(EQUAL, nm->mkNode(k, x, s), t);
        Node sc = nm->mkNode(IMPLIES, scl, scr);
        status.d_conds.push_back(sc);
        Node skv = getInversionNode(sc, solve_tn);
        t = skv;
      } else if (k == BITVECTOR_LSHR) {
        /* t = skv (fresh skolem constant)  */
        TypeNode solve_tn = sv_t[index].getType();
        Node x = getSolveVariable(solve_tn);
        Node scl, scr;
        if (index == 0) {
          /* x >> s = t
           * with side condition:
           * s = 0 || clz(t) >= s
           * ->
           * s = 0 || ((z o t) << s)[2w-1 : w] = z
           * with w = getSize(t) = getSize(s) and z = 0 with getSize(z) = w  */
          unsigned w = bv::utils::getSize(s);
          Node z = bv::utils::mkZero(w);
          Node z_o_t =  nm->mkNode(BITVECTOR_CONCAT, z, t);
          Node zot_shl_s = nm->mkNode(BITVECTOR_SHL, z_o_t, s);
          Node ext = bv::utils::mkExtract(zot_shl_s, 2*w-1, w);
          scl = nm->mkNode(OR,
              nm->mkNode(EQUAL, s, z),
              nm->mkNode(EQUAL, ext, z));
          scr = nm->mkNode(EQUAL, nm->mkNode(BITVECTOR_LSHR, x, s), t);
          Node sc = nm->mkNode(IMPLIES, scl, scr);
          status.d_conds.push_back(sc);
          Node skv = getInversionNode(sc, solve_tn);
          t = skv;
        } else {
          // TODO: index == 1
          /* s >> x = t
           * with side conditions:
           * (s = 0 && t = 0)
           * || (clz(t) >= clz(s)
           *     && (t = 0
           *         || "remaining shifted bits in t "
           *            "match corresponding bits in s"))  */
          Trace("bv-invert") << "bv-invert : Unsupported for index " << index
                             << ", from " << sv_t << std::endl;
          return Node::null();
        }
      } else if (k == BITVECTOR_UDIV_TOTAL) {
        TypeNode solve_tn = sv_t[index].getType();
        Node x = getSolveVariable(solve_tn);
        Node s = sv_t[1 - index];
        unsigned w = bv::utils::getSize(s);
        Node scl, scr;
        Node zero = bv::utils::mkConst(w, 0u);

        /* x udiv s = t */
        if (index == 0) {
          /* with side conditions:
           * !umulo(s * t)
           */
          scl = nm->mkNode(NOT, bv::utils::mkUmulo(s, t));
          scr = nm->mkNode(EQUAL, nm->mkNode(BITVECTOR_UDIV_TOTAL, x, s), t);
        /* s udiv x = t */
        } else {
          /* with side conditions:
           * (t = 0 && (s = 0 || s != 2^w-1))
           * || s >= t
           * || t = 2^w-1
           */
          Node ones = bv::utils::mkOnes(w);
          Node t_eq_zero = nm->mkNode(EQUAL, t, zero);
          Node s_eq_zero = nm->mkNode(EQUAL, s, zero);
          Node s_ne_ones = nm->mkNode(DISTINCT, s, ones);
          Node s_ge_t = nm->mkNode(BITVECTOR_UGE, s, t);
          Node t_eq_ones = nm->mkNode(EQUAL, t, ones);
          scl = nm->mkNode(
              OR,
              nm->mkNode(AND, t_eq_zero, nm->mkNode(OR, s_eq_zero, s_ne_ones)),
              s_ge_t, t_eq_ones);
          scr = nm->mkNode(EQUAL, nm->mkNode(BITVECTOR_UDIV_TOTAL, s, x), t);
        }

        /* overall side condition */
        Node sc = nm->mkNode(IMPLIES, scl, scr);
        /* add side condition */
        status.d_conds.push_back(sc);

        /* get the skolem node for this side condition*/
        Node skv = getInversionNode(sc, solve_tn);
        /* now solving with the skolem node as the RHS */
        t = skv;
      } else if (k == BITVECTOR_SHL) {
        TypeNode solve_tn = sv_t[index].getType();
        Node x = getSolveVariable(solve_tn);
        Node s = sv_t[1 - index];
        unsigned w = bv::utils::getSize(s);
        Node scl, scr;

        /* x << s = t */
        if (index == 0) {
          /* with side conditions:
           * (s = 0 || ctz(t) >= s)
           * <->
           * (s = 0 || ((t o z) >> (z o s))[w-1:0] = z)
           *
           * where
           * w = getSize(s) = getSize(t) = getSize (z) && z = 0
           */
          Node zero = bv::utils::mkConst(w, 0u);
          Node s_eq_zero = nm->mkNode(EQUAL, s, zero);
          Node t_conc_zero = nm->mkNode(BITVECTOR_CONCAT, t, zero);
          Node zero_conc_s = nm->mkNode(BITVECTOR_CONCAT, zero, s);
          Node shr_s = nm->mkNode(BITVECTOR_LSHR, t_conc_zero, zero_conc_s);
          Node extr_shr_s = bv::utils::mkExtract(shr_s, w - 1, 0);
          Node ctz_t_ge_s = nm->mkNode(EQUAL, extr_shr_s, zero);
          scl = nm->mkNode(OR, s_eq_zero, ctz_t_ge_s);
          scr = nm->mkNode(EQUAL, nm->mkNode(BITVECTOR_SHL, x, s), t);
          /* s << x = t */
        } else {
          /* with side conditions:
           * (s = 0 && t = 0)
           * || (ctz(t) >= ctz(s)
           *     && (t = 0 ||
           *         "remaining shifted bits in t match corresponding bits in s"))
           */
          Trace("bv-invert") << "bv-invert : Unsupported for index " << index
                             << ", from " << sv_t << std::endl;
          return Node::null();
        }

        /* overall side condition */
        Node sc = nm->mkNode(IMPLIES, scl, scr);
        /* add side condition */
        status.d_conds.push_back(sc);

        /* get the skolem node for this side condition*/
        Node skv = getInversionNode(sc, solve_tn);
        /* now solving with the skolem node as the RHS */
        t = skv;
      } else if (k == BITVECTOR_NEG || k == BITVECTOR_NOT) {
        t = NodeManager::currentNM()->mkNode(k, t);
        //}else if( k==BITVECTOR_ASHR ){
        // TODO
      } else {
        Trace("bv-invert") << "bv-invert : Unknown kind for bit-vector term "
                           << k
                           << ", from " << sv_t << std::endl;
        return Node::null();
      }
    }
    sv_t = sv_t[index];
  }
  Assert(sv_t == sv);
  // finalize based on the kind of constraint
  // TODO
  if (rk == EQUAL) {
    return t;
  } else {
    Trace("bv-invert")
        << "bv-invert : Unknown relation kind for bit-vector literal " << rk
        << std::endl;
    return t;
  }
}

Node BvInverter::solve_bv_lit(Node sv, Node lit, bool pol,
                              std::vector<unsigned>& path,
                              BvInverterModelQuery* m,
                              BvInverterStatus& status) {
  Assert(!path.empty());
  unsigned index = path.back();
  Assert(index < lit.getNumChildren());
  path.pop_back();
  Kind k = lit.getKind();
  if (k == NOT) {
    Assert(index == 0);
    return solve_bv_lit(sv, lit[index], !pol, path, m, status);
  } else if (k == EQUAL) {
    return solve_bv_constraint(sv, lit[index], lit[1 - index], k, pol, path, m,
                               status);
  } else if (k == BITVECTOR_ULT || k == BITVECTOR_ULE || k == BITVECTOR_SLT ||
             k == BITVECTOR_SLE) {
    if (!pol) {
      if (k == BITVECTOR_ULT) {
        k = index == 1 ? BITVECTOR_ULE : BITVECTOR_UGE;
      } else if (k == BITVECTOR_ULE) {
        k = index == 1 ? BITVECTOR_ULT : BITVECTOR_UGT;
      } else if (k == BITVECTOR_SLT) {
        k = index == 1 ? BITVECTOR_SLE : BITVECTOR_SGE;
      } else {
        Assert(k == BITVECTOR_SLE);
        k = index == 1 ? BITVECTOR_SLT : BITVECTOR_SGT;
      }
    } else if (index == 1) {
      if (k == BITVECTOR_ULT) {
        k = BITVECTOR_UGT;
      } else if (k == BITVECTOR_ULE) {
        k = BITVECTOR_UGE;
      } else if (k == BITVECTOR_SLT) {
        k = BITVECTOR_SGT;
      } else {
        Assert(k == BITVECTOR_SLE);
        k = BITVECTOR_SGE;
      }
    }
    return solve_bv_constraint(sv, lit[index], lit[1 - index], k, true, path, m,
                               status);
  } else {
    Trace("bv-invert") << "bv-invert : Unknown kind for bit-vector literal "
                       << lit << std::endl;
  }
  return Node::null();
}

}  // namespace quantifiers
}  // namespace theory
}  // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback