summaryrefslogtreecommitdiff
path: root/src/theory/quantifiers/bounded_integers.cpp
blob: 2fd595a9f1c4624628104b51909e4df63b2f7085 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*********************                                                        */
/*! \file bounded_integers.cpp
 ** \verbatim
 ** Original author: Andrew Reynolds
 ** Major contributors: Morgan Deters
 ** Minor contributors (to current version): Kshitij Bansal
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2014  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Bounded integers module
 **
 ** This class manages integer bounds for quantifiers
 **/

#include "theory/quantifiers/bounded_integers.h"
#include "theory/quantifiers/quant_util.h"
#include "theory/quantifiers/first_order_model.h"
#include "theory/quantifiers/model_engine.h"
#include "theory/quantifiers/term_database.h"
#include "theory/quantifiers/options.h"

using namespace CVC4;
using namespace std;
using namespace CVC4::theory;
using namespace CVC4::theory::quantifiers;
using namespace CVC4::kind;


BoundedIntegers::RangeModel::RangeModel(BoundedIntegers * bi, Node r, context::Context* c, context::Context* u, bool isProxy) : d_bi(bi),
      d_range(r), d_curr_max(-1), d_lit_to_range(u), d_range_assertions(c), d_has_range(c,false), d_curr_range(c,-1), d_ranges_proxied(u) { 
  if( options::fmfBoundIntLazy() ){
    d_proxy_range = isProxy ? r : NodeManager::currentNM()->mkSkolem( "pbir", r.getType() );
  }else{
    d_proxy_range = r;
  }
  if( !isProxy ){
    Trace("bound-int") << "Introduce proxy " << d_proxy_range << " for " << d_range << std::endl;
  }
}

void BoundedIntegers::RangeModel::initialize() {
  //add initial split lemma
  Node ltr = NodeManager::currentNM()->mkNode( LT, d_proxy_range, NodeManager::currentNM()->mkConst( Rational(0) ) );
  ltr = Rewriter::rewrite( ltr );
  Trace("bound-int-lemma") << " *** bound int: initial split on " << ltr << std::endl;
  d_bi->getQuantifiersEngine()->getOutputChannel().split( ltr );
  Node ltr_lit = ltr.getKind()==NOT ? ltr[0] : ltr;
  d_range_literal[-1] = ltr_lit;
  d_lit_to_range[ltr_lit] = -1;
  d_lit_to_pol[ltr_lit] = ltr.getKind()!=NOT;
  //register with bounded integers
  Trace("bound-int-debug") << "Literal " << ltr_lit << " is literal for " << d_range << std::endl;
  d_bi->addLiteralFromRange(ltr_lit, d_range);
}

void BoundedIntegers::RangeModel::assertNode(Node n) {
  bool pol = n.getKind()!=NOT;
  Node nlit = n.getKind()==NOT ? n[0] : n;
  if( d_lit_to_range.find( nlit )!=d_lit_to_range.end() ){
    int vrange = d_lit_to_range[nlit];
    Trace("bound-int-assert") << "With polarity = " << pol << " (req "<< d_lit_to_pol[nlit] << ")";
    Trace("bound-int-assert") << ", found literal " << nlit;
    Trace("bound-int-assert") << ", it is bound literal " << vrange << " for " << d_range << std::endl;
    d_range_assertions[nlit] = (pol==d_lit_to_pol[nlit]);
    if( pol!=d_lit_to_pol[nlit] ){
      //check if we need a new split?
      if( !d_has_range ){
        bool needsRange = true;
        for( NodeIntMap::iterator it = d_lit_to_range.begin(); it != d_lit_to_range.end(); ++it ){
          if( d_range_assertions.find( (*it).first )==d_range_assertions.end() ){
            Trace("bound-int-debug") << "Does not need range because of " << (*it).first << std::endl;
            needsRange = false;
            break;
          }
        }
        if( needsRange ){
          allocateRange();
        }
      }
    }else{
      if (!d_has_range || vrange<d_curr_range ){
        Trace("bound-int-bound") << "Successfully bound " << d_range << " to " << vrange << std::endl;
        d_curr_range = vrange;
      }
      //set the range
      d_has_range = true;
    }
  }else{
    Message() << "Could not find literal " << nlit << " for range " << d_range << std::endl;
    exit(0);
  }
}

void BoundedIntegers::RangeModel::allocateRange() {
  d_curr_max++;
  int newBound = d_curr_max;
  Trace("bound-int-proc") << "Allocate range bound " << newBound << " for " << d_range << std::endl;
  //TODO: newBound should be chosen in a smarter way
  Node ltr = NodeManager::currentNM()->mkNode( LEQ, d_proxy_range, NodeManager::currentNM()->mkConst( Rational(newBound) ) );
  ltr = Rewriter::rewrite( ltr );
  Trace("bound-int-lemma") << " *** bound int: split on " << ltr << std::endl;
  d_bi->getQuantifiersEngine()->getOutputChannel().split( ltr );
  Node ltr_lit = ltr.getKind()==NOT ? ltr[0] : ltr;
  d_range_literal[newBound] = ltr_lit;
  d_lit_to_range[ltr_lit] = newBound;
  d_lit_to_pol[ltr_lit] = ltr.getKind()!=NOT;
  //register with bounded integers
  d_bi->addLiteralFromRange(ltr_lit, d_range);
}

Node BoundedIntegers::RangeModel::getNextDecisionRequest() {
  //request the current cardinality as a decision literal, if not already asserted
  for( NodeIntMap::iterator it = d_lit_to_range.begin(); it != d_lit_to_range.end(); ++it ){
    int i = (*it).second;
    if( !d_has_range || i<d_curr_range ){
      Node rn = (*it).first;
      Assert( !rn.isNull() );
      if( d_range_assertions.find( rn )==d_range_assertions.end() ){
        if (!d_lit_to_pol[rn]) {
          rn = rn.negate();
        }
        Trace("bound-int-dec-debug") << "For " << d_range << ", make decision " << rn << " to make range " << i << std::endl;
        return rn;
      }
    }
  }
  return Node::null();
}

bool BoundedIntegers::RangeModel::proxyCurrentRange() {
  //Trace("model-engine") << "Range(" << d_range << ") currently is " << d_curr_max.get() << std::endl;
  if( d_range!=d_proxy_range ){
    //int curr = d_curr_range.get();
    int curr = d_curr_max;
    if( d_ranges_proxied.find( curr )==d_ranges_proxied.end() ){
      d_ranges_proxied[curr] = true;
      Assert( d_range_literal.find( curr )!=d_range_literal.end() );
      Node lem = NodeManager::currentNM()->mkNode( IFF, d_range_literal[curr].negate(),
                   NodeManager::currentNM()->mkNode( LEQ, d_range, NodeManager::currentNM()->mkConst( Rational(curr) ) ) );
      Trace("bound-int-lemma") << "*** bound int : proxy lemma : " << lem << std::endl;
      d_bi->getQuantifiersEngine()->addLemma( lem );
      return true;
    }
  }
  return false;
}


BoundedIntegers::BoundedIntegers(context::Context* c, QuantifiersEngine* qe) :
QuantifiersModule(qe), d_assertions(c){

}

bool BoundedIntegers::isBound( Node f, Node v ) {
  return std::find( d_set[f].begin(), d_set[f].end(), v )!=d_set[f].end();
}

bool BoundedIntegers::hasNonBoundVar( Node f, Node b ) {
  if( b.getKind()==BOUND_VARIABLE ){
    if( !isBound( f, b ) ){
      return true;
    }
  }else{
    for( unsigned i=0; i<b.getNumChildren(); i++ ){
      if( hasNonBoundVar( f, b[i] ) ){
        return true;
      }
    }
  }
  return false;
}

void BoundedIntegers::processLiteral( Node f, Node lit, bool pol,
                                      std::map< int, std::map< Node, Node > >& bound_lit_map,
                                      std::map< int, std::map< Node, bool > >& bound_lit_pol_map ) {
  if( lit.getKind()==GEQ && lit[0].getType().isInteger() ){
    std::map< Node, Node > msum;
    if (QuantArith::getMonomialSumLit( lit, msum )){
      Trace("bound-int-debug") << "Literal (polarity = " << pol << ") " << lit << " is monomial sum : " << std::endl;
      QuantArith::debugPrintMonomialSum( msum, "bound-int-debug" );
      for( std::map< Node, Node >::iterator it = msum.begin(); it != msum.end(); ++it ){
        if ( !it->first.isNull() && it->first.getKind()==BOUND_VARIABLE && !isBound( f, it->first ) ){
          Node veq;
          if( QuantArith::isolate( it->first, msum, veq, GEQ )!=0 ){
            Node n1 = veq[0];
            Node n2 = veq[1];
            if(pol){
              //flip
              n1 = veq[1];
              n2 = veq[0];
              if( n1.getKind()==BOUND_VARIABLE ){
                n2 = QuantArith::offset( n2, 1 );
              }else{
                n1 = QuantArith::offset( n1, -1 );
              }
              veq = NodeManager::currentNM()->mkNode( GEQ, n1, n2 );
            }
            Trace("bound-int-debug") << "Isolated for " << it->first << " : (" << n1 << " >= " << n2 << ")" << std::endl;
            Node t = n1==it->first ? n2 : n1;
            if( !hasNonBoundVar( f, t ) ) {
              Trace("bound-int-debug") << "The bound is relevant." << std::endl;
              int loru = n1==it->first ? 0 : 1;
              d_bounds[loru][f][it->first] = t;
              bound_lit_map[loru][it->first] = lit;
              bound_lit_pol_map[loru][it->first] = pol;
            }else{
              Trace("bound-int-debug") << "The term " << t << " has non-bound variable." << std::endl;
            }
          }
        }
      }
    }
  }else if( lit.getKind()==LEQ || lit.getKind()==LT || lit.getKind()==GT ) {
    Message() << "BoundedIntegers : Bad kind for literal : " << lit << std::endl;
  }
}

void BoundedIntegers::process( Node f, Node n, bool pol,
                               std::map< int, std::map< Node, Node > >& bound_lit_map,
                               std::map< int, std::map< Node, bool > >& bound_lit_pol_map ){
  if( (n.getKind()==OR && pol) || (n.getKind()==AND && !pol) ){
    for( unsigned i=0; i<n.getNumChildren(); i++) {
      process( f, n[i], pol, bound_lit_map, bound_lit_pol_map );
    }
  }else if( n.getKind()==NOT ){
    process( f, n[0], !pol, bound_lit_map, bound_lit_pol_map );
  }else {
    processLiteral( f, n, pol, bound_lit_map, bound_lit_pol_map );
  }
}

bool BoundedIntegers::needsCheck( Theory::Effort e ) {
  return e==Theory::EFFORT_LAST_CALL;
}

void BoundedIntegers::check( Theory::Effort e, unsigned quant_e ) {
  if( quant_e==QuantifiersEngine::QEFFORT_STANDARD ){
    Trace("bint-engine") << "---Bounded Integers---" << std::endl;
    bool addedLemma = false;
    //make sure proxies are up-to-date with range
    for( unsigned i=0; i<d_ranges.size(); i++) {
      if( d_rms[d_ranges[i]]->proxyCurrentRange() ){
        addedLemma = true;
      }
    }
    Trace("bint-engine") << "   addedLemma = " << addedLemma << std::endl;
  }
}


void BoundedIntegers::addLiteralFromRange( Node lit, Node r ) {
  d_lit_to_ranges[lit].push_back(r);
  //check if it is already asserted?
  if(d_assertions.find(lit)!=d_assertions.end()){
    d_rms[r]->assertNode( d_assertions[lit] ? lit : lit.negate() );
  }
}

void BoundedIntegers::registerQuantifier( Node f ) {
  Trace("bound-int") << "Register quantifier " << f << std::endl;
  bool hasIntType = false;
  int finiteTypes = 0;
  std::map< Node, int > numMap;
  for( unsigned i=0; i<f[0].getNumChildren(); i++) {
    numMap[f[0][i]] = i;
    if( f[0][i].getType().isInteger() ){
      hasIntType = true;
    }
    else if( f[0][i].getType().isSort() || f[0][i].getType().getCardinality().isFinite() ){
      finiteTypes++;
    }
  }
  if( hasIntType ){
    bool success;
    do{
      std::map< int, std::map< Node, Node > > bound_lit_map;
      std::map< int, std::map< Node, bool > > bound_lit_pol_map;
      success = false;
      process( f, f[1], true, bound_lit_map, bound_lit_pol_map );
      for( std::map< Node, Node >::iterator it = d_bounds[0][f].begin(); it != d_bounds[0][f].end(); ++it ){
        Node v = it->first;
        if( !isBound(f,v) ){
          if( d_bounds[1][f].find(v)!=d_bounds[1][f].end() ){
            d_set[f].push_back(v);
            d_set_nums[f].push_back(numMap[v]);
            success = true;
            //set Attributes on literals
            for( unsigned b=0; b<2; b++ ){
              Assert( bound_lit_map[b].find( v )!=bound_lit_map[b].end() );
              Assert( bound_lit_pol_map[b].find( v )!=bound_lit_pol_map[b].end() );
              BoundIntLitAttribute bila;
              bound_lit_map[b][v].setAttribute( bila, bound_lit_pol_map[b][v] ? 1 : 0 );
            }
            Trace("bound-int") << "Variable " << v << " is bound because of literals " << bound_lit_map[0][v] << " and " << bound_lit_map[1][v] << std::endl;
          }
        }
      }
    }while( success );
    Trace("bound-int") << "Bounds are : " << std::endl;
    for( unsigned i=0; i<d_set[f].size(); i++) {
      Node v = d_set[f][i];
      Node r = NodeManager::currentNM()->mkNode( MINUS, d_bounds[1][f][v], d_bounds[0][f][v] );
      d_range[f][v] = Rewriter::rewrite( r );
      Trace("bound-int") << "  " << d_bounds[0][f][v] << " <= " << v << " <= " << d_bounds[1][f][v] << " (range is " << d_range[f][v] << ")" << std::endl;
    }
    if( d_set[f].size()==(f[0].getNumChildren()-finiteTypes) ){
      d_bound_quants.push_back( f );
      for( unsigned i=0; i<d_set[f].size(); i++) {
        Node v = d_set[f][i];
        Node r = d_range[f][v];
        bool isProxy = false;
        if( r.hasBoundVar() ){
          //introduce a new bound
          Node new_range = NodeManager::currentNM()->mkSkolem( "bir", r.getType(), "bound for term" );
          d_nground_range[f][v] = d_range[f][v];
          d_range[f][v] = new_range;
          r = new_range;
          isProxy = true;
        }
        if( r.getKind()!=CONST_RATIONAL ){
          if( std::find(d_ranges.begin(), d_ranges.end(), r)==d_ranges.end() ){
            Trace("bound-int") << "For " << v << ", bounded Integer Module will try to minimize : " << r << " " << r.getKind() << std::endl;
            d_ranges.push_back( r );
            d_rms[r] = new RangeModel(this, r, d_quantEngine->getSatContext(), d_quantEngine->getUserContext(), isProxy );
            d_rms[r]->initialize();
          }
        }
      }
    }else{
      Trace("bound-int-warn") << "Warning : Bounded Integers : Could not find bounds for " << f << std::endl;
      //Message() << "Bound integers : Cannot infer bounds of " << f << std::endl;
    }
  }
}

void BoundedIntegers::assertNode( Node n ) {
  Trace("bound-int-assert") << "Assert " << n << std::endl;
  Node nlit = n.getKind()==NOT ? n[0] : n;
  if( d_lit_to_ranges.find(nlit)!=d_lit_to_ranges.end() ){
    Trace("bound-int-assert") << "This is the bounding literal for " << d_lit_to_ranges[nlit].size() << " ranges." << std::endl;
    for( unsigned i=0; i<d_lit_to_ranges[nlit].size(); i++) {
      Node r = d_lit_to_ranges[nlit][i];
      Trace("bound-int-assert") << "  ...this is a bounding literal for " << r << std::endl;
      d_rms[r]->assertNode( n );
    }
  }
  d_assertions[nlit] = n.getKind()!=NOT;
}

Node BoundedIntegers::getNextDecisionRequest() {
  Trace("bound-int-dec-debug") << "bi: Get next decision request?" << std::endl;
  for( unsigned i=0; i<d_ranges.size(); i++) {
    Node d = d_rms[d_ranges[i]]->getNextDecisionRequest();
    if (!d.isNull()) {
      bool polLit = d.getKind()!=NOT;
      Node lit = d.getKind()==NOT ? d[0] : d;
      bool value;
      if( d_quantEngine->getValuation().hasSatValue( lit, value ) ) {
        if( value==polLit ){
          Trace("bound-int-dec-debug") << "...already asserted properly." << std::endl;
          //already true, we're already fine
        }else{
          Trace("bound-int-dec-debug") << "...already asserted with wrong polarity, re-assert." << std::endl;
          assertNode( d.negate() );
          i--;
        }
      }else{
        Trace("bound-int-dec") << "Bounded Integers : Decide " << d << std::endl;
        return d;
      }
    }
  }
  Trace("bound-int-dec-debug") << "No decision request." << std::endl;
  return Node::null();
}

void BoundedIntegers::getBounds( Node f, Node v, RepSetIterator * rsi, Node & l, Node & u ) {
  l = d_bounds[0][f][v];
  u = d_bounds[1][f][v];
  if( d_nground_range[f].find(v)!=d_nground_range[f].end() ){
    //must create substitution
    std::vector< Node > vars;
    std::vector< Node > subs;
    Trace("bound-int-rsi") << "Get bound value in model of variable " << v << std::endl;
    for( unsigned i=0; i<d_set[f].size(); i++) {
      if( d_set[f][i]!=v ){
        Trace("bound-int-rsi") << "Look up the value for " << d_set[f][i] << " " << rsi->d_var_order[d_set_nums[f][i]] << std::endl;
        Trace("bound-int-rsi") << "term : " << rsi->getTerm(rsi->d_var_order[d_set_nums[f][i]]) << std::endl;
        vars.push_back(d_set[f][i]);
        subs.push_back(rsi->getTerm(rsi->d_var_order[d_set_nums[f][i]]));
      }else{
        break;
      }
    }
    Trace("bound-int-rsi") << "Do substitution..." << std::endl;
    //check if it has been instantiated
    if (!vars.empty() && !d_bnd_it[f][v].hasInstantiated(subs)){
      //must add the lemma
      Node nn = d_nground_range[f][v];
      nn = nn.substitute( vars.begin(), vars.end(), subs.begin(), subs.end() );
      Node lem = NodeManager::currentNM()->mkNode( LEQ, nn, d_range[f][v] );
      Trace("bound-int-lemma") << "*** Add lemma to minimize instantiated non-ground term " << lem << std::endl;
      d_quantEngine->getOutputChannel().lemma(lem, false, true);
      l = Node::null();
      u = Node::null();
      return;
    }else{
      u = u.substitute( vars.begin(), vars.end(), subs.begin(), subs.end() );
      l = l.substitute( vars.begin(), vars.end(), subs.begin(), subs.end() );
    }
  }
}

void BoundedIntegers::getBoundValues( Node f, Node v, RepSetIterator * rsi, Node & l, Node & u ) {
  getBounds( f, v, rsi, l, u );
  Trace("bound-int-rsi") << "Get value in model for..." << l << " and " << u << std::endl;
  l = d_quantEngine->getModel()->getCurrentModelValue( l );
  u = d_quantEngine->getModel()->getCurrentModelValue( u );
  Trace("bound-int-rsi") << "Value is " << l << " ... " << u << std::endl;
  return;
}

bool BoundedIntegers::isGroundRange(Node f, Node v) {
  return isBoundVar(f,v) && !getLowerBound(f,v).hasBoundVar() && !getUpperBound(f,v).hasBoundVar();
}

generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback