summaryrefslogtreecommitdiff
path: root/src/theory/model.cpp
blob: adcf8dacf3af9200a41b7e977162e37fcf25e5a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/*********************                                                        */
/*! \file model.cpp
 ** \verbatim
 ** Original author: ajreynol
 ** Major contributors: none
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010, 2011  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Implementation of model class
 **/

#include "theory/model.h"
#include "theory/quantifiers_engine.h"
#include "theory/theory_engine.h"
#include "theory/type_enumerator.h"
#include "smt/options.h"
#include "theory/uf/theory_uf_model.h"

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;

TheoryModel::TheoryModel( context::Context* c, std::string name, bool enableFuncModels ) :
  d_substitutions(c), d_equalityEngine(c, name), d_enableFuncModels(enableFuncModels)
{
  d_true = NodeManager::currentNM()->mkConst( true );
  d_false = NodeManager::currentNM()->mkConst( false );
  // The kinds we are treating as function application in congruence
  d_equalityEngine.addFunctionKind(kind::APPLY_UF);
  d_equalityEngine.addFunctionKind(kind::SELECT);
  //  d_equalityEngine.addFunctionKind(kind::STORE);
  d_equalityEngine.addFunctionKind(kind::APPLY_CONSTRUCTOR);
  d_equalityEngine.addFunctionKind(kind::APPLY_SELECTOR);
  d_equalityEngine.addFunctionKind(kind::APPLY_TESTER);
}

void TheoryModel::reset(){
  d_reps.clear();
  d_rep_set.clear();
  d_uf_terms.clear();
  d_uf_models.clear();
}

Node TheoryModel::getValue( TNode n ) const{
  //apply substitutions
  Node nn = d_substitutions.apply( n );
  //get value in model
  return getModelValue( nn );
}

Expr TheoryModel::getValue( Expr expr ) const{
  Node n = Node::fromExpr( expr );
  Node ret = getValue( n );
  return ret.toExpr();
}

/** get cardinality for sort */
Cardinality TheoryModel::getCardinality( Type t ) const{
  TypeNode tn = TypeNode::fromType( t );
  //for now, we only handle cardinalities for uninterpreted sorts
  if( tn.isSort() ){
    if( d_rep_set.hasType( tn ) ){
      return Cardinality( d_rep_set.getNumRepresentatives( tn ) );
    }else{
      return Cardinality( CardinalityUnknown() );
    }
  }else{
    return Cardinality( CardinalityUnknown() );
  }
}

Node TheoryModel::getModelValue( TNode n ) const{
  if( n.isConst() ) {
    return n;
  }

  TypeNode t = n.getType();
  if (t.isFunction() || t.isPredicate()) {
    if (d_enableFuncModels) {
      std::map< Node, Node >::const_iterator it = d_uf_models.find(n);
      if (it != d_uf_models.end()) {
        // Existing function
        return it->second;
      }
      // Unknown function symbol: return LAMBDA x. c, where c is the first constant in the enumeration of the range type
      vector<TypeNode> argTypes = t.getArgTypes();
      vector<Node> args;
      NodeManager* nm = NodeManager::currentNM();
      for (unsigned i = 0; i < argTypes.size(); ++i) {
        args.push_back(nm->mkBoundVar(argTypes[i]));
      }
      Node boundVarList = nm->mkNode(kind::BOUND_VAR_LIST, args);
      TypeEnumerator te(t.getRangeType());
      return nm->mkNode(kind::LAMBDA, boundVarList, *te);
    }
    // TODO: if func models not enabled, throw an error?
    Unreachable();
  }

  if (n.getNumChildren() > 0) {
    std::vector<Node> children;
    if (n.getKind() == APPLY_UF) {
      Node op = n.getOperator();
      std::map< Node, Node >::const_iterator it = d_uf_models.find(op);
      if (it == d_uf_models.end()) {
        // Unknown term - return first enumerated value for this type
        TypeEnumerator te(n.getType());
        return *te;
      }else{
        // Plug in uninterpreted function model
        children.push_back(it->second);
      }
    }
    else if (n.getMetaKind() == kind::metakind::PARAMETERIZED) {
      children.push_back(n.getOperator());
    }
    //evaluate the children
    for (unsigned i = 0; i < n.getNumChildren(); ++i) {
      Node val = getValue(n[i]);
      children.push_back(val);
    }
    Node val = Rewriter::rewrite(NodeManager::currentNM()->mkNode(n.getKind(), children));
    Assert(val.isConst());
    return val;
  }

  if (!d_equalityEngine.hasTerm(n)) {
    // Unknown term - return first enumerated value for this type
    TypeEnumerator te(n.getType());
    return *te;
  }
  Node val = d_equalityEngine.getRepresentative(n);
  Assert(d_reps.find(val) != d_reps.end());
  std::map< Node, Node >::const_iterator it = d_reps.find( val );
  if( it!=d_reps.end() ){
    return it->second;
  }else{
    return Node::null();
  }
}

Node TheoryModel::getDomainValue( TypeNode tn, std::vector< Node >& exclude ){
  if( d_rep_set.d_type_reps.find( tn )!=d_rep_set.d_type_reps.end() ){
    //try to find a pre-existing arbitrary element
    for( size_t i=0; i<d_rep_set.d_type_reps[tn].size(); i++ ){
      if( std::find( exclude.begin(), exclude.end(), d_rep_set.d_type_reps[tn][i] )==exclude.end() ){
        return d_rep_set.d_type_reps[tn][i];
      }
    }
  }
  return Node::null();
}

//FIXME: need to ensure that theory enumerators exist for each sort
Node TheoryModel::getNewDomainValue( TypeNode tn ){
  if( tn.isSort() ){
    return Node::null();
  }else{
    TypeEnumerator te(tn);
    while( !te.isFinished() ){
      Node r = *te;
      if(Debug.isOn("getNewDomainValue")) {
        Debug("getNewDomainValue") << "getNewDomainValue( " << tn << ")" << endl;
        Debug("getNewDomainValue") << "+ TypeEnumerator gave: " << r << endl;
        Debug("getNewDomainValue") << "+ d_type_reps are:";
        for(vector<Node>::const_iterator i = d_rep_set.d_type_reps[tn].begin();
            i != d_rep_set.d_type_reps[tn].end();
            ++i) {
          Debug("getNewDomainValue") << " " << *i;
        }
        Debug("getNewDomainValue") << endl;
      }
      if( std::find(d_rep_set.d_type_reps[tn].begin(), d_rep_set.d_type_reps[tn].end(), r) ==d_rep_set.d_type_reps[tn].end() ) {
        Debug("getNewDomainValue") << "+ it's new, so returning " << r << endl;
        return r;
      }
      ++te;
    }
    return Node::null();
  }
}

/** add substitution */
void TheoryModel::addSubstitution( TNode x, TNode t, bool invalidateCache ){
  if( !d_substitutions.hasSubstitution( x ) ){
    d_substitutions.addSubstitution( x, t, invalidateCache );
  } else {
#ifdef CVC4_ASSERTIONS
    Node oldX = d_substitutions.getSubstitution(x);
    // check that either the old substitution is the same, or it now maps to the new substitution
    if(oldX != t && d_substitutions.apply(oldX) != d_substitutions.apply(t)) {
      stringstream ss;
      ss << "Two incompatible substitutions added to TheoryModel:\n"
         << "the term:    " << x << "\n"
         << "old mapping: " << d_substitutions.apply(oldX) << "\n"
         << "new mapping: " << d_substitutions.apply(t);
      InternalError(ss.str());
    }
#endif /* CVC4_ASSERTIONS */
  }
}

/** add term */
void TheoryModel::addTerm( Node n ){
  if( !d_equalityEngine.hasTerm( n ) ){
    d_equalityEngine.addTerm( n );
  }
  //must collect UF terms
  if (n.getKind()==APPLY_UF) {
    Node op = n.getOperator();
    if( std::find( d_uf_terms[ op ].begin(), d_uf_terms[ op ].end(), n )==d_uf_terms[ op ].end() ){
      d_uf_terms[ op ].push_back( n );
      Trace("model-add-term-uf") << "Add term " << n << std::endl;
    }
  }
}

/** assert equality */
void TheoryModel::assertEquality( Node a, Node b, bool polarity ){
  d_equalityEngine.assertEquality( a.eqNode(b), polarity, Node::null() );
}

/** assert predicate */
void TheoryModel::assertPredicate( Node a, bool polarity ){
  if( a.getKind()==EQUAL ){
    d_equalityEngine.assertEquality( a, polarity, Node::null() );
  }else{
    d_equalityEngine.assertPredicate( a, polarity, Node::null() );
  }
}

/** assert equality engine */
void TheoryModel::assertEqualityEngine( const eq::EqualityEngine* ee ){
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( ee );
  while( !eqcs_i.isFinished() ){
    Node eqc = (*eqcs_i);
    bool predicate = false;
    bool predTrue = false;
    bool predFalse = false;
    if (eqc.getType().isBoolean()) {
      predicate = true;
      predTrue = ee->areEqual(eqc, d_true);
      predFalse = ee->areEqual(eqc, d_false);
    }
    eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, ee);
    while(!eqc_i.isFinished()) {
      if (predicate) {
        if (predTrue) {
          assertPredicate(*eqc_i, true);
        }
        else if (predFalse) {
          assertPredicate(*eqc_i, false);
        }
        else {
          d_equalityEngine.mergePredicates(*eqc_i, eqc, Node::null());
        }
      } else {
        assertEquality(*eqc_i, eqc, true);
      }
      ++eqc_i;
    }
    ++eqcs_i;
  }
}

void TheoryModel::assertRepresentative( Node n ){
  Trace("model-builder-reps") << "Assert rep : " << n << std::endl;
  d_reps[ n ] = n;
}

bool TheoryModel::hasTerm( Node a ){
  return d_equalityEngine.hasTerm( a );
}

Node TheoryModel::getRepresentative( Node a ){
  if( d_equalityEngine.hasTerm( a ) ){
    Node r = d_equalityEngine.getRepresentative( a );
    if( d_reps.find( r )!=d_reps.end() ){
      return d_reps[ r ];
    }else{
      return r;
    }
  }else{
    return a;
  }
}

bool TheoryModel::areEqual( Node a, Node b ){
  if( a==b ){
    return true;
  }else if( d_equalityEngine.hasTerm( a ) && d_equalityEngine.hasTerm( b ) ){
    return d_equalityEngine.areEqual( a, b );
  }else{
    return false;
  }
}

bool TheoryModel::areDisequal( Node a, Node b ){
  if( d_equalityEngine.hasTerm( a ) && d_equalityEngine.hasTerm( b ) ){
    return d_equalityEngine.areDisequal( a, b, false );
  }else{
    return false;
  }
}

//for debugging
void TheoryModel::printRepresentativeDebug( const char* c, Node r ){
  if( r.isNull() ){
    Debug( c ) << "null";
  }else if( r.getType().isBoolean() ){
    if( areEqual( r, d_true ) ){
      Debug( c ) << "true";
    }else{
      Debug( c ) << "false";
    }
  }else{
    Debug( c ) << getRepresentative( r );
  }
}

void TheoryModel::printRepresentative( std::ostream& out, Node r ){
  Assert( !r.isNull() );
  if( r.isNull() ){
    out << "null";
  }else if( r.getType().isBoolean() ){
    if( areEqual( r, d_true ) ){
      out  << "true";
    }else{
      out  << "false";
    }
  }else{
    out << getRepresentative( r );
  }
}

TheoryEngineModelBuilder::TheoryEngineModelBuilder( TheoryEngine* te ) : d_te( te ){

}

void TheoryEngineModelBuilder::buildModel(Model* m, bool fullModel)
{
  TheoryModel* tm = (TheoryModel*)m;

  // Reset model
  tm->reset();

  // Collect model info from the theories
  Trace("model-builder") << "TheoryEngineModelBuilder: Collect model info..." << std::endl;
  d_te->collectModelInfo(tm, fullModel);

  Trace("model-builder") << "Collect representatives..." << std::endl;
  // Process all terms in the equality engine, store representatives for each EC
  std::map< Node, Node > assertedReps, constantReps;
  TypeSet typeConstSet, typeRepSet, typeNoRepSet;
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( &tm->d_equalityEngine );
  for ( ; !eqcs_i.isFinished(); ++eqcs_i) {

    // eqc is the equivalence class representative
    Node eqc = (*eqcs_i);
    Trace("model-builder") << "Processing EC: " << eqc << endl;
    Assert(tm->d_equalityEngine.getRepresentative(eqc) == eqc);
    TypeNode eqct = eqc.getType();
    Assert(assertedReps.find(eqc) == assertedReps.end());
    Assert(constantReps.find(eqc) == constantReps.end());

    // Loop through terms in this EC
    Node rep, const_rep;
    eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, &tm->d_equalityEngine);
    for ( ; !eqc_i.isFinished(); ++eqc_i) {
      Node n = *eqc_i;
      Trace("model-builder") << "  Processing Term: " << n << endl;
      // Record as rep if this node was specified as a representative
      if (tm->d_reps.find(n) != tm->d_reps.end()){
        Assert(rep.isNull());
        rep = tm->d_reps[n];
        Assert(!rep.isNull() );
        Trace("model-builder") << "  Rep( " << eqc << " ) = " << rep << std::endl;
      }
      // Record as const_rep if this node is constant
      if (n.isConst()) {
        Assert(const_rep.isNull());
        const_rep = n;
        Trace("model-builder") << "  ConstRep( " << eqc << " ) = " << const_rep << std::endl;
      }
      //model-specific processing of the term
      tm->addTerm(n);
    }

    // Assign representative for this EC
    if (!const_rep.isNull()) {
      // Theories should not specify a rep if there is already a constant in the EC
      Assert(rep.isNull() || rep == const_rep);
      constantReps[eqc] = const_rep;
      typeConstSet.add(eqct, const_rep);
    }
    else if (!rep.isNull()) {
      assertedReps[eqc] = rep;
      typeRepSet.add(eqct, eqc);
    }
    else {
      typeNoRepSet.add(eqct, eqc);
    }
  }

  // Need to ensure that each EC has a constant representative.

  // Phase 1: For types that do not have asserted reps, assign the unassigned EC's using either evaluation or type enumeration
  Trace("model-builder") << "Starting phase 1..." << std::endl;
  TypeSet::iterator it;
  for (it = typeNoRepSet.begin(); it != typeNoRepSet.end(); ++it) {
    TypeNode t = TypeSet::getType(it);
    Trace("model-builder") << "  Working on type: " << t << endl;
    set<Node>& noRepSet = TypeSet::getSet(it);
    Assert(!noRepSet.empty());

    set<Node>::iterator i, i2;
    bool changed;

    // Find value for this EC using evaluation if possible
    do {
      changed = false;
      d_normalizedCache.clear();
      for (i = noRepSet.begin(); i != noRepSet.end(); ) {
        i2 = i;
        ++i;
        eq::EqClassIterator eqc_i = eq::EqClassIterator(*i2, &tm->d_equalityEngine);
        for ( ; !eqc_i.isFinished(); ++eqc_i) {
          Node n = *eqc_i;
          Node normalized = normalize(tm, n, constantReps, true);
          if (normalized.isConst()) {
            typeConstSet.add(t, normalized);
            constantReps[*i2] = normalized;
            Trace("model-builder") << "  Eval: Setting constant rep of " << (*i2) << " to " << normalized << endl;
            changed = true;
            noRepSet.erase(i2);
            break;
          }
        }
      }
    } while (changed);

    // Skip next step if nothing to do or if fullModel is false (meaning we shouldn't choose any representatives that aren't forced)
    if (noRepSet.empty() || !fullModel) {
      continue;
    }

    // This assertion may be too strong, but hopefully not: we expect that for every type, either all of its EC's have asserted reps (or constants)
    // or none of its EC's have asserted reps.
    Assert(typeRepSet.getSet(t) == NULL);

    Node n;
    for (i = noRepSet.begin(); i != noRepSet.end(); ++i) {
      n = typeConstSet.nextTypeEnum(t);
      Assert(!n.isNull(), "out of values for finite type enumeration while building model");
      constantReps[*i] = n;
      Trace("model-builder") << "  New Const: Setting constant rep of " << (*i) << " to " << n << endl;
    }
  }

  // Phase 2: Substitute into asserted reps using constReps.
  // Iterate until a fixed point is reached.
  Trace("model-builder") << "Starting phase 2..." << std::endl;
  bool changed;
  do {
    changed = false;
    d_normalizedCache.clear();
    for (it = typeRepSet.begin(); it != typeRepSet.end(); ++it) {
      set<Node>& repSet = TypeSet::getSet(it);
      set<Node>::iterator i;
      for (i = repSet.begin(); i != repSet.end(); ) {
        Assert(assertedReps.find(*i) != assertedReps.end());
        Node rep = assertedReps[*i];
        Node normalized = normalize(tm, rep, constantReps, false);
        Trace("model-builder") << "  Normalizing rep (" << rep << "), normalized to (" << normalized << ")" << endl;
        if (normalized.isConst()) {
          changed = true;
          constantReps[*i] = normalized;
          assertedReps.erase(*i);
          set<Node>::iterator i2 = i;
          ++i;
          repSet.erase(i2);
        }
        else {
          if (normalized != rep) {
            assertedReps[*i] = normalized;
            changed = true;
          }
          ++i;
        }
      }
    }
  } while (changed);

#ifdef CVC4_ASSERTIONS
  if (fullModel) {
    // Assert that all representatives have been converted to constants
    for (it = typeRepSet.begin(); it != typeRepSet.end(); ++it) {
      set<Node>& repSet = TypeSet::getSet(it);
      Assert(repSet.empty());
    }
  }
#endif /* CVC4_ASSERTIONS */

  Trace("model-builder") << "Copy representatives to model..." << std::endl;
  tm->d_reps.clear();
  std::map< Node, Node >::iterator itMap;
  for (itMap = constantReps.begin(); itMap != constantReps.end(); ++itMap) {
    tm->d_reps[itMap->first] = itMap->second;
    tm->d_rep_set.add(itMap->second);
  }

  if (!fullModel) {
    // Make sure every EC has a rep
    for (itMap = assertedReps.begin(); itMap != assertedReps.end(); ++itMap ) {
      tm->d_reps[itMap->first] = itMap->second;
      tm->d_rep_set.add(itMap->second);
    }
    for (it = typeNoRepSet.begin(); it != typeNoRepSet.end(); ++it) {
      set<Node>& noRepSet = TypeSet::getSet(it);
      set<Node>::iterator i;
      for (i = noRepSet.begin(); i != noRepSet.end(); ++i) {
        tm->d_reps[*i] = *i;
        tm->d_rep_set.add(*i);
      }
    }
  }

  //modelBuilder-specific initialization
  processBuildModel( tm, fullModel );

  if (fullModel) {
    // Check that every term evaluates to its representative in the model
    for (eqcs_i = eq::EqClassesIterator(&tm->d_equalityEngine); !eqcs_i.isFinished(); ++eqcs_i) {
      // eqc is the equivalence class representative
      Node eqc = (*eqcs_i);
      Assert(constantReps.find(eqc) != constantReps.end());
      Node rep = constantReps[eqc];
      eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, &tm->d_equalityEngine);
      for ( ; !eqc_i.isFinished(); ++eqc_i) {
        Node n = *eqc_i;
        Assert(tm->getValue(*eqc_i) == rep);
      }
    }
  }
}


Node TheoryEngineModelBuilder::normalize(TheoryModel* m, TNode r, std::map< Node, Node >& constantReps, bool evalOnly)
{
  std::map<Node, Node>::iterator itMap = constantReps.find(r);
  if (itMap != constantReps.end()) {
    return (*itMap).second;
  }
  NodeMap::iterator it = d_normalizedCache.find(r);
  if (it != d_normalizedCache.end()) {
    return (*it).second;
  }
  Node retNode = r;
  if (r.getNumChildren() > 0) {
    std::vector<Node> children;
    if (r.getMetaKind() == kind::metakind::PARAMETERIZED) {
      children.push_back(r.getOperator());
    }
    bool childrenConst = true;
    for (size_t i=0; i < r.getNumChildren(); ++i) {
      Node ri = r[i];
      if (!ri.isConst()) {
        if (m->d_equalityEngine.hasTerm(ri)) {
          ri = m->d_equalityEngine.getRepresentative(ri);
          itMap = constantReps.find(ri);
          if (itMap != constantReps.end()) {
            ri = (*itMap).second;
          }
          else if (evalOnly) {
            ri = normalize(m, r[i], constantReps, evalOnly);
          }
        }
        else {
          ri = normalize(m, ri, constantReps, evalOnly);
        }
        if (!ri.isConst()) {
          childrenConst = false;
        }
      }
      children.push_back(ri);
    }
    retNode = NodeManager::currentNM()->mkNode( r.getKind(), children );
    if (childrenConst) {
      retNode = Rewriter::rewrite(retNode);
      Assert(retNode.getKind() == kind::APPLY_UF || retNode.isConst());
    }
  }
  d_normalizedCache[r] = retNode;
  return retNode;
}


void TheoryEngineModelBuilder::processBuildModel(TheoryModel* m, bool fullModel)
{
  if (fullModel) {
    Trace("model-builder") << "Assigning function values..." << endl;
    //construct function values
    for( std::map< Node, std::vector< Node > >::iterator it = m->d_uf_terms.begin(); it != m->d_uf_terms.end(); ++it ){
      Node n = it->first;
      if( m->d_uf_models.find( n )==m->d_uf_models.end() ){
        TypeNode type = n.getType();
        uf::UfModelTree ufmt( n );
        Node default_v, un, simp, v;
        for( size_t i=0; i<it->second.size(); i++ ){
          un = it->second[i];
          vector<TNode> children;
          children.push_back(n);
          for (size_t j = 0; j < un.getNumChildren(); ++j) {
            children.push_back(m->getRepresentative(un[j]));
          }
          simp = NodeManager::currentNM()->mkNode(un.getKind(), children);
          v = m->getRepresentative(un);
          Trace("model-builder") << "  Setting (" << simp << ") to (" << v << ")" << endl;
          ufmt.setValue(m, simp, v);
          default_v = v;
        }
        if( default_v.isNull() ){
          //choose default value from model if none exists
          TypeEnumerator te(type.getRangeType());
          default_v = (*te);
        }
        ufmt.setDefaultValue( m, default_v );
        ufmt.simplify();
        Node val = ufmt.getFunctionValue( "$x" );
        Trace("model-builder") << "  Assigning (" << n << ") to (" << val << ")" << endl;
        m->d_uf_models[n] = val;
        //ufmt.debugPrint( std::cout, m );
      }
    }
  }
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback