summaryrefslogtreecommitdiff
path: root/src/theory/model.cpp
blob: 8aec3930984c4342a93c23d5e07808ea14adc87b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*********************                                                        */
/*! \file model.cpp
 ** \verbatim
 ** Original author: ajreynol
 ** Major contributors: none
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010, 2011  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Implementation of model class
 **/

#include "theory/model.h"
#include "theory/quantifiers_engine.h"
#include "theory/theory_engine.h"
#include "theory/type_enumerator.h"
#include "smt/model_format_mode.h"
#include "smt/options.h"
#include "theory/uf/theory_uf_model.h"

using namespace std;
using namespace CVC4;
using namespace CVC4::kind;
using namespace CVC4::context;
using namespace CVC4::theory;

TheoryModel::TheoryModel( context::Context* c, std::string name ) :
d_substitutions( c ), d_equalityEngine( c, name ){
  d_true = NodeManager::currentNM()->mkConst( true );
  d_false = NodeManager::currentNM()->mkConst( false );
  // The kinds we are treating as function application in congruence
  d_equalityEngine.addFunctionKind(kind::APPLY_UF);
  d_equalityEngine.addFunctionKind(kind::SELECT);
  d_equalityEngine.addFunctionKind(kind::STORE);
  d_equalityEngine.addFunctionKind(kind::APPLY_CONSTRUCTOR);
  d_equalityEngine.addFunctionKind(kind::APPLY_SELECTOR);
  d_equalityEngine.addFunctionKind(kind::APPLY_TESTER);
}

void TheoryModel::reset(){
  d_reps.clear();
  d_rep_set.clear();
}

Node TheoryModel::getValue( TNode n ){
  //apply substitutions
  Node nn = d_substitutions.apply( n );
  //get value in model
  return getModelValue( nn );
}

Expr TheoryModel::getValue( Expr expr ){
  Node n = Node::fromExpr( expr );
  Node ret = getValue( n );
  return ret.toExpr();
}

/** get cardinality for sort */
Cardinality TheoryModel::getCardinality( Type t ){
  TypeNode tn = TypeNode::fromType( t );
  //for now, we only handle cardinalities for uninterpreted sorts
  if( tn.isSort() ){
    if( d_rep_set.hasType( tn ) ){
      return Cardinality( d_rep_set.d_type_reps[tn].size() );
    }else{
      return Cardinality( CardinalityUnknown() );
    }
  }else{
    return Cardinality( CardinalityUnknown() );
  }
}

void TheoryModel::toStream( std::ostream& out ){
  /*//for debugging
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( &d_equalityEngine );
  while( !eqcs_i.isFinished() ){
    Node eqc = (*eqcs_i);
    Debug("get-model-debug") << eqc << " : " << eqc.getType() << " : " << std::endl;
    out << "   ";
    //add terms to model
    eq::EqClassIterator eqc_i = eq::EqClassIterator( eqc, &d_equalityEngine );
    while( !eqc_i.isFinished() ){
      out << (*eqc_i) << " ";
      ++eqc_i;
    }
    out << std::endl;
    ++eqcs_i;
  }
  */
  out << this;
}

Node TheoryModel::getModelValue( TNode n ){
  Trace("model") << "TheoryModel::getModelValue " << n << std::endl;

  //// special case: prop engine handles boolean vars
  //if(n.isVar() && n.getType().isBoolean()) {
  //  Trace("model") << "-> Propositional variable." << std::endl;
  //  return d_te->getPropEngine()->getValue( n );
  //}

  // special case: value of a constant == itself
  if( n.isConst() ) {
    Trace("model") << "-> Constant." << std::endl;
    return n;
  }

  Node nn;
  if( n.getNumChildren()>0 ){
    std::vector< Node > children;
    if( n.getMetaKind() == kind::metakind::PARAMETERIZED ){
      Debug("model-debug") << "get operator: " << n.getOperator() << std::endl;
      children.push_back( n.getOperator() );
    }
    //evaluate the children
    for( int i=0; i<(int)n.getNumChildren(); i++ ){
      Node val = getValue( n[i] );
      Debug("model-debug") << i << " : " << n[i] << " -> " << val << std::endl;
      Assert( !val.isNull() );
      children.push_back( val );
    }
    Debug("model-debug") << "Done eval children" << std::endl;
    nn = NodeManager::currentNM()->mkNode( n.getKind(), children );
  }else{
    nn = n;
  }
  //interpretation is the rewritten form
  nn = Rewriter::rewrite( nn );

  // special case: value of a constant == itself
  if( nn.isConst() ) {
    Trace("model") << "-> Theory-interpreted term." << std::endl;
    return nn;
  }else{
    Trace("model") << "-> Model-interpreted term." << std::endl;
    //otherwise, get the interpreted value in the model
    return getInterpretedValue( nn );
  }
}

Node TheoryModel::getDomainValue( TypeNode tn, std::vector< Node >& exclude ){
  if( d_rep_set.d_type_reps.find( tn )!=d_rep_set.d_type_reps.end() ){
    //try to find a pre-existing arbitrary element
    for( size_t i=0; i<d_rep_set.d_type_reps[tn].size(); i++ ){
      if( std::find( exclude.begin(), exclude.end(), d_rep_set.d_type_reps[tn][i] )==exclude.end() ){
        return d_rep_set.d_type_reps[tn][i];
      }
    }
  }
  return Node::null();
}

//FIXME: need to ensure that theory enumerators exist for each sort
Node TheoryModel::getNewDomainValue( TypeNode tn ){
#if 1
  if( tn==NodeManager::currentNM()->booleanType() ){
    if( d_rep_set.d_type_reps[tn].empty() ){
      return d_false;
    }else if( d_rep_set.d_type_reps[tn].size()==1 ){
      return NodeManager::currentNM()->mkConst( areEqual( d_rep_set.d_type_reps[tn][0], d_false ) );
    }else{
      return Node::null();
    }
  }else if( tn==NodeManager::currentNM()->integerType() || tn==NodeManager::currentNM()->realType() ){
    int val = 0;
    do{
      Node r = NodeManager::currentNM()->mkConst( Rational(val) );
      if( std::find( d_rep_set.d_type_reps[tn].begin(), d_rep_set.d_type_reps[tn].end(), r )==d_rep_set.d_type_reps[tn].end() &&
          !d_equalityEngine.hasTerm( r ) ){
        return r;
      }
      val++;
    }while( true );
  }else{
    //otherwise must make a variable  FIXME: how to make constants for other sorts?
    //return NodeManager::currentNM()->mkSkolem( tn );
    return Node::null();
  }
#else
  if( tn.isSort() ){
    return Node::null();
  }else{
    TypeEnumerator te(tn);
    while( !te.isFinished() ){
      Node r = *te;
      if(Debug.isOn("getNewDomainValue")) {
        Debug("getNewDomainValue") << "getNewDomainValue( " << tn << ")" << endl;
        Debug("getNewDomainValue") << "+ TypeEnumerator gave: " << r << endl;
        Debug("getNewDomainValue") << "+ d_type_reps are:";
        for(vector<Node>::const_iterator i = d_rep_set.d_type_reps[tn].begin();
            i != d_rep_set.d_type_reps[tn].end();
            ++i) {
          Debug("getNewDomainValue") << " " << *i;
        }
        Debug("getNewDomainValue") << endl;
      }
      if( std::find(d_rep_set.d_type_reps[tn].begin(), d_rep_set.d_type_reps[tn].end(), r) ==d_rep_set.d_type_reps[tn].end() ) {
        Debug("getNewDomainValue") << "+ it's new, so returning " << r << endl;
        return r;
      }
      ++te;
    }
    return Node::null();
  }
#endif
}

/** add substitution */
void TheoryModel::addSubstitution( TNode x, TNode t, bool invalidateCache ){
  if( !d_substitutions.hasSubstitution( x ) ){
    d_substitutions.addSubstitution( x, t, invalidateCache );
  }
}

/** add term */
void TheoryModel::addTerm( Node n ){
  if( !d_equalityEngine.hasTerm( n ) ){
    d_equalityEngine.addTerm( n );
  }
}

/** assert equality */
void TheoryModel::assertEquality( Node a, Node b, bool polarity ){
  d_equalityEngine.assertEquality( a.eqNode(b), polarity, Node::null() );
}

/** assert predicate */
void TheoryModel::assertPredicate( Node a, bool polarity ){
  if( a.getKind()==EQUAL ){
    d_equalityEngine.assertEquality( a, polarity, Node::null() );
  }else{
    d_equalityEngine.assertPredicate( a, polarity, Node::null() );
  }
}

/** assert equality engine */
void TheoryModel::assertEqualityEngine( const eq::EqualityEngine* ee ){
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( ee );
  while( !eqcs_i.isFinished() ){
    Node eqc = (*eqcs_i);
    bool predicate = false;
    bool predPolarity = false;
    if( eqc.getType().isBoolean() ){
      predicate = true;
      predPolarity = ee->areEqual( eqc, d_true );
      //FIXME: do we guarentee that all boolean equivalence classes contain either d_true or d_false?
    }
    eq::EqClassIterator eqc_i = eq::EqClassIterator( eqc, ee );
    while( !eqc_i.isFinished() ){
      if( predicate ){
        assertPredicate( *eqc_i, predPolarity );
      }else{
        assertEquality( *eqc_i, eqc, true );
      }
      ++eqc_i;
    }
    ++eqcs_i;
  }
}

void TheoryModel::assertRepresentative( Node n ){
  Trace("model-builder-reps") << "Assert rep : " << n << std::endl;
  d_reps[ n ] = n;
}

bool TheoryModel::hasTerm( Node a ){
  return d_equalityEngine.hasTerm( a );
}

Node TheoryModel::getRepresentative( Node a ){
  if( d_equalityEngine.hasTerm( a ) ){
    Node r = d_equalityEngine.getRepresentative( a );
    if( d_reps.find( r )!=d_reps.end() ){
      return d_reps[ r ];
    }else{
      return r;
    }
  }else{
    return a;
  }
}

bool TheoryModel::areEqual( Node a, Node b ){
  if( a==b ){
    return true;
  }else if( d_equalityEngine.hasTerm( a ) && d_equalityEngine.hasTerm( b ) ){
    return d_equalityEngine.areEqual( a, b );
  }else{
    return false;
  }
}

bool TheoryModel::areDisequal( Node a, Node b ){
  if( d_equalityEngine.hasTerm( a ) && d_equalityEngine.hasTerm( b ) ){
    return d_equalityEngine.areDisequal( a, b, false );
  }else{
    return false;
  }
}

//for debugging
void TheoryModel::printRepresentativeDebug( const char* c, Node r ){
  if( r.isNull() ){
    Debug( c ) << "null";
  }else if( r.getType().isBoolean() ){
    if( areEqual( r, d_true ) ){
      Debug( c ) << "true";
    }else{
      Debug( c ) << "false";
    }
  }else{
    Debug( c ) << getRepresentative( r );
  }
}

void TheoryModel::printRepresentative( std::ostream& out, Node r ){
  Assert( !r.isNull() );
  if( r.isNull() ){
    out << "null";
  }else if( r.getType().isBoolean() ){
    if( areEqual( r, d_true ) ){
      out  << "true";
    }else{
      out  << "false";
    }
  }else{
    out << getRepresentative( r );
  }
}

DefaultModel::DefaultModel( context::Context* c, std::string name, bool enableFuncModels ) :
TheoryModel( c, name ), d_enableFuncModels( enableFuncModels ){

}

void DefaultModel::addTerm( Node n ){
  TheoryModel::addTerm( n );
  //must collect UF terms
  if( d_enableFuncModels && n.getKind()==APPLY_UF ){
    Node op = n.getOperator();
    if( std::find( d_uf_terms[ op ].begin(), d_uf_terms[ op ].end(), n )==d_uf_terms[ op ].end() ){
      d_uf_terms[ op ].push_back( n );
    }
  }
}

void DefaultModel::reset(){
  d_uf_terms.clear();
  d_uf_models.clear();
  TheoryModel::reset();
}

Node DefaultModel::getInterpretedValue( TNode n ){
  Trace("model") << "Get interpreted value of " << n << std::endl;
  TypeNode type = n.getType();
  if( type.isFunction() || type.isPredicate() ){
    //for function models
    if( d_enableFuncModels ){
      //create the function value for the model
      if( d_uf_models.find( n )==d_uf_models.end() ){
        Trace("model") << "Creating function value..." << std::endl;
        uf::UfModelTree ufmt( n );
        Node default_v;
        for( size_t i=0; i<d_uf_terms[n].size(); i++ ){
          Node un = d_uf_terms[n][i];
          Node v = getRepresentative( un );
          ufmt.setValue( this, un, v );
          default_v = v;
        }
        if( default_v.isNull() ){
          //choose default value from model if none exists
          default_v = getInterpretedValue( NodeManager::currentNM()->mkSkolem( "defaultValue_$$", type.getRangeType(), "a default value term from model construction" ) );
        }
        ufmt.setDefaultValue( this, default_v );
        ufmt.simplify();
        d_uf_models[n] = ufmt.getFunctionValue( "$x" );
      }
      Trace("model") << "Return function value." << std::endl;
      return d_uf_models[n];
    }else{
      return n;
    }
  }else{
    Node ret;
    //add term to equality engine, this will enforce a value if it exists
    //  for example, if a = b = c1, and f( a ) = c2, then adding f( b ) should force
    //    f( b ) to be equal to c2.
    addTerm( n );
    //check if the representative is defined
    n = d_equalityEngine.getRepresentative( n );
    if( d_reps.find( n )!=d_reps.end() ){
      Trace("model") << "Return value in equality engine."<< std::endl;
      return d_reps[n];
    }
    //if it is APPLY_UF, we must consult the corresponding function if it exists
    if( n.getKind()==APPLY_UF ){
      Node op = n.getOperator();
      if( d_uf_models.find( op )!=d_uf_models.end() ){
        std::vector< Node > lam_children;
        lam_children.push_back( d_uf_models[ op ] );
        for( int i=0; i<(int)n.getNumChildren(); i++ ){
          lam_children.push_back( n[i] );
        }
        Node app_lam = NodeManager::currentNM()->mkNode( APPLY_UF, lam_children );
        ret = Rewriter::rewrite( app_lam );
        Trace("model") << "Consult UF model." << std::endl;
      }
    }
    if( ret.isNull() ){
      //second, try to choose an existing term as value
      std::vector< Node > v_emp;
      ret = getDomainValue( type, v_emp );
      if( !ret.isNull() ){
        Trace("model") << "Choose existing value." << std::endl;
      }else{
        //otherwise, choose new value
        ret = getNewDomainValue( type );
        if( !ret.isNull() ){
          Trace("model") << "Choose new value." << std::endl;
        }
      }
    }
    if( !ret.isNull() ){
      Node prev = n;
      //store the equality
      assertEquality( n, ret, true );
      //add it to the map of representatives
      n = d_equalityEngine.getRepresentative( n );
      if( d_reps.find( n )==d_reps.end() ){
        d_reps[n] = ret;
        d_rep_set.add( ret );
      }
      //TODO: make sure that this doesn't affect the representatives in the equality engine
      //  in other words, we need to be sure that all representatives of the equality engine
      //  are still representatives after this function, or else d_reps should be modified.
      return ret;
    }else{
      //otherwise, just return itself (this usually should not happen)
      Trace("model") << "Return self." << std::endl;
      return n;
    }
  }
}

TheoryEngineModelBuilder::TheoryEngineModelBuilder( TheoryEngine* te ) : d_te( te ){

}

void TheoryEngineModelBuilder::buildModel( Model* m, bool fullModel ){
  TheoryModel* tm = (TheoryModel*)m;
  //reset representative information
  tm->reset();
  //collect model info from the theory engine
  Trace("model-builder") << "TheoryEngineModelBuilder: Collect model info..." << std::endl;
  d_te->collectModelInfo( tm, fullModel );
  Trace("model-builder") << "Collect representatives..." << std::endl;
  //store asserted representative map
  std::map< Node, Node > assertedReps;
  //process all terms in the equality engine, store representatives
  eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( &tm->d_equalityEngine );
  while( !eqcs_i.isFinished() ){
    Node eqc = (*eqcs_i);
    if( assertedReps.find( eqc )!=assertedReps.end() ){
      Trace("model-warn") << "Duplicate equivalence class!!!! " << eqc << std::endl;
    }else{
      TypeNode eqct = eqc.getType();
      Node const_rep;
      eq::EqClassIterator eqc_i = eq::EqClassIterator( eqc, &tm->d_equalityEngine );
      while( !eqc_i.isFinished() ){
        Node n = *eqc_i;
        //if this node was specified as a representative
        if( tm->d_reps.find( n )!=tm->d_reps.end() ){
          Assert( !tm->d_reps[n].isNull() );
          //if not already specified
          if( assertedReps.find( eqc )==assertedReps.end() ){
            Trace("model-builder") << "Rep( " << eqc << " ) = " << tm->d_reps[n] << std::endl;
            assertedReps[ eqc ] = tm->d_reps[n];
          }else{
            if( n!=assertedReps[eqc] ){   //FIXME : this should be an assertion (EqClassIterator should not give duplicates)
              //duplicate representative specified
              Trace("model-warn") << "Duplicate representative specified for equivalence class " << eqc << ": " << std::endl;
              Trace("model-warn") << "      " << assertedReps[eqc] << ", " << n << std::endl;
              Trace("model-warn") << "  Type : " << n.getType() << std::endl;
            }
          }
        }else if( n.isConst() ){
          //if this is constant, we will use it as representative (if none other specified)
          const_rep = n;
        }
        //model-specific processing of the term
        tm->addTerm( n );
        ++eqc_i;
      }
      //if a representative was not specified
      if( assertedReps.find( eqc )==assertedReps.end() ){
        if( !const_rep.isNull() ){
          //use the constant representative
          assertedReps[ eqc ] = const_rep;
        }else{
          if( fullModel ){
            //assertion failure?
            Trace("model-warn") << "No representative specified for equivalence class " << eqc << std::endl;
            Trace("model-warn") << "  Type : " << eqc.getType() << std::endl;
          }
          //assertedReps[ eqc ] = chooseRepresentative( tm, eqc, fullModel );
          assertedReps[ eqc ] = eqc;
        }
      }
    }
    ++eqcs_i;
  }
  Trace("model-builder") << "Normalize representatives..." << std::endl;
  //now, normalize all representatives
  // this will make every leaf of asserted representatives into a representative
  std::map< Node, bool > normalized;
  for( std::map< Node, Node >::iterator it = assertedReps.begin(); it != assertedReps.end(); ++it ){
    std::map< Node, bool > normalizing;
    normalizeRepresentative( tm, it->first, assertedReps, normalized, normalizing );
  }
  Trace("model-builder") << "Copy representatives to model..." << std::endl;
  //assertedReps has the actual representatives we will use, now copy to model
  tm->d_reps.clear();
  for( std::map< Node, Node >::iterator it = assertedReps.begin(); it != assertedReps.end(); ++it ){
    tm->d_reps[ it->first ] = it->second;
    tm->d_rep_set.add( it->second );
  }

  //modelBuilder-specific initialization
  processBuildModel( tm, fullModel );
}

Node TheoryEngineModelBuilder::chooseRepresentative( TheoryModel* m, Node eqc, bool fullModel ){
  //try to get a new domain value
  Node rep = m->getNewDomainValue( eqc.getType() );
  if( !rep.isNull() ){
    return rep;
  }else{
    //if we can't get new domain value, just return eqc itself (this typically should not happen)
    //FIXME: Assertion failure here?
    return eqc;
  }
}

Node TheoryEngineModelBuilder::normalizeRepresentative( TheoryModel* m, Node r, std::map< Node, Node >& reps,
                                                        std::map< Node, bool >& normalized,
                                                        std::map< Node, bool >& normalizing ){
  Trace("temb-normalize") << r << std::endl;
  if( normalized.find( r )!=normalized.end() ){
    //Message() << " -> already normalized, return " << reps[r] << std::endl;
    return reps[r];
  }else if( normalizing.find( r )!=normalizing.end() && normalizing[r] ){
    //this case is to handle things like when store( A, e, i ) is given
    //       as a representative for array A.
    //Message() << " -> currently normalizing, give up : " << r << std::endl;
    return r;
  }else if( reps.find( r )!=reps.end() ){
    normalizing[ r ] = true;
    Node retNode = normalizeNode( m, reps[r], reps, normalized, normalizing );
    normalizing[ r ] = false;
    normalized[ r ] = true;
    reps[ r ] = retNode;
    //Message() << " --> returned " << retNode << " for " << r << std::endl;
    return retNode;
  }else if( m->d_equalityEngine.hasTerm( r ) ){
    normalizing[ r ] = true;
    //return the normalized representative from the model
    r = m->d_equalityEngine.getRepresentative( r );
    //Message() << " -> it is the representative " << r << std::endl;
    Node retNode = normalizeRepresentative( m, r, reps, normalized, normalizing );
    normalizing[ r ] = false;
    return retNode;
  }else{
    if( !r.isConst() ){
      Trace("model-warn") << "Normalizing representative, unknown term: " << r << std::endl;
      Trace("model-warn") << "  Type : " << r.getType() << std::endl;
      Trace("model-warn") << "  Kind : " << r.getKind() << std::endl;
      normalizing[ r ] = true;
      r = normalizeNode( m, r, reps, normalized, normalizing );
      normalizing[ r ] = false;
    }
    //Message() << " -> unknown, return " << r << std::endl;
    return r;
  }
}

Node TheoryEngineModelBuilder::normalizeNode( TheoryModel* m, Node r, std::map< Node, Node >& reps,
                                              std::map< Node, bool >& normalized,
                                              std::map< Node, bool >& normalizing ){
  if( r.getNumChildren()>0 ){
    //Message() << " ---> normalize " << r << " " << r.getNumChildren() << " " << r.getKind() << std::endl;
    //non-leaf case: construct representative from children
    std::vector< Node > children;
    if( r.getMetaKind() == kind::metakind::PARAMETERIZED ){
      children.push_back( r.getOperator() );
    }
    for( size_t i=0; i<r.getNumChildren(); i++ ){
      Node ri = normalizeRepresentative( m, r[i], reps, normalized, normalizing );
      children.push_back( ri );
    }
    Node retNode = NodeManager::currentNM()->mkNode( r.getKind(), children );
    retNode = Rewriter::rewrite( retNode );
    if( retNode!=r ){
      //assure that it is made equal in the model
      m->assertEquality( r, retNode, true );
    }
    return retNode;
  }else{
    return r;
  }
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback