summaryrefslogtreecommitdiff
path: root/src/theory/inference_id.h
blob: aa34d45ae661ff384ed21c951712de6cdbb824b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/*********************                                                        */
/*! \file inference_id.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Gereon Kremer, Andrew Reynolds, Andres Noetzli
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 ** in the top-level source directory and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Inference enumeration.
 **/

#include "cvc4_private.h"

#include <iosfwd>

#ifndef CVC4__THEORY__INFERENCE_ID_H
#define CVC4__THEORY__INFERENCE_ID_H

namespace CVC5 {
namespace theory {

/** Types of inferences used in the procedure
 *
 * Note: The order in this enum matters in certain cases (e.g. inferences
 * related to normal forms in strings), where inferences that come first are
 * generally preferred.
 *
 * Notice that an inference is intentionally distinct from PfRule. An
 * inference captures *why* we performed a reasoning step, and a PfRule
 * rule captures *what* reasoning step was used. For instance, the inference
 * LEN_SPLIT translates to PfRule::SPLIT. The use of stats on inferences allows
 * us to know that we performed N splits (PfRule::SPLIT) because we wanted
 * to split on lengths for string equalities (Inference::LEN_SPLIT).
 */
enum class InferenceId
{
  // ---------------------------------- core
  // a conflict when two constants merge in the equality engine (of any theory)
  EQ_CONSTANT_MERGE,
  // ---------------------------------- arith theory
  //-------------------- linear core
  // black box conflicts. It's magic.
  ARITH_BLACK_BOX,
  // conflicting equality
  ARITH_CONF_EQ,
  // conflicting lower bound
  ARITH_CONF_LOWER,
  // conflict due to trichotomy
  ARITH_CONF_TRICHOTOMY,
  // conflicting upper bound
  ARITH_CONF_UPPER,
  // conflict from simplex
  ARITH_CONF_SIMPLEX,
  // conflict from sum-of-infeasibility simplex
  ARITH_CONF_SOI_SIMPLEX,
  // introduces split on a disequality
  ARITH_SPLIT_DEQ,
  // tighten integer inequalities to ceiling
  ARITH_TIGHTEN_CEIL,
  // tighten integer inequalities to floor
  ARITH_TIGHTEN_FLOOR,
  ARITH_APPROX_CUT,
  ARITH_BB_LEMMA,
  ARITH_DIO_CUT,
  ARITH_DIO_DECOMPOSITION,
  ARITH_SPLIT_FOR_NL_MODEL,
  //-------------------- preprocessing
  // equivalence of term and its preprocessed form
  ARITH_PP_ELIM_OPERATORS,
  // a lemma from arithmetic preprocessing
  ARITH_PP_ELIM_OPERATORS_LEMMA,
  //-------------------- nonlinear core
  // simple congruence x=y => f(x)=f(y)
  ARITH_NL_CONGRUENCE,
  // shared term value split (for naive theory combination)
  ARITH_NL_SHARED_TERM_VALUE_SPLIT,
  // checkModel found a conflict with a quadratic equality
  ARITH_NL_CM_QUADRATIC_EQ,
  //-------------------- nonlinear incremental linearization solver
  // splitting on zero (NlSolver::checkSplitZero)
  ARITH_NL_SPLIT_ZERO,
  // based on sign (NlSolver::checkMonomialSign)
  ARITH_NL_SIGN,
  // based on comparing (abs) model values (NlSolver::checkMonomialMagnitude)
  ARITH_NL_COMPARISON,
  // based on inferring bounds (NlSolver::checkMonomialInferBounds)
  ARITH_NL_INFER_BOUNDS,
  // same as above, for inferences that introduce new terms
  ARITH_NL_INFER_BOUNDS_NT,
  // factoring (NlSolver::checkFactoring)
  ARITH_NL_FACTOR,
  // resolution bound inferences (NlSolver::checkMonomialInferResBounds)
  ARITH_NL_RES_INFER_BOUNDS,
  // tangent planes (NlSolver::checkTangentPlanes)
  ARITH_NL_TANGENT_PLANE,
  //-------------------- nonlinear transcendental solver
  // purification of arguments to transcendental functions
  ARITH_NL_T_PURIFY_ARG,
  // initial refinement (TranscendentalSolver::checkTranscendentalInitialRefine)
  ARITH_NL_T_INIT_REFINE,
  // pi bounds
  ARITH_NL_T_PI_BOUND,
  // monotonicity (TranscendentalSolver::checkTranscendentalMonotonic)
  ARITH_NL_T_MONOTONICITY,
  // tangent refinement (TranscendentalSolver::checkTranscendentalTangentPlanes)
  ARITH_NL_T_TANGENT,
  // secant refinement, the dual of the above inference
  ARITH_NL_T_SECANT,
  //-------------------- nonlinear iand solver
  // initial refinements (IAndSolver::checkInitialRefine)
  ARITH_NL_IAND_INIT_REFINE,
  // value refinements (IAndSolver::checkFullRefine)
  ARITH_NL_IAND_VALUE_REFINE,
  // sum refinements (IAndSolver::checkFullRefine)
  ARITH_NL_IAND_SUM_REFINE,
  // bitwise refinements (IAndSolver::checkFullRefine)
  ARITH_NL_IAND_BITWISE_REFINE,
  //-------------------- nonlinear cad solver
  // conflict / infeasible subset obtained from cad
  ARITH_NL_CAD_CONFLICT,
  // excludes an interval for a single variable
  ARITH_NL_CAD_EXCLUDED_INTERVAL,
  //-------------------- nonlinear icp solver
  // conflict obtained from icp
  ARITH_NL_ICP_CONFLICT,
  // propagation / contraction of variable bounds from icp
  ARITH_NL_ICP_PROPAGATION,
  // ---------------------------------- end arith theory

  // ---------------------------------- arrays theory
  ARRAYS_EXT,
  ARRAYS_READ_OVER_WRITE,
  ARRAYS_READ_OVER_WRITE_1,
  ARRAYS_READ_OVER_WRITE_CONTRA,
  // ---------------------------------- end arrays theory

  // ---------------------------------- bags theory
  BAG_NON_NEGATIVE_COUNT,
  BAG_MK_BAG_SAME_ELEMENT,
  BAG_MK_BAG,
  BAG_EQUALITY,
  BAG_DISEQUALITY,
  BAG_EMPTY,
  BAG_UNION_DISJOINT,
  BAG_UNION_MAX,
  BAG_INTERSECTION_MIN,
  BAG_DIFFERENCE_SUBTRACT,
  BAG_DIFFERENCE_REMOVE,
  BAG_DUPLICATE_REMOVAL,
  // ---------------------------------- end bags theory

  // ---------------------------------- bitvector theory
  BV_BITBLAST_CONFLICT,
  BV_LAZY_CONFLICT,
  BV_LAZY_LEMMA,
  BV_SIMPLE_LEMMA,
  BV_SIMPLE_BITBLAST_LEMMA,
  BV_EXTF_LEMMA,
  BV_EXTF_COLLAPSE,
  // ---------------------------------- end bitvector theory

  // ---------------------------------- datatypes theory
  // (= k t) for fresh k
  DATATYPES_PURIFY,
  // (= (C t1 ... tn) (C s1 .. sn)) => (= ti si)
  DATATYPES_UNIF,
  // ((_ is Ci) t) => (= t (Ci (sel_1 t) ... (sel_n t)))
  DATATYPES_INST,
  // (or ((_ is C1) t) V ... V ((_ is Cn) t))
  DATATYPES_SPLIT,
  // (or ((_ is Ci) t) V (not ((_ is Ci) t)))
  DATATYPES_BINARY_SPLIT,
  // (not ((_ is C1) t)) ^ ... [j] ... ^ (not ((_ is Cn) t)) => ((_ is Cj) t)
  DATATYPES_LABEL_EXH,
  // (= t (Ci t1 ... tn)) => (= (sel_j t) rewrite((sel_j (Ci t1 ... tn))))
  DATATYPES_COLLAPSE_SEL,
  // (= (Ci t1...tn) (Cj t1...tn)) => false
  DATATYPES_CLASH_CONFLICT,
  // ((_ is Ci) t) ^ (= t (Cj t1 ... tn)) => false
  DATATYPES_TESTER_CONFLICT,
  // ((_ is Ci) t) ^ ((_ is Cj) s) ^ (= t s) => false
  DATATYPES_TESTER_MERGE_CONFLICT,
  // bisimilarity for codatatypes
  DATATYPES_BISIMILAR,
  // corecursive singleton equality
  DATATYPES_REC_SINGLETON_EQ,
  // corecursive singleton equality (not (= k1 k2)) for fresh k1, k2
  DATATYPES_REC_SINGLETON_FORCE_DEQ,
  // cycle conflict for datatypes
  DATATYPES_CYCLE,
  //-------------------- datatypes size/height
  // (>= (dt.size t) 0)
  DATATYPES_SIZE_POS,
  // (=> (= (dt.height t) 0) => (and (= (dt.height (sel_1 t)) 0) .... ))
  DATATYPES_HEIGHT_ZERO,
  //-------------------- sygus extension
  // a sygus symmetry breaking lemma (or ~is-C1( t1 ) V ... V ~is-Cn( tn ) )
  // where t1 ... tn are unique shared selector chains. For details see
  // Reynolds et al CAV 2019
  DATATYPES_SYGUS_SYM_BREAK,
  // a conjecture-dependent symmetry breaking lemma, which may be used to
  // exclude constructors for variables that irrelevant for a synthesis
  // conjecture
  DATATYPES_SYGUS_CDEP_SYM_BREAK,
  // an enumerator-specific symmetry breaking lemma, which are used e.g. for
  // excluding certain kinds of constructors
  DATATYPES_SYGUS_ENUM_SYM_BREAK,
  // a simple static symmetry breaking lemma (see Reynolds et al CAV 2019)
  DATATYPES_SYGUS_SIMPLE_SYM_BREAK,
  // (dt.size t) <= N, to implement fair enumeration when sygus-fair=dt-size
  DATATYPES_SYGUS_FAIR_SIZE,
  // (dt.size t) <= N => (or ~is-C1( t1 ) V ... V ~is-Cn( tn ) ) if using
  // sygus-fair=direct
  DATATYPES_SYGUS_FAIR_SIZE_CONFLICT,
  // used for implementing variable agnostic enumeration
  DATATYPES_SYGUS_VAR_AGNOSTIC,
  // handles case the model value for a sygus term violates the size bound
  DATATYPES_SYGUS_SIZE_CORRECTION,
  // handles case the model value for a sygus term does not exist
  DATATYPES_SYGUS_VALUE_CORRECTION,
  // s <= (dt.size t), where s is a term that must be less than the current
  // size bound based on our fairness strategy. For instance, s may be
  // (dt.size e) for (each) enumerator e when multiple enumerators are present.
  DATATYPES_SYGUS_MT_BOUND,
  // (dt.size t) >= 0
  DATATYPES_SYGUS_MT_POS,
  // ---------------------------------- end datatypes theory

  //-------------------------------------- quantifiers theory
  //-------------------- types of instantiations.
  // Notice the identifiers in this section cover all the techniques used for
  // quantifier instantiation. The subcategories below are for specific lemmas
  // that are not instantiation lemmas added, per technique.
  // instantiation from E-matching
  QUANTIFIERS_INST_E_MATCHING,
  // E-matching using simple trigger implementation
  QUANTIFIERS_INST_E_MATCHING_SIMPLE,
  // E-matching using multi-triggers
  QUANTIFIERS_INST_E_MATCHING_MT,
  // E-matching using linear implementation of multi-triggers
  QUANTIFIERS_INST_E_MATCHING_MTL,
  // instantiation due to higher-order matching on top of e-matching
  QUANTIFIERS_INST_E_MATCHING_HO,
  // E-matching based on variable triggers
  QUANTIFIERS_INST_E_MATCHING_VAR_GEN,
  // conflicting instantiation from conflict-based instantiation
  QUANTIFIERS_INST_CBQI_CONFLICT,
  // propagating instantiation from conflict-based instantiation
  QUANTIFIERS_INST_CBQI_PROP,
  // instantiation from naive exhaustive instantiation in finite model finding
  QUANTIFIERS_INST_FMF_EXH,
  // instantiation from finite model finding based on its model-based algorithm
  QUANTIFIERS_INST_FMF_FMC,
  // instantiation from running exhaustive instantiation on a subdomain of
  // the quantified formula in finite model finding based on its model-based
  // algorithm
  QUANTIFIERS_INST_FMF_FMC_EXH,
  // instantiations from counterexample-guided instantiation
  QUANTIFIERS_INST_CEGQI,
  // instantiations from syntax-guided instantiation
  QUANTIFIERS_INST_SYQI,
  // instantiations from enumerative instantiation
  QUANTIFIERS_INST_ENUM,
  //-------------------- bounded integers
  // a proxy lemma from bounded integers, used to control bounds on ground terms
  QUANTIFIERS_BINT_PROXY,
  // a proxy lemma to minimize an instantiation of non-ground terms
  QUANTIFIERS_BINT_MIN_NG,
  //-------------------- counterexample-guided instantiation
  // a counterexample lemma
  QUANTIFIERS_CEGQI_CEX,
  // an auxiliary lemma from counterexample lemma
  QUANTIFIERS_CEGQI_CEX_AUX,
  // a reduction lemma for nested quantifier elimination
  QUANTIFIERS_CEGQI_NESTED_QE,
  // G2 => G1 where G2 is a counterexample literal for a nested quantifier whose
  // counterexample literal is G1.
  QUANTIFIERS_CEGQI_CEX_DEP,
  // 0 < delta
  QUANTIFIERS_CEGQI_VTS_LB_DELTA,
  // delta < c, for positive c
  QUANTIFIERS_CEGQI_VTS_UB_DELTA,
  // infinity > c
  QUANTIFIERS_CEGQI_VTS_LB_INF,
  //-------------------- syntax-guided instantiation
  // a counterexample lemma
  QUANTIFIERS_SYQI_CEX,
  // evaluation unfolding for syntax-guided instantiation
  QUANTIFIERS_SYQI_EVAL_UNFOLD,
  //-------------------- sygus solver
  // preprocessing a sygus conjecture based on quantifier elimination, of the
  // form Q <=> Q_preprocessed
  QUANTIFIERS_SYGUS_QE_PREPROC,
  // G or ~G where G is the active guard for a sygus enumerator
  QUANTIFIERS_SYGUS_ENUM_ACTIVE_GUARD_SPLIT,
  // manual exclusion of a current solution
  QUANTIFIERS_SYGUS_EXCLUDE_CURRENT,
  // manual exclusion of a current solution for sygus-stream
  QUANTIFIERS_SYGUS_STREAM_EXCLUDE_CURRENT,
  // ~Q where Q is a PBE conjecture with conflicting examples
  QUANTIFIERS_SYGUS_EXAMPLE_INFER_CONTRA,
  //-------------------- dynamic splitting
  // a dynamic split from quantifiers
  QUANTIFIERS_DSPLIT,
  //-------------------- miscellaneous
  // skolemization
  QUANTIFIERS_SKOLEMIZE,
  // Q1 <=> Q2, where Q1 and Q2 are alpha equivalent
  QUANTIFIERS_REDUCE_ALPHA_EQ,
  // a higher-order match predicate lemma
  QUANTIFIERS_HO_MATCH_PRED,
  // reduction of quantifiers that don't have triggers that cover all variables
  QUANTIFIERS_PARTIAL_TRIGGER_REDUCE,
  //-------------------------------------- end quantifiers theory

  // ---------------------------------- sep theory
  // ensures that pto is a function: (pto x y) ^ ~(pto z w) ^ x = z => y != w
  SEP_PTO_NEG_PROP,
  // enforces injectiveness of pto: (pto x y) ^ (pto y w) ^ x = y => y = w
  SEP_PTO_PROP,
  // introduces a label for a heap, of the form U => L, where U is an
  // unlabelled separation logic predicate and L is its labelled form
  SEP_LABEL_INTRO,
  // introduces the set constraints for a label
  SEP_LABEL_DEF,
  // lemma for sep.emp
  SEP_EMP,
  // positive reduction for sep constraint
  SEP_POS_REDUCTION,
  // negative reduction for sep constraint
  SEP_NEG_REDUCTION,
  // model-based refinement for negated star/wand
  SEP_REFINEMENT,
  // sep.nil is not in the heap
  SEP_NIL_NOT_IN_HEAP,
  // a symmetry breaking lemma
  SEP_SYM_BREAK,
  // finite witness data lemma
  SEP_WITNESS_FINITE_DATA,
  // element distinctness lemma
  SEP_DISTINCT_REF,
  // reference bound lemma
  SEP_REF_BOUND,
  // ---------------------------------- end sep theory

  // ---------------------------------- sets theory
  //-------------------- sets core solver
  SETS_COMPREHENSION,
  SETS_DEQ,
  SETS_DOWN_CLOSURE,
  SETS_EQ_MEM,
  SETS_EQ_MEM_CONFLICT,
  SETS_MEM_EQ,
  SETS_MEM_EQ_CONFLICT,
  SETS_PROXY,
  SETS_PROXY_SINGLETON,
  SETS_SINGLETON_EQ,
  SETS_UP_CLOSURE,
  SETS_UP_CLOSURE_2,
  SETS_UP_UNIV,
  SETS_UNIV_TYPE,
  //-------------------- sets cardinality solver
  // split on emptyset
  SETS_CARD_SPLIT_EMPTY,
  // cycle of cardinalities, hence all sets have the same
  SETS_CARD_CYCLE,
  // two sets have the same cardinality
  SETS_CARD_EQUAL,
  SETS_CARD_GRAPH_EMP,
  SETS_CARD_GRAPH_EMP_PARENT,
  SETS_CARD_GRAPH_EQ_PARENT,
  SETS_CARD_GRAPH_EQ_PARENT_2,
  SETS_CARD_GRAPH_PARENT_SINGLETON,
  // cardinality is at least the number of elements we already know
  SETS_CARD_MINIMAL,
  // negative members are part of the universe
  SETS_CARD_NEGATIVE_MEMBER,
  // all sets have non-negative cardinality
  SETS_CARD_POSITIVE,
  // the universe is a superset of every set
  SETS_CARD_UNIV_SUPERSET,
  // cardinality of the universe is at most cardinality of the type
  SETS_CARD_UNIV_TYPE,
  //-------------------- sets relations solver
  SETS_RELS_IDENTITY_DOWN,
  SETS_RELS_IDENTITY_UP,
  SETS_RELS_JOIN_COMPOSE,
  SETS_RELS_JOIN_IMAGE_DOWN,
  SETS_RELS_JOIN_SPLIT_1,
  SETS_RELS_JOIN_SPLIT_2,
  SETS_RELS_PRODUCE_COMPOSE,
  SETS_RELS_PRODUCT_SPLIT,
  SETS_RELS_TCLOSURE_FWD,
  SETS_RELS_TRANSPOSE_EQ,
  SETS_RELS_TRANSPOSE_REV,
  SETS_RELS_TUPLE_REDUCTION,
  //-------------------------------------- end sets theory

  //-------------------------------------- strings theory
  //-------------------- base solver
  // initial normalize singular
  //   x1 = "" ^ ... ^ x_{i-1} = "" ^ x_{i+1} = "" ^ ... ^ xn = "" =>
  //   x1 ++ ... ++ xn = xi
  STRINGS_I_NORM_S,
  // initial constant merge
  //   explain_constant(x, c) => x = c
  // Above, explain_constant(x,c) is a basic explanation of why x must be equal
  // to string constant c, which is computed by taking arguments of
  // concatenation terms that are entailed to be constants. For example:
  //  ( y = "AB" ^ z = "C" ) => y ++ z = "ABC"
  STRINGS_I_CONST_MERGE,
  // initial constant conflict
  //    ( explain_constant(x, c1) ^ explain_constant(x, c2) ^ x = y) => false
  // where c1 != c2.
  STRINGS_I_CONST_CONFLICT,
  // initial normalize
  // Given two concatenation terms, this is applied when we find that they are
  // equal after e.g. removing strings that are currently empty. For example:
  //   y = "" ^ z = "" => x ++ y = z ++ x
  STRINGS_I_NORM,
  // injectivity of seq.unit
  // (seq.unit x) = (seq.unit y) => x=y, or
  // (seq.unit x) = (seq.unit c) => x=c
  STRINGS_UNIT_INJ,
  // unit constant conflict
  // (seq.unit x) = C => false if |C| != 1.
  STRINGS_UNIT_CONST_CONFLICT,
  // injectivity of seq.unit for disequality
  // (seq.unit x) != (seq.unit y) => x != y, or
  // (seq.unit x) != (seq.unit c) => x != c
  STRINGS_UNIT_INJ_DEQ,
  // A split due to cardinality
  STRINGS_CARD_SP,
  // The cardinality inference for strings, see Liang et al CAV 2014.
  STRINGS_CARDINALITY,
  //-------------------- core solver
  // A cycle in the empty string equivalence class, e.g.:
  //   x ++ y = "" => x = ""
  // This is typically not applied due to length constraints implying emptiness.
  STRINGS_I_CYCLE_E,
  // A cycle in the containment ordering.
  //   x = y ++ x => y = "" or
  //   x = y ++ z ^ y = x ++ w => z = "" ^ w = ""
  // This is typically not applied due to length constraints implying emptiness.
  STRINGS_I_CYCLE,
  // Flat form constant
  //   x = y ^ x = z ++ c ... ^ y = z ++ d => false
  // where c and d are distinct constants.
  STRINGS_F_CONST,
  // Flat form unify
  //   x = y ^ x = z ++ x' ... ^ y = z ++ y' ^ len(x') = len(y') => x' = y'
  // Notice flat form instances are similar to normal form inferences but do
  // not involve recursive explanations.
  STRINGS_F_UNIFY,
  // Flat form endpoint empty
  //   x = y ^ x = z ^ y = z ++ y' => y' = ""
  STRINGS_F_ENDPOINT_EMP,
  // Flat form endpoint equal
  //   x = y ^ x = z ++ x' ^ y = z ++ y' => x' = y'
  STRINGS_F_ENDPOINT_EQ,
  // Flat form not contained
  // x = c ^ x = y => false when rewrite( contains( y, c ) ) = false
  STRINGS_F_NCTN,
  // Normal form equality conflict
  //   x = N[x] ^ y = N[y] ^ x=y => false
  // where Rewriter::rewrite(N[x]=N[y]) = false.
  STRINGS_N_EQ_CONF,
  // Given two normal forms, infers that the remainder one of them has to be
  // empty. For example:
  //    If x1 ++ x2 = y1 and x1 = y1, then x2 = ""
  STRINGS_N_ENDPOINT_EMP,
  // Given two normal forms, infers that two components have to be the same if
  // they have the same length. For example:
  //   If x1 ++ x2 = x3 ++ x4 and len(x1) = len(x3) then x1 = x3
  STRINGS_N_UNIFY,
  // Given two normal forms, infers that the endpoints have to be the same. For
  // example:
  //   If x1 ++ x2 = x3 ++ x4 ++ x5 and x1 = x3 then x2 = x4 ++ x5
  STRINGS_N_ENDPOINT_EQ,
  // Given two normal forms with constant endpoints, infers a conflict if the
  // endpoints do not agree. For example:
  //   If "abc" ++ ... = "bc" ++ ... then conflict
  STRINGS_N_CONST,
  // infer empty, for example:
  //     (~) x = ""
  // This is inferred when we encounter an x such that x = "" rewrites to a
  // constant. This inference is used for instance when we otherwise would have
  // split on the emptiness of x but the rewriter tells us the emptiness of x
  // can be inferred.
  STRINGS_INFER_EMP,
  // string split constant propagation, for example:
  //     x = y, x = "abc", y = y1 ++ "b" ++ y2
  //       implies y1 = "a" ++ y1'
  STRINGS_SSPLIT_CST_PROP,
  // string split variable propagation, for example:
  //     x = y, x = x1 ++ x2, y = y1 ++ y2, len( x1 ) >= len( y1 )
  //       implies x1 = y1 ++ x1'
  // This is inspired by Zheng et al CAV 2015.
  STRINGS_SSPLIT_VAR_PROP,
  // length split, for example:
  //     len( x1 ) = len( y1 ) V len( x1 ) != len( y1 )
  // This is inferred when e.g. x = y, x = x1 ++ x2, y = y1 ++ y2.
  STRINGS_LEN_SPLIT,
  // length split empty, for example:
  //     z = "" V z != ""
  // This is inferred when, e.g. x = y, x = z ++ x1, y = y1 ++ z
  STRINGS_LEN_SPLIT_EMP,
  // string split constant
  //    x = y, x = "c" ++ x2, y = y1 ++ y2, y1 != ""
  //      implies y1 = "c" ++ y1'
  // This is a special case of F-Split in Figure 5 of Liang et al CAV 2014.
  STRINGS_SSPLIT_CST,
  // string split variable, for example:
  //    x = y, x = x1 ++ x2, y = y1 ++ y2
  //      implies x1 = y1 ++ x1' V y1 = x1 ++ y1'
  // This is rule F-Split in Figure 5 of Liang et al CAV 2014.
  STRINGS_SSPLIT_VAR,
  // flat form loop, for example:
  //    x = y, x = x1 ++ z, y = z ++ y2
  //      implies z = u2 ++ u1, u in ( u1 ++ u2 )*, x1 = u2 ++ u, y2 = u ++ u1
  //        for fresh u, u1, u2.
  // This is the rule F-Loop from Figure 5 of Liang et al CAV 2014.
  STRINGS_FLOOP,
  // loop conflict ???
  STRINGS_FLOOP_CONFLICT,
  // Normal form inference
  // x = y ^ z = y => x = z
  // This is applied when y is the normal form of both x and z.
  STRINGS_NORMAL_FORM,
  // Normal form not contained, same as FFROM_NCTN but for normal forms
  STRINGS_N_NCTN,
  // Length normalization
  //   x = y => len( x ) = len( y )
  // Typically applied when y is the normal form of x.
  STRINGS_LEN_NORM,
  // When x ++ x' ++ ... != "abc" ++ y' ++ ... ^ len(x) != len(y), we apply the
  // inference:
  //   x = "" v x != ""
  STRINGS_DEQ_DISL_EMP_SPLIT,
  // When x ++ x' ++ ... != "abc" ++ y' ++ ... ^ len(x) = 1, we apply the
  // inference:
  //   x = "a" v x != "a"
  STRINGS_DEQ_DISL_FIRST_CHAR_EQ_SPLIT,
  // When x ++ x' ++ ... != "abc" ++ y' ++ ... ^ len(x) != "", we apply the
  // inference:
  //   ni = x ++ x' ++ ... ^ nj = "abc" ++ y' ++ ... ^ x != "" --->
  //     x = k1 ++ k2 ^ len(k1) = 1 ^ (k1 != "a" v x = "a" ++  k2)
  STRINGS_DEQ_DISL_FIRST_CHAR_STRING_SPLIT,
  // When x ++ x' ++ ... != y ++ y' ++ ... ^ len(x) != len(y), we apply the
  // inference:
  //   ni = x ++ x' ++ ... ^ nj = y ++ y' ++ ... ^ ni != nj ^ len(x) != len(y)
  //     --->
  //       len(k1) = len(x) ^ len(k2) = len(y) ^ (y = k1 ++ k3 v x = k1 ++ k2)
  STRINGS_DEQ_DISL_STRINGS_SPLIT,
  // When x ++ x' ++ ... != y ++ y' ++ ... ^ len(x) = len(y), we apply the
  // inference:
  //   x = y v x != y
  STRINGS_DEQ_STRINGS_EQ,
  // When x ++ x' ++ ... != y ++ y' ++ ... and we do not know how the lengths
  // of x and y compare, we apply the inference:
  //   len(x) = len(y) v len(x) != len(y)
  STRINGS_DEQ_LENS_EQ,
  // When px ++ x ++ ... != py ^ len(px ++ x ++ ...) = len(py), we apply the
  // following inference that infers that the remainder of the longer normal
  // form must be empty:
  //   ni = px ++ x ++ ... ^ nj = py ^ len(ni) = len(nj) --->
  //     x = "" ^ ...
  STRINGS_DEQ_NORM_EMP,
  // When two strings are disequal s != t and the comparison of their lengths
  // is unknown, we apply the inference:
  //   len(s) != len(t) V len(s) = len(t)
  STRINGS_DEQ_LENGTH_SP,
  //-------------------- codes solver
  // str.to_code( v ) = rewrite( str.to_code(c) )
  // where v is the proxy variable for c.
  STRINGS_CODE_PROXY,
  // str.code(x) = -1 V str.code(x) != str.code(y) V x = y
  STRINGS_CODE_INJ,
  //-------------------- regexp solver
  // regular expression normal form conflict
  //   ( x in R ^ x = y ^ rewrite((str.in_re y R)) = false ) => false
  // where y is the normal form computed for x.
  STRINGS_RE_NF_CONFLICT,
  // regular expression unfolding
  // This is a general class of inferences of the form:
  //   (x in R) => F
  // where F is formula expressing the next step of checking whether x is in
  // R.  For example:
  //   (x in (R)*) =>
  //   x = "" V x in R V ( x = x1 ++ x2 ++ x3 ^ x1 in R ^ x2 in (R)* ^ x3 in R)
  STRINGS_RE_UNFOLD_POS,
  // Same as above, for negative memberships
  STRINGS_RE_UNFOLD_NEG,
  // intersection inclusion conflict
  //   (x in R1 ^ ~ x in R2) => false  where [[includes(R2,R1)]]
  // Where includes(R2,R1) is a heuristic check for whether R2 includes R1.
  STRINGS_RE_INTER_INCLUDE,
  // intersection conflict, using regexp intersection computation
  //   (x in R1 ^ x in R2) => false   where [[intersect(R1, R2) = empty]]
  STRINGS_RE_INTER_CONF,
  // intersection inference
  //   (x in R1 ^ y in R2 ^ x = y) => (x in re.inter(R1,R2))
  STRINGS_RE_INTER_INFER,
  // regular expression delta
  //   (x = "" ^ x in R) => C
  // where "" in R holds if and only if C holds.
  STRINGS_RE_DELTA,
  // regular expression delta conflict
  //   (x = "" ^ x in R) => false
  // where R does not accept the empty string.
  STRINGS_RE_DELTA_CONF,
  // regular expression derive ???
  STRINGS_RE_DERIVE,
  //-------------------- extended function solver
  // Standard extended function inferences from context-dependent rewriting
  // produced by constant substitutions. See Reynolds et al CAV 2017. These are
  // inferences of the form:
  //   X = Y => f(X) = t   when   rewrite( f(Y) ) = t
  // where X = Y is a vector of equalities, where some of Y may be constants.
  STRINGS_EXTF,
  // Same as above, for normal form substitutions.
  STRINGS_EXTF_N,
  // Decompositions based on extended function inferences from context-dependent
  // rewriting produced by constant substitutions. This is like the above, but
  // handles cases where the inferred predicate is not necessarily an equality
  // involving f(X). For example:
  //   x = "A" ^ contains( y ++ x, "B" ) => contains( y, "B" )
  // This is generally only inferred if contains( y, "B" ) is a known term in
  // the current context.
  STRINGS_EXTF_D,
  // Same as above, for normal form substitutions.
  STRINGS_EXTF_D_N,
  // Extended function equality rewrite. This is an inference of the form:
  //   t = s => P
  // where P is a predicate implied by rewrite( t = s ).
  // Typically, t is an application of an extended function and s is a constant.
  // It is generally only inferred if P is a predicate over known terms.
  STRINGS_EXTF_EQ_REW,
  // contain transitive
  //   ( str.contains( s, t ) ^ ~contains( s, r ) ) => ~contains( t, r ).
  STRINGS_CTN_TRANS,
  // contain decompose
  //  str.contains( x, str.++( y1, ..., yn ) ) => str.contains( x, yi ) or
  //  ~str.contains( str.++( x1, ..., xn ), y ) => ~str.contains( xi, y )
  STRINGS_CTN_DECOMPOSE,
  // contain neg equal
  //   ( len( x ) = len( s ) ^ ~contains( x, s ) ) => x != s
  STRINGS_CTN_NEG_EQUAL,
  // contain positive
  //   str.contains( x, y ) => x = w1 ++ y ++ w2
  // where w1 and w2 are skolem variables.
  STRINGS_CTN_POS,
  // All reduction inferences of the form:
  //   f(x1, .., xn) = y ^ P(x1, ..., xn, y)
  // where f is an extended function, y is the purification variable for
  // f(x1, .., xn) and P is the reduction predicate for f
  // (see theory_strings_preprocess).
  STRINGS_REDUCTION,
  //-------------------- prefix conflict
  // prefix conflict (coarse-grained)
  STRINGS_PREFIX_CONFLICT,
  //-------------------- other
  // a lemma added during term registration for an atomic term
  STRINGS_REGISTER_TERM_ATOMIC,
  // a lemma added during term registration
  STRINGS_REGISTER_TERM,
  // a split during collect model info
  STRINGS_CMI_SPLIT,
  //-------------------------------------- end strings theory

  //-------------------------------------- uf theory
  // Clause from the uf symmetry breaker
  UF_BREAK_SYMMETRY,
  //-------------------- cardinality extension to UF
  // The inferences below are described in Reynolds' thesis 2013.
  // conflict of the form (card_T n) => (not (distinct t1 ... tn))
  UF_CARD_CLIQUE,
  // conflict of the form (not (card_T1 n1)) ^ ... (not (card_Tk nk)) ^ (card n)
  // where n1 + ... + nk >= n, where (card n) is a combined cardinality
  // constraint.
  UF_CARD_COMBINED,
  // (not (card_T n)) => (distinct t1 ... tn)
  UF_CARD_ENFORCE_NEGATIVE,
  // used to make the index terms in cardinality constraints equal
  UF_CARD_EQUIV,
  // conflict of the form (not (card_T1 n)) ^ (card_T2 m) where the cardinality
  // of T2 can be assumed to be without loss of generality larger than T1 due to
  // monotonicity reasoning (Claessen et al 2011).
  UF_CARD_MONOTONE_COMBINED,
  // conflict of the form (not (card_T n)) ^ (card_T m) where n>m
  UF_CARD_SIMPLE_CONFLICT,
  // equality split requested by cardinality solver
  //  (or (= t1 t2) (not (= t1 t2))
  // to satisfy the cardinality constraints on the type of t1, t2.
  UF_CARD_SPLIT,
  //-------------------- end cardinality extension to UF
  //-------------------- HO extension to UF
  // Encodes an n-ary application as a chain of binary HO_APPLY applications
  //   (= (f t1 ... tn) (@ (@ ... (@ f t1) ...) tn))
  UF_HO_APP_ENCODE,
  // A lemma corresponding to the definition of a skolem k used to convert
  // HO_APPLY terms to APPLY_UF terms. This is of the form:
  //   (forall x1 ... xn) (@ (@ k x1) ... xn) = t
  // where notice that t is a function whose free variables (if any) are
  // x1 ... xn.
  UF_HO_APP_CONV_SKOLEM,
  // Adds an extensionality lemma to witness that disequal functions have
  // different applications
  //   (not (= (f sk1 .. skn) (g sk1 .. skn))
  UF_HO_EXTENSIONALITY,
  //-------------------- model-construction specific part
  // These rules are necessary to ensure that we build models properly. For more
  // details see Section 3.3 of Barbosa et al. CADE'19.
  //
  // Enforces that a regular APPLY_UF term in the model is equal to its HO_APPLY
  // equivalent by adding the equality as a lemma
  //   (= (f t1 ... tn) (@ (@ ... (@ f t1) ...) tn))
  UF_HO_MODEL_APP_ENCODE,
  // Adds an extensionality lemma to witness that disequal functions have
  // different applications
  //   (not (= (f sk1 .. skn) (g sk1 .. skn))
  UF_HO_MODEL_EXTENSIONALITY,
  //-------------------- end model-construction specific part
  //-------------------- end HO extension to UF
  //-------------------------------------- end uf theory

  //-------------------------------------- unknown
  UNKNOWN
};

/**
 * Converts an inference to a string. Note: This function is also used in
 * `safe_print()`. Changing this functions name or signature will result in
 * `safe_print()` printing "<unsupported>" instead of the proper strings for
 * the enum values.
 *
 * @param i The inference
 * @return The name of the inference
 */
const char* toString(InferenceId i);

/**
 * Writes an inference name to a stream.
 *
 * @param out The stream to write to
 * @param i The inference to write to the stream
 * @return The stream
 */
std::ostream& operator<<(std::ostream& out, InferenceId i);

}  // namespace theory
}  // namespace CVC5

#endif /* CVC4__THEORY__INFERENCE_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback