summaryrefslogtreecommitdiff
path: root/src/theory/bv/theory_bv.h
blob: 2f63f1a5229e26bd6f7dca760f11d5e56260f4ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/*********************                                                        */
/*! \file theory_bv.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Liana Hadarean, Andrew Reynolds, Tim King
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Bitvector theory.
 **
 ** Bitvector theory.
 **/

#include "cvc4_private.h"

#ifndef CVC4__THEORY__BV__THEORY_BV_H
#define CVC4__THEORY__BV__THEORY_BV_H

#include <unordered_map>
#include <unordered_set>

#include "context/cdhashset.h"
#include "context/cdlist.h"
#include "context/context.h"
#include "theory/bv/bv_subtheory.h"
#include "theory/bv/theory_bv_rewriter.h"
#include "theory/bv/theory_bv_utils.h"
#include "theory/theory.h"
#include "util/hash.h"
#include "util/statistics_registry.h"

namespace CVC4 {

namespace theory {

class ExtTheory;

namespace bv {

class CoreSolver;
class InequalitySolver;
class AlgebraicSolver;
class BitblastSolver;

class EagerBitblastSolver;

class AbstractionModule;

class TheoryBV : public Theory {

  /** The context we are using */
  context::Context* d_context;

  /** Context dependent set of atoms we already propagated */
  context::CDHashSet<Node, NodeHashFunction> d_alreadyPropagatedSet;
  context::CDHashSet<Node, NodeHashFunction> d_sharedTermsSet;

  std::vector<std::unique_ptr<SubtheorySolver>> d_subtheories;
  std::unordered_map<SubTheory, SubtheorySolver*, std::hash<int> > d_subtheoryMap;

 public:
  TheoryBV(context::Context* c,
           context::UserContext* u,
           OutputChannel& out,
           Valuation valuation,
           const LogicInfo& logicInfo,
           ProofNodeManager* pnm = nullptr,
           std::string name = "");

  ~TheoryBV();

  //--------------------------------- initialization
  /** get the official theory rewriter of this theory */
  TheoryRewriter* getTheoryRewriter() override;
  /**
   * Returns true if we need an equality engine. If so, we initialize the
   * information regarding how it should be setup. For details, see the
   * documentation in Theory::needsEqualityEngine.
   */
  bool needsEqualityEngine(EeSetupInfo& esi) override;
  /** finish initialization */
  void finishInit() override;
  //--------------------------------- end initialization

  TrustNode expandDefinition(Node node) override;

  void preRegisterTerm(TNode n) override;

  void check(Effort e) override;

  bool needsCheckLastEffort() override;

  void propagate(Effort e) override;

  TrustNode explain(TNode n) override;

  bool collectModelInfo(TheoryModel* m) override;

  std::string identify() const override { return std::string("TheoryBV"); }

  bool getCurrentSubstitution(int effort,
                              std::vector<Node>& vars,
                              std::vector<Node>& subs,
                              std::map<Node, std::vector<Node>>& exp) override;
  int getReduction(int effort, Node n, Node& nr) override;

  PPAssertStatus ppAssert(TNode in, SubstitutionMap& outSubstitutions) override;

  TrustNode ppRewrite(TNode t) override;

  void ppStaticLearn(TNode in, NodeBuilder<>& learned) override;

  void presolve() override;

  bool applyAbstraction(const std::vector<Node>& assertions,
                        std::vector<Node>& new_assertions);

 private:
  class Statistics
  {
   public:
    AverageStat d_avgConflictSize;
    IntStat     d_solveSubstitutions;
    TimerStat   d_solveTimer;
    IntStat     d_numCallsToCheckFullEffort;
    IntStat     d_numCallsToCheckStandardEffort;
    TimerStat   d_weightComputationTimer;
    IntStat     d_numMultSlice;
    Statistics();
    ~Statistics();
  };

  Statistics d_statistics;

  void spendResource(ResourceManager::Resource r);

  /**
   * Return the uninterpreted function symbol corresponding to division-by-zero
   * for this particular bit-width
   * @param k should be UREM or UDIV
   * @param width
   *
   * @return
   */
  Node getBVDivByZero(Kind k, unsigned width);

  typedef std::unordered_set<TNode, TNodeHashFunction> TNodeSet;
  typedef std::unordered_set<Node, NodeHashFunction> NodeSet;
  NodeSet d_staticLearnCache;

  /**
   * Maps from bit-vector width to division-by-zero uninterpreted
   * function symbols.
   */
  std::unordered_map<unsigned, Node> d_BVDivByZero;
  std::unordered_map<unsigned, Node> d_BVRemByZero;

  typedef std::unordered_map<Node, Node, NodeHashFunction>  NodeToNode;

  context::CDO<bool> d_lemmasAdded;

  // Are we in conflict?
  context::CDO<bool> d_conflict;

  // Invalidate the model cache if check was called
  context::CDO<bool> d_invalidateModelCache;

  /** The conflict node */
  Node d_conflictNode;

  /** Literals to propagate */
  context::CDList<Node> d_literalsToPropagate;

  /** Index of the next literal to propagate */
  context::CDO<unsigned> d_literalsToPropagateIndex;

  /** Extended theory module, for context-dependent simplification. */
  std::unique_ptr<ExtTheory> d_extTheory;

  /**
   * Keeps a map from nodes to the subtheory that propagated it so that we can explain it
   * properly.
   */
  typedef context::CDHashMap<Node, SubTheory, NodeHashFunction> PropagatedMap;
  PropagatedMap d_propagatedBy;

  std::unique_ptr<EagerBitblastSolver> d_eagerSolver;
  std::unique_ptr<AbstractionModule> d_abstractionModule;
  bool d_calledPreregister;

  //for extended functions
  bool d_needsLastCallCheck;
  context::CDHashSet<Node, NodeHashFunction> d_extf_range_infer;
  context::CDHashSet<Node, NodeHashFunction> d_extf_collapse_infer;
  /** do extended function inferences
   *
   * This method adds lemmas on the output channel of TheoryBV based on
   * reasoning about extended functions, such as bv2nat and int2bv. Examples
   * of lemmas added by this method include:
   *   0 <= ((_ int2bv w) x) < 2^w
   *   ((_ int2bv w) (bv2nat x)) = x
   *   (bv2nat ((_ int2bv w) x)) == x + k*2^w
   * The purpose of these lemmas is to recognize easy conflicts before fully
   * reducing extended functions based on their full semantics.
   */
  bool doExtfInferences( std::vector< Node >& terms );
  /** do extended function reductions
   *
   * This method adds lemmas on the output channel of TheoryBV based on
   * reducing all extended function applications that are preregistered to
   * this theory and have not already been reduced by context-dependent
   * simplification (see theory/ext_theory.h). Examples of lemmas added by
   * this method include:
   *   (bv2nat x) = (ite ((_ extract w w-1) x) 2^{w-1} 0) + ... +
   *                (ite ((_ extract 1 0) x) 1 0)
   */
  bool doExtfReductions( std::vector< Node >& terms );

  bool wasPropagatedBySubtheory(TNode literal) const {
    return d_propagatedBy.find(literal) != d_propagatedBy.end();
  }

  SubTheory getPropagatingSubtheory(TNode literal) const {
    Assert(wasPropagatedBySubtheory(literal));
    PropagatedMap::const_iterator find = d_propagatedBy.find(literal);
    return (*find).second;
  }

  /** Should be called to propagate the literal.  */
  bool storePropagation(TNode literal, SubTheory subtheory);

  /**
   * Explains why this literal (propagated by subtheory) is true by adding assumptions.
   */
  void explain(TNode literal, std::vector<TNode>& assumptions);

  void notifySharedTerm(TNode t) override;

  bool isSharedTerm(TNode t) { return d_sharedTermsSet.contains(t); }

  EqualityStatus getEqualityStatus(TNode a, TNode b) override;

  Node getModelValue(TNode var) override;

  inline std::string indent()
  {
    std::string indentStr(getSatContext()->getLevel(), ' ');
    return indentStr;
  }

  void setConflict(Node conflict = Node::null());

  bool inConflict() {
    return d_conflict;
  }

  void sendConflict();

  void lemma(TNode node)
  {
    d_out->lemma(node);
    d_lemmasAdded = true;
  }

  void checkForLemma(TNode node);

  /** The theory rewriter for this theory. */
  TheoryBVRewriter d_rewriter;
  /** A (default) theory state object */
  TheoryState d_state;

  friend class LazyBitblaster;
  friend class TLazyBitblaster;
  friend class EagerBitblaster;
  friend class BitblastSolver;
  friend class EqualitySolver;
  friend class CoreSolver;
  friend class InequalitySolver;
  friend class AlgebraicSolver;
  friend class EagerBitblastSolver;
};/* class TheoryBV */

}/* CVC4::theory::bv namespace */
}/* CVC4::theory namespace */

}/* CVC4 namespace */

#endif /* CVC4__THEORY__BV__THEORY_BV_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback