summaryrefslogtreecommitdiff
path: root/src/theory/bv/theory_bv.cpp
blob: 593274281af3313bed64b46f1d3d719ca921061d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/*********************                                                        */
/*! \file theory_bv.cpp
 ** \verbatim
 ** Original author: dejan
 ** Major contributors: none
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief [[ Add one-line brief description here ]]
 **
 ** [[ Add lengthier description here ]]
 ** \todo document this file
 **/

#include "theory/bv/theory_bv.h"
#include "theory/bv/theory_bv_utils.h"

#include "theory/valuation.h"

using namespace CVC4;
using namespace CVC4::theory;
using namespace CVC4::theory::bv;
using namespace CVC4::theory::bv::utils;

using namespace std;

void TheoryBV::preRegisterTerm(TNode node) {

  BVDebug("bitvector") << "TheoryBV::preRegister(" << node << ")" << std::endl;

  if (node.getKind() == kind::EQUAL) {
    d_eqEngine.addTerm(node[0]);
    if (node[0].getKind() == kind::BITVECTOR_CONCAT) {
      for (unsigned i = 0, i_end = node[0].getNumChildren(); i < i_end; ++ i) {
        d_eqEngine.addTerm(node[0][i]);
      }
    }
    d_eqEngine.addTerm(node[1]);
    if (node[1].getKind() == kind::BITVECTOR_CONCAT) {
      for (unsigned i = 0, i_end = node[1].getNumChildren(); i < i_end; ++ i) {
        d_eqEngine.addTerm(node[1][i]);
      }
    }

    d_normalization[node] = new Normalization(d_context, node);
  }
}

void TheoryBV::check(Effort e) {

  BVDebug("bitvector") << "TheoryBV::check(" << e << ")" << std::endl;

  // Normalization iterators
  NormalizationMap::iterator it = d_normalization.begin();
  NormalizationMap::iterator it_end = d_normalization.end();

  // Get all the assertions
  std::vector<TNode> assertionsList;
  while (!done()) {
    // Get the assertion
    TNode assertion = get();
    d_assertions.insert(assertion);
    assertionsList.push_back(assertion);
  }

  bool normalizeEqualities = false;

  for (unsigned i = 0; i < assertionsList.size(); ++ i) {

    TNode assertion = assertionsList[i];

    BVDebug("bitvector") << "TheoryBV::check(" << e << "): asserting: " << assertion << std::endl;

    // Do the right stuff
    switch (assertion.getKind()) {
    case kind::EQUAL: {
      // Slice and solve the equality
      bool ok = d_sliceManager.solveEquality(assertion[0], assertion[1]);
      if (!ok) return;
      // Normalize all equalities
      normalizeEqualities = true;
      it = d_normalization.begin();
      it = d_normalization.end();
      break;
    }
    case kind::NOT: {
      if (!normalizeEqualities) {
        // We still need to check this dis-equality, as it might have been pre-registered just now
        // so we didn't have a chance to propagate
        it = d_normalization.find(assertion[0]);
        if (it->second->assumptions.size() == 1) {
          // Just normalize this equality
          normalizeEqualities = true;
          it_end = it;
          it_end ++;
        }
      }
      break;
    }
    default:
      Unhandled(assertion.getKind());
    }
  }

  if (normalizeEqualities) {

    BVDebug("bitvector") << "Checking for propagations" << std::endl;
  
    NormalizationMap::iterator it = d_normalization.begin();
    NormalizationMap::iterator it_end = d_normalization.end();
    for(; it != it_end; ++ it) {

      TNode equality = it->first;
      BVDebug("bitvector") << "Checking " << equality << std::endl;
      Normalization& normalization = *it->second;
      
      // If asserted, we don't care
      if (d_assertions.find(equality) != d_assertions.end()) continue; 

      // Assumptions
      std::set<TNode> assumptions; 
      TNode lhs = normalization.equalities.back()[0];
      TNode rhs = normalization.equalities.back()[1];
      // If already satisfied, do nothing
      if (lhs == rhs) continue;

      Node lhsNormalized = d_eqEngine.normalize(lhs, assumptions);
      Node rhsNormalized = d_eqEngine.normalize(rhs, assumptions);

      if (lhsNormalized == lhs && rhsNormalized == rhs) continue;

      normalization.equalities.push_back(lhsNormalized.eqNode(rhsNormalized));
      normalization.assumptions.push_back(assumptions);

      BVDebug("bitvector") << "Adding normalization " << lhsNormalized.eqNode(rhsNormalized) << std::endl;
      BVDebug("bitvector") << "       assumptions   " << utils::setToString(assumptions) << std::endl;


      BVDebug("bitvector") << "TheoryBV::check(" << e << "): normalizes to " << lhsNormalized << " = " << rhsNormalized << std::endl;

      // If both are equal we can propagate
      bool propagate = lhsNormalized == rhsNormalized;
      // otherwise if both are constants, we propagate negation (if not already there)
      bool propagateNegation = !propagate &&
          lhsNormalized.getKind() == kind::CONST_BITVECTOR && rhsNormalized.getKind() == kind::CONST_BITVECTOR
          && d_assertions.find(equality.notNode()) == d_assertions.end();
          ;
      if (propagate || propagateNegation) {
        Node implied = propagate        ? Node(equality)     : equality.notNode() ;
        Node impliedNegated = propagate ? equality.notNode() : Node(equality)     ;
        // If the negation of what's implied has been asserted, we are in conflict
        if (d_assertions.find(impliedNegated) != d_assertions.end()) {
          BVDebug("bitvector") << "TheoryBV::check(" << e << "): conflict with " << utils::setToString(assumptions) << std::endl;
          // Construct the assumptions
          for (unsigned i = 0; i < normalization.assumptions.size(); ++ i) {
            assumptions.insert(normalization.assumptions[i].begin(), normalization.assumptions[i].end());
          }
          // Make the conflict
          assumptions.insert(impliedNegated);
          d_out->conflict(mkConjunction(assumptions));
          return;
        }
        // Otherwise we propagate the implication
        else {
          BVDebug("bitvector") << "TheoryBV::check(" << e << "): propagating " << implied << std::endl;
          d_out->propagate(implied);
          d_assertions.insert(implied);
        }
      }
    }
  }
}

bool TheoryBV::triggerEquality(size_t triggerId) {
  BVDebug("bitvector") << "TheoryBV::triggerEquality(" << triggerId << ")" << std::endl;
  Assert(triggerId < d_triggers.size());
  BVDebug("bitvector") << "TheoryBV::triggerEquality(" << triggerId << "): " << d_triggers[triggerId] << std::endl;

  return true;

  TNode equality = d_triggers[triggerId];

  // If we have just asserted this equality ignore it
  if (d_assertions.contains(equality)) return true;

  // If we have a negation asserted, we have a confict
  if (d_assertions.contains(equality.notNode())) {

    std::vector<TNode> explanation;
    d_eqEngine.getExplanation(equality[0], equality[1], explanation);
    std::set<TNode> assumptions;
    assumptions.insert(equality.notNode());
    utils::getConjuncts(explanation, assumptions);
    d_out->conflict(utils::mkConjunction(assumptions));

    return false;
  }

  // Otherwise we propagate this equality
  d_out->propagate(equality);

  return true;
}

Node TheoryBV::getValue(TNode n) {
  NodeManager* nodeManager = NodeManager::currentNM();

  switch(n.getKind()) {

  case kind::VARIABLE:
    Unhandled(kind::VARIABLE);

  case kind::EQUAL: // 2 args
    return nodeManager->
      mkConst( d_valuation.getValue(n[0]) == d_valuation.getValue(n[1]) );

  default:
    Unhandled(n.getKind());
  }
}

void TheoryBV::explain(TNode node) {
  BVDebug("bitvector") << "TheoryBV::explain(" << node << ")" << std::endl;

  TNode equality = node.getKind() == kind::NOT ? node[0] : node;
  Assert(equality.getKind() == kind::EQUAL);

  context::CDList< set<TNode> >& vec = d_normalization[equality]->assumptions;
  std::set<TNode> assumptions;
  for (unsigned i = 0; i < vec.size(); ++ i) {
    BVDebug("bitvector") << "Adding normalization " << d_normalization[equality]->equalities[i] << std::endl;
    BVDebug("bitvector") << "       assumptions   " << utils::setToString(d_normalization[equality]->assumptions[i]) << std::endl;
    assumptions.insert(vec[i].begin(), vec[i].end());
  }
  d_out->explanation(utils::mkConjunction(assumptions));
  return;
}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback