summaryrefslogtreecommitdiff
path: root/src/theory/booleans/circuit_propagator.cpp
blob: 2548cf5c39ac652e3a8a2ad1a53228549e62450b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*********************                                                        */
/*! \file circuit_propagator.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Dejan Jovanovic, Morgan Deters, Andrew Reynolds
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief A non-clausal circuit propagator for Boolean simplification
 **
 ** A non-clausal circuit propagator for Boolean simplification.
 **/

#include "theory/booleans/circuit_propagator.h"

#include <stack>
#include <vector>
#include <algorithm>

#include "expr/node_algorithm.h"
#include "util/utility.h"

using namespace std;

namespace CVC4 {
namespace theory {
namespace booleans {

void CircuitPropagator::assertTrue(TNode assertion)
{
  if (assertion.getKind() == kind::AND) {
    for (unsigned i = 0; i < assertion.getNumChildren(); ++ i) {
      assertTrue(assertion[i]);
    }
  } else {
    // Analyze the assertion for back-edges and all that
    computeBackEdges(assertion);
    // Assign the given assertion to true
    assignAndEnqueue(assertion, true);
  }
}

void CircuitPropagator::computeBackEdges(TNode node) {

  Debug("circuit-prop") << "CircuitPropagator::computeBackEdges(" << node << ")" << endl;

  // Vector of nodes to visit
  vector<TNode> toVisit;

  // Start with the top node
  if (d_seen.find(node) == d_seen.end()) {
    toVisit.push_back(node);
    d_seen.insert(node);
  }

  // Initialize the back-edges for the root, so we don't have a special case
  d_backEdges[node];

  // Go through the visit list
  for (unsigned i = 0; i < toVisit.size(); ++ i) {
    // Node we need to visit
    TNode current = toVisit[i];
    Debug("circuit-prop") << "CircuitPropagator::computeBackEdges(): processing " << current << endl;
    Assert(d_seen.find(current) != d_seen.end());

    // If this not an atom visit all the children and compute the back edges
    if (Theory::theoryOf(current) == THEORY_BOOL) {
      for (unsigned child = 0, child_end = current.getNumChildren(); child < child_end; ++ child) {
        TNode childNode = current[child];
        // Add the back edge
        d_backEdges[childNode].push_back(current);
        // Add to the queue if not seen yet
        if (d_seen.find(childNode) == d_seen.end()) {
          toVisit.push_back(childNode);
          d_seen.insert(childNode);
        }
      }
    }
  }
}

void CircuitPropagator::propagateBackward(TNode parent, bool parentAssignment) {

  Debug("circuit-prop") << "CircuitPropagator::propagateBackward(" << parent << ", " << parentAssignment << ")" << endl;

  // backward rules
  switch(parent.getKind()) {
  case kind::AND:
    if (parentAssignment) {
      // AND = TRUE: forall children c, assign(c = TRUE)
      for(TNode::iterator i = parent.begin(), i_end = parent.end(); i != i_end; ++i) {
        assignAndEnqueue(*i, true);
      }
    } else {
      // AND = FALSE: if all children BUT ONE == TRUE, assign(c = FALSE)
      TNode::iterator holdout = find_if_unique(parent.begin(), parent.end(), not1(IsAssignedTo(*this, true)));
      if (holdout != parent.end()) {
        assignAndEnqueue(*holdout, false);
      }
    }
    break;
  case kind::OR:
    if (parentAssignment) {
      // OR = TRUE: if all children BUT ONE == FALSE, assign(c = TRUE)
      TNode::iterator holdout = find_if_unique(parent.begin(), parent.end(), not1(IsAssignedTo(*this, false)));
      if (holdout != parent.end()) {
        assignAndEnqueue(*holdout, true);
      }
    } else {
      // OR = FALSE: forall children c, assign(c = FALSE)
      for(TNode::iterator i = parent.begin(), i_end = parent.end(); i != i_end; ++i) {
        assignAndEnqueue(*i, false);
      }
    }
    break;
  case kind::NOT:
    // NOT = b: assign(c = !b)
    assignAndEnqueue(parent[0], !parentAssignment);
    break;
  case kind::ITE:
    if (isAssignedTo(parent[0], true)) {
      // ITE c x y = v: if c is assigned and TRUE, assign(x = v)
      assignAndEnqueue(parent[1], parentAssignment);
    } else if (isAssignedTo(parent[0], false)) {
      // ITE c x y = v: if c is assigned and FALSE, assign(y = v)
      assignAndEnqueue(parent[2], parentAssignment);
    } else if (isAssigned(parent[1]) && isAssigned(parent[2])) {
      if (getAssignment(parent[1]) == parentAssignment && getAssignment(parent[2]) != parentAssignment) {
        // ITE c x y = v: if c is unassigned, x and y are assigned, x==v and y!=v, assign(c = TRUE)
        assignAndEnqueue(parent[0], true);
      } else if (getAssignment(parent[1]) != parentAssignment && getAssignment(parent[2]) == parentAssignment) {
        // ITE c x y = v: if c is unassigned, x and y are assigned, x!=v and y==v, assign(c = FALSE)
        assignAndEnqueue(parent[0], false);
      }
    }
    break;
  case kind::EQUAL:
    Assert( parent[0].getType().isBoolean() );
    if (parentAssignment) {
      // IFF x y = TRUE: if x [resp y] is assigned, assign(y = x.assignment [resp x = y.assignment])
      if (isAssigned(parent[0])) {
        assignAndEnqueue(parent[1], getAssignment(parent[0]));
      } else if (isAssigned(parent[1])) {
        assignAndEnqueue(parent[0], getAssignment(parent[1]));
      }
    } else {
      // IFF x y = FALSE: if x [resp y] is assigned, assign(y = !x.assignment [resp x = !y.assignment])
      if (isAssigned(parent[0])) {
        assignAndEnqueue(parent[1], !getAssignment(parent[0]));
      } else if (isAssigned(parent[1])) {
        assignAndEnqueue(parent[0], !getAssignment(parent[1]));
      }
    }
    break;
  case kind::IMPLIES:
    if (parentAssignment) {
      if (isAssignedTo(parent[0], true)) {
        // IMPLIES x y = TRUE, and x == TRUE: assign(y = TRUE)
        assignAndEnqueue(parent[1], true);
      }
      if (isAssignedTo(parent[1], false)) {
        // IMPLIES x y = TRUE, and y == FALSE: assign(x = FALSE)
        assignAndEnqueue(parent[0], false);
      }
    } else {
      // IMPLIES x y = FALSE: assign(x = TRUE) and assign(y = FALSE)
      assignAndEnqueue(parent[0], true);
      assignAndEnqueue(parent[1], false);
    }
    break;
  case kind::XOR:
    if (parentAssignment) {
      if (isAssigned(parent[0])) {
        // XOR x y = TRUE, and x assigned, assign(y = !assignment(x))
        assignAndEnqueue(parent[1], !getAssignment(parent[0]));
      } else if (isAssigned(parent[1])) {
        // XOR x y = TRUE, and y assigned, assign(x = !assignment(y))
        assignAndEnqueue(parent[0], !getAssignment(parent[1]));
      }
    } else {
      if (isAssigned(parent[0])) {
        // XOR x y = FALSE, and x assigned, assign(y = assignment(x))
        assignAndEnqueue(parent[1], getAssignment(parent[0]));
      } else if (isAssigned(parent[1])) {
        // XOR x y = FALSE, and y assigned, assign(x = assignment(y))
        assignAndEnqueue(parent[0], getAssignment(parent[1]));
      }
    }
    break;
  default:
    Unhandled();
  }
}


void CircuitPropagator::propagateForward(TNode child, bool childAssignment) {

  // The assignment we have
  Debug("circuit-prop") << "CircuitPropagator::propagateForward(" << child << ", " << childAssignment << ")" << endl;

  // Get the back any nodes where this is child
  const vector<Node>& parents = d_backEdges.find(child)->second;

  // Go through the parents and see if there is anything to propagate
  vector<Node>::const_iterator parent_it = parents.begin();
  vector<Node>::const_iterator parent_it_end = parents.end();
  for(; parent_it != parent_it_end && !d_conflict; ++ parent_it) {
    // The current parent of the child
    TNode parent = *parent_it;
    Assert(expr::hasSubterm(parent, child));

    // Forward rules
    switch(parent.getKind()) {
    case kind::AND:
      if (childAssignment) {
        TNode::iterator holdout;
        holdout = find_if (parent.begin(), parent.end(), not1(IsAssignedTo(*this, true)));
        if (holdout == parent.end()) { // all children are assigned TRUE
          // AND ...(x=TRUE)...: if all children now assigned to TRUE, assign(AND = TRUE)
          assignAndEnqueue(parent, true);
        } else if (isAssignedTo(parent, false)) {// the AND is FALSE
          // is the holdout unique ?
          TNode::iterator other = find_if (holdout + 1, parent.end(), not1(IsAssignedTo(*this, true)));
          if (other == parent.end()) { // the holdout is unique
            // AND ...(x=TRUE)...: if all children BUT ONE now assigned to TRUE, and AND == FALSE, assign(last_holdout = FALSE)
            assignAndEnqueue(*holdout, false);
          }
        }
      } else {
        // AND ...(x=FALSE)...: assign(AND = FALSE)
        assignAndEnqueue(parent, false);
      }
      break;
    case kind::OR:
      if (childAssignment) {
        // OR ...(x=TRUE)...: assign(OR = TRUE)
        assignAndEnqueue(parent, true);
      } else {
        TNode::iterator holdout;
        holdout = find_if (parent.begin(), parent.end(), not1(IsAssignedTo(*this, false)));
        if (holdout == parent.end()) { // all children are assigned FALSE
          // OR ...(x=FALSE)...: if all children now assigned to FALSE, assign(OR = FALSE)
          assignAndEnqueue(parent, false);
        } else if (isAssignedTo(parent, true)) {// the OR is TRUE
          // is the holdout unique ?
          TNode::iterator other = find_if (holdout + 1, parent.end(), not1(IsAssignedTo(*this, false)));
          if (other == parent.end()) { // the holdout is unique
            // OR ...(x=FALSE)...: if all children BUT ONE now assigned to FALSE, and OR == TRUE, assign(last_holdout = TRUE)
            assignAndEnqueue(*holdout, true);
          }
        }
      }
      break;

    case kind::NOT:
      // NOT (x=b): assign(NOT = !b)
      assignAndEnqueue(parent, !childAssignment);
      break;

    case kind::ITE:
      if (child == parent[0]) {
        if (childAssignment) {
          if (isAssigned(parent[1])) {
            // ITE (c=TRUE) x y: if x is assigned, assign(ITE = x.assignment)
            assignAndEnqueue(parent, getAssignment(parent[1]));
          }
        } else {
          if (isAssigned(parent[2])) {
            // ITE (c=FALSE) x y: if y is assigned, assign(ITE = y.assignment)
            assignAndEnqueue(parent, getAssignment(parent[2]));
          }
        }
      }
      if (child == parent[1]) {
        if (isAssignedTo(parent[0], true)) {
          // ITE c (x=v) y: if c is assigned and TRUE, assign(ITE = v)
          assignAndEnqueue(parent, childAssignment);
        }
      }
      if (child == parent[2]) {
        Assert(child == parent[2]);
        if (isAssignedTo(parent[0], false)) {
          // ITE c x (y=v): if c is assigned and FALSE, assign(ITE = v)
          assignAndEnqueue(parent, childAssignment);
        }
      }
      break;
    case kind::EQUAL:
      Assert( parent[0].getType().isBoolean() );
      if (isAssigned(parent[0]) && isAssigned(parent[1])) {
        // IFF x y: if x or y is assigned, assign(IFF = (x.assignment <=> y.assignment))
        assignAndEnqueue(parent, getAssignment(parent[0]) == getAssignment(parent[1]));
      } else {
        if (isAssigned(parent)) {
          if (child == parent[0]) {
            if (getAssignment(parent)) {
              // IFF (x = b) y: if IFF is assigned to TRUE, assign(y = b)
              assignAndEnqueue(parent[1], childAssignment);
            } else {
              // IFF (x = b) y: if IFF is assigned to FALSE, assign(y = !b)
              assignAndEnqueue(parent[1], !childAssignment);
            }
          } else {
            Assert(child == parent[1]);
            if (getAssignment(parent)) {
              // IFF x y = b: if IFF is assigned to TRUE, assign(x = b)
              assignAndEnqueue(parent[0], childAssignment);
            } else {
              // IFF x y = b y: if IFF is assigned to TRUE, assign(x = !b)
              assignAndEnqueue(parent[0], !childAssignment);
            }
          }
        }
      }
      break;
    case kind::IMPLIES:
      if (isAssigned(parent[0]) && isAssigned(parent[1])) {
        // IMPLIES (x=v1) (y=v2): assign(IMPLIES = (!v1 || v2))
        assignAndEnqueue(parent, !getAssignment(parent[0]) || getAssignment(parent[1]));
      } else {
        if (child == parent[0] && childAssignment && isAssignedTo(parent, true)) {
          // IMPLIES (x=TRUE) y [with IMPLIES == TRUE]: assign(y = TRUE)
          assignAndEnqueue(parent[1], true);
        }
        if (child == parent[1] && !childAssignment && isAssignedTo(parent, true)) {
          // IMPLIES x (y=FALSE) [with IMPLIES == TRUE]: assign(x = FALSE)
          assignAndEnqueue(parent[0], false);
        }
        // Note that IMPLIES == FALSE doesn't need any cases here
        // because if that assignment has been done, we've already
        // propagated all the children (in back-propagation).
      }
      break;
    case kind::XOR:
      if (isAssigned(parent)) {
        if (child == parent[0]) {
          // XOR (x=v) y [with XOR assigned], assign(y = (v ^ XOR)
          assignAndEnqueue(parent[1], childAssignment != getAssignment(parent));
        } else {
          Assert(child == parent[1]);
          // XOR x (y=v) [with XOR assigned], assign(x = (v ^ XOR))
          assignAndEnqueue(parent[0], childAssignment != getAssignment(parent));
        }
      }
      if (isAssigned(parent[0]) && isAssigned(parent[1])) {
        assignAndEnqueue(parent, getAssignment(parent[0]) != getAssignment(parent[1]));
      }
      break;
    default:
      Unhandled();
    }
  }
}

bool CircuitPropagator::propagate() {

  Debug("circuit-prop") << "CircuitPropagator::propagate()" << std::endl;

  for(unsigned i = 0; i < d_propagationQueue.size() && !d_conflict; ++ i) {

    // The current node we are propagating
    TNode current = d_propagationQueue[i];
    Debug("circuit-prop") << "CircuitPropagator::propagate(): processing " << current << std::endl;
    bool assignment = getAssignment(current);
    Debug("circuit-prop") << "CircuitPropagator::propagate(): assigned to " << (assignment ? "true" : "false") << std::endl;

    // Is this an atom
    bool atom = Theory::theoryOf(current) != THEORY_BOOL || current.isVar()
                || (current.getKind() == kind::EQUAL
                    && (current[0].isVar() && current[1].isVar()));

    // If an atom, add to the list for simplification
    if (atom) {
      Debug("circuit-prop") << "CircuitPropagator::propagate(): adding to learned: " << (assignment ? (Node)current : current.notNode()) << std::endl;
      d_learnedLiterals.push_back(assignment ? (Node)current : current.notNode());
    }

    // Propagate this value to the children (if not an atom or a constant)
    if (d_backwardPropagation && !atom && !current.isConst()) {
      propagateBackward(current, assignment);
    }
    // Propagate this value to the parents
    if (d_forwardPropagation) {
      propagateForward(current, assignment);
    }
  }

  // No conflict
  return d_conflict;
}

}/* CVC4::theory::booleans namespace */
}/* CVC4::theory namespace */
}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback