summaryrefslogtreecommitdiff
path: root/src/theory/arith/theory_arith.h
blob: 50061579a5276fde6cc2b0cfbc7e8964629860c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*********************                                                        */
/*! \file theory_arith.h
 ** \verbatim
 ** Original author: mdeters
 ** Major contributors: taking
 ** Minor contributors (to current version): ajreynol, dejan
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009-2012  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Arithmetic theory.
 ** ** Arithmetic theory.
 **/

#include "cvc4_private.h"

#ifndef __CVC4__THEORY__ARITH__THEORY_ARITH_H
#define __CVC4__THEORY__ARITH__THEORY_ARITH_H

#include "theory/theory.h"
#include "context/context.h"
#include "context/cdlist.h"
#include "context/cdhashset.h"
#include "context/cdinsert_hashmap.h"
#include "context/cdqueue.h"
#include "expr/node.h"

#include "util/dense_map.h"

#include "theory/arith/arithvar.h"
#include "theory/arith/delta_rational.h"
#include "theory/arith/matrix.h"
#include "theory/arith/arith_rewriter.h"
#include "theory/arith/partial_model.h"
#include "theory/arith/linear_equality.h"
#include "theory/arith/simplex.h"
#include "theory/arith/arith_static_learner.h"
#include "theory/arith/arithvar_node_map.h"
#include "theory/arith/dio_solver.h"
#include "theory/arith/congruence_manager.h"

#include "theory/arith/constraint.h"

#include "util/statistics_registry.h"
#include "util/result.h"

#include <vector>
#include <map>
#include <queue>

namespace CVC4 {
namespace theory {

namespace quantifiers {
  class InstStrategySimplex;
}

namespace arith {

/**
 * Implementation of QF_LRA.
 * Based upon:
 * http://research.microsoft.com/en-us/um/people/leonardo/cav06.pdf
 */
class TheoryArith : public Theory {
  friend class quantifiers::InstStrategySimplex;
private:
  bool d_nlIncomplete;
  // TODO A better would be:
  //context::CDO<bool> d_nlIncomplete;

  enum Result::Sat d_qflraStatus;
  // check()
  //   !done() -> d_qflraStatus = Unknown
  //   fullEffort(e) -> simplex returns either sat or unsat
  //   !fullEffort(e) -> simplex returns either sat, unsat or unknown
  //                     if unknown, save the assignment
  //                     if unknown, the simplex priority queue cannot be emptied
  int d_unknownsInARow;


  /**
   * This counter is false if nothing has been done since the last cut.
   * This is used to break an infinite loop.
   */
  bool d_hasDoneWorkSinceCut;

  /** Static learner. */
  ArithStaticLearner d_learner;


  ArithVar d_numberOfVariables;
  inline ArithVar getNumberOfVariables() const { return d_numberOfVariables; }
  std::vector<ArithVar> d_pool;
  void releaseArithVar(ArithVar v);

  /**
   * The map between arith variables to nodes.
   */
  ArithVarNodeMap d_arithvarNodeMap;

  typedef ArithVarNodeMap::var_iterator var_iterator;
  var_iterator var_begin() const { return d_arithvarNodeMap.var_begin(); }
  var_iterator var_end() const { return d_arithvarNodeMap.var_end(); }

  NodeSet d_setupNodes;
  bool isSetup(Node n) const {
    return d_setupNodes.find(n) != d_setupNodes.end();
  }
  void markSetup(Node n){
    Assert(!isSetup(n));
    d_setupNodes.insert(n);
  }

  void setupDivLike(const Variable& x);

  void setupVariable(const Variable& x);
  void setupVariableList(const VarList& vl);
  void setupPolynomial(const Polynomial& poly);
  void setupAtom(TNode atom);

  void cautiousSetupPolynomial(const Polynomial& p);

  class SetupLiteralCallBack : public TNodeCallBack {
  private:
    TheoryArith* d_arith;
  public:
    SetupLiteralCallBack(TheoryArith* ta) : d_arith(ta){}
    void operator()(TNode lit){
      TNode atom = (lit.getKind() == kind::NOT) ? lit[0] : lit;
      if(!d_arith->isSetup(atom)){
        d_arith->setupAtom(atom);
      }
    }
  } d_setupLiteralCallback;

  /**
   * A superset of all of the assertions that currently are not the literal for
   * their constraint do not match constraint literals. Not just the witnesses.
   */
  context::CDInsertHashMap<Node, Constraint, NodeHashFunction> d_assertionsThatDoNotMatchTheirLiterals;

  /**
   * (For the moment) the type hierarchy goes as:
   * Integer <: Real
   * The type number of a variable is an integer representing the most specific
   * type of the variable. The possible values of type number are:
   */
  enum ArithType
    {
      ATReal = 0,
      ATInteger = 1
   };

  std::vector<ArithType> d_variableTypes;
  inline ArithType nodeToArithType(TNode x) const {
    return (x.getType().isInteger() ? ATInteger : ATReal);
  }

  /** Returns true if x is of type Integer. */
  inline bool isInteger(ArithVar x) const {
    return d_variableTypes[x] >= ATInteger;
  }

  /** This is the set of variables initially introduced as slack variables. */
  std::vector<bool> d_slackVars;

  /** Returns true if the variable was initially introduced as a slack variable. */
  inline bool isSlackVariable(ArithVar x) const{
    return d_slackVars[x];
  }

  /**
   * On full effort checks (after determining LA(Q) satisfiability), we
   * consider integer vars, but we make sure to do so fairly to avoid
   * nontermination (although this isn't a guarantee).  To do it fairly,
   * we consider variables in round-robin fashion.  This is the
   * round-robin index.
   */
  ArithVar d_nextIntegerCheckVar;

  /**
   * Queue of Integer variables that are known to be equal to a constant.
   */
  context::CDQueue<ArithVar> d_constantIntegerVariables;

  Node callDioSolver();
  Node dioCutting();

  Comparison mkIntegerEqualityFromAssignment(ArithVar v);

  /**
   * List of all of the disequalities asserted in the current context that are not known
   * to be satisfied.
   */
  context::CDQueue<Constraint> d_diseqQueue;

  /**
   * Constraints that have yet to be processed by proagation work list.
   * All of the elements have type of LowerBound, UpperBound, or
   * Equality.
   *
   * This is empty at the beginning of every check call.
   *
   * If head()->getType() == LowerBound or UpperBound,
   * then d_cPL[1] is the previous constraint in d_partialModel for the
   * corresponding bound.
   * If head()->getType() == Equality,
   * then d_cPL[1] is the previous lowerBound in d_partialModel,
   * and d_cPL[2] is the previous upperBound in d_partialModel.
   */
  std::deque<Constraint> d_currentPropagationList;

  context::CDQueue<Constraint> d_learnedBounds;

  /**
   * Manages information about the assignment and upper and lower bounds on
   * variables.
   */
  ArithPartialModel d_partialModel;

  /**
   * The tableau for all of the constraints seen thus far in the system.
   */
  Tableau d_tableau;

  /**
   * Maintains the relationship between the PartialModel and the Tableau.
   */
  LinearEqualityModule d_linEq;

  /**
   * A Diophantine equation solver.  Accesses the tableau and partial
   * model (each in a read-only fashion).
   */
  DioSolver d_diosolver;

  /** Counts the number of notifyRestart() calls to the theory. */
  uint32_t d_restartsCounter;

  /**
   * Every number of restarts equal to s_TABLEAU_RESET_PERIOD,
   * the density of the tableau, d, is computed.
   * If d >= s_TABLEAU_RESET_DENSITY * d_initialDensity, the tableau
   * is set to d_initialTableau.
   */
  bool d_tableauSizeHasBeenModified;
  double d_tableauResetDensity;
  uint32_t d_tableauResetPeriod;
  static const uint32_t s_TABLEAU_RESET_INCREMENT = 5;


  /** This is only used by simplex at the moment. */
  context::CDList<Node> d_conflicts;
  class PushCallBack : public NodeCallBack {
  private:
    context::CDList<Node>& d_list;
  public:
    PushCallBack(context::CDList<Node>& l)
    : d_list(l)
    {}
    void operator()(Node n){
      d_list.push_back(n);
    }
  } d_raiseConflict;

  /** Returns true iff a conflict has been raised. */
  inline bool inConflict() const {
    return !d_conflicts.empty();
  }
  /**
   * Outputs the contents of d_conflicts onto d_out.
   * Must be inConflict().
   */
  void outputConflicts();


  class TempVarMalloc : public ArithVarMalloc {
  private:
    TheoryArith& d_ta;
  public:
    TempVarMalloc(TheoryArith& ta) : d_ta(ta) {}
    ArithVar request(){
      Node skolem = mkRealSkolem("tmpVar");
      return d_ta.requestArithVar(skolem, false);
    }
    void release(ArithVar v){ d_ta.releaseArithVar(v); }
  } d_tempVarMalloc;

  /**
   * A copy of the tableau.
   * This is equivalent  to the original tableau if d_tableauSizeHasBeenModified
   * is false.
   * The set of basic and non-basic variables may differ from d_tableau.
   */
  Tableau d_smallTableauCopy;

  /**
   * Returns true if all of the basic variables in the simplex queue of
   * basic variables that violate their bounds in the current tableau
   * are basic in d_smallTableauCopy.
   *
   * d_tableauSizeHasBeenModified must be false when calling this.
   * Simplex's priority queue must be in collection mode.
   */
  bool safeToReset() const;

  /** This keeps track of difference equalities. Mostly for sharing. */
  ArithCongruenceManager d_congruenceManager;

  /** This implements the Simplex decision procedure. */
  SimplexDecisionProcedure d_simplex;


  /** The constraint database associated with the theory. */
  ConstraintDatabase d_constraintDatabase;

  class ModelException : public Exception {
  public:
    ModelException(TNode n, const char* msg) throw ();
    virtual ~ModelException() throw ();
  };

  /** Internal model value for the node */
  DeltaRational getDeltaValue(TNode n) const throw (DeltaRationalException, ModelException);

  /** Uninterpretted function symbol for use when interpreting
   * division by zero.
   */
  Node d_realDivideBy0Func;
  Node d_intDivideBy0Func;
  Node d_intModulusBy0Func;
  Node getRealDivideBy0Func();
  Node getIntDivideBy0Func();
  Node getIntModulusBy0Func();

  Node definingIteForDivLike(Node divLike);
  Node axiomIteForTotalDivision(Node div_tot);
  Node axiomIteForTotalIntDivision(Node int_div_like);


  class DeltaComputeCallback : public RationalCallBack {
  private:
    const TheoryArith* d_ta;
  public:
    DeltaComputeCallback(const TheoryArith* ta) : d_ta(ta){}

    Rational operator()() const{
      return d_ta->deltaValueForTotalOrder();
    }
  } d_deltaComputeCallback;

public:
  TheoryArith(context::Context* c, context::UserContext* u, OutputChannel& out, Valuation valuation, const LogicInfo& logicInfo, QuantifiersEngine* qe);
  virtual ~TheoryArith();

  /**
   * Does non-context dependent setup for a node connected to a theory.
   */
  void preRegisterTerm(TNode n);

  void setMasterEqualityEngine(eq::EqualityEngine* eq);

  void check(Effort e);
  void propagate(Effort e);
  Node explain(TNode n);

  Rational deltaValueForTotalOrder() const;
  void collectModelInfo( TheoryModel* m, bool fullModel );

  void shutdown(){ }

  void presolve();
  void notifyRestart();
  PPAssertStatus ppAssert(TNode in, SubstitutionMap& outSubstitutions);
  Node ppRewrite(TNode atom);
  void ppStaticLearn(TNode in, NodeBuilder<>& learned);

  std::string identify() const { return std::string("TheoryArith"); }

  EqualityStatus getEqualityStatus(TNode a, TNode b);

  void addSharedTerm(TNode n);

private:

  class BasicVarModelUpdateCallBack : public ArithVarCallBack{
  private:
    SimplexDecisionProcedure& d_simplex;

  public:
    BasicVarModelUpdateCallBack(SimplexDecisionProcedure& s):
      d_simplex(s)
    {}

    void operator()(ArithVar x){
      d_simplex.updateBasic(x);
    }
  };

  BasicVarModelUpdateCallBack d_basicVarModelUpdateCallBack;

  /** The constant zero. */
  DeltaRational d_DELTA_ZERO;

  /** propagates an arithvar */
  void propagateArithVar(bool upperbound, ArithVar var );

  /**
   * Using the simpleKind return the ArithVar associated with the assertion.
   */
  ArithVar determineArithVar(const Polynomial& p) const;
  ArithVar determineArithVar(TNode assertion) const;

  /**
   * Splits the disequalities in d_diseq that are violated using lemmas on demand.
   * returns true if any lemmas were issued.
   * returns false if all disequalities are satisfied in the current model.
   */
  bool splitDisequalities();

  /** A Difference variable is known to be 0.*/
  void zeroDifferenceDetected(ArithVar x);


  /**
   * Looks for the next integer variable without an integer assignment in a round robin fashion.
   * Changes the value of d_nextIntegerCheckVar.
   *
   * If this returns false, d_nextIntegerCheckVar does not have an integer assignment.
   * If this returns true, all integer variables have an integer assignment.
   */
  bool hasIntegerModel();

  /**
   * Issues branches for non-slack integer variables with non-integer assignments.
   * Returns a cut for a lemma.
   * If there is an integer model, this returns Node::null().
   */
  Node roundRobinBranch();

  /**
   * This requests a new unique ArithVar value for x.
   * This also does initial (not context dependent) set up for a variable,
   * except for setting up the initial.
   */
  ArithVar requestArithVar(TNode x, bool slack);

  /** Initial (not context dependent) sets up for a variable.*/
  void setupBasicValue(ArithVar x);

  /** Initial (not context dependent) sets up for a new slack variable.*/
  void setupSlack(TNode left);


  /**
   * Assert*(n, orig) takes an bound n that is implied by orig.
   * and asserts that as a new bound if it is tighter than the current bound
   * and updates the value of a basic variable if needed.
   *
   * orig must be a literal in the SAT solver so that it can be used for
   * conflict analysis.
   *
   * x is the variable getting the new bound,
   * c is the value of the new bound.
   *
   * If this new bound is in conflict with the other bound,
   * a node describing this conflict is returned.
   * If this new bound is not in conflict, Node::null() is returned.
   */
  bool AssertLower(Constraint constraint);
  bool AssertUpper(Constraint constraint);
  bool AssertEquality(Constraint constraint);
  bool AssertDisequality(Constraint constraint);

  /** Tracks the bounds that were updated in the current round. */
  DenseSet d_updatedBounds;

  /** Tracks the basic variables where propagation might be possible. */
  DenseSet d_candidateBasics;

  bool hasAnyUpdates() { return !d_updatedBounds.empty(); }
  void clearUpdates();

  void revertOutOfConflict();

  void propagateCandidates();
  void propagateCandidate(ArithVar basic);
  bool propagateCandidateBound(ArithVar basic, bool upperBound);

  inline bool propagateCandidateLowerBound(ArithVar basic){
    return propagateCandidateBound(basic, false);
  }
  inline bool propagateCandidateUpperBound(ArithVar basic){
    return propagateCandidateBound(basic, true);
  }

  /**
   * Performs a check to see if it is definitely true that setup can be avoided.
   */
  bool canSafelyAvoidEqualitySetup(TNode equality);

  /**
   * Handles the case splitting for check() for a new assertion.
   * Returns a conflict if one was found.
   * Returns Node::null if no conflict was found.
   */
  Constraint constraintFromFactQueue();
  bool assertionCases(Constraint c);

  /**
   * Returns the basic variable with the shorted row containing a non-basic variable.
   * If no such row exists, return ARITHVAR_SENTINEL.
   */
  ArithVar findShortestBasicRow(ArithVar variable);

  /**
   * Debugging only routine!
   * Returns true iff every variable is consistent in the partial model.
   */
  bool entireStateIsConsistent(const std::string& locationHint);
  bool unenqueuedVariablesAreConsistent();

  bool isImpliedUpperBound(ArithVar var, Node exp);
  bool isImpliedLowerBound(ArithVar var, Node exp);

  void internalExplain(TNode n, NodeBuilder<>& explainBuilder);


  void asVectors(const Polynomial& p,
                 std::vector<Rational>& coeffs,
                 std::vector<ArithVar>& variables);

  /** Routine for debugging. Print the assertions the theory is aware of. */
  void debugPrintAssertions();
  /** Debugging only routine. Prints the model. */
  void debugPrintModel();

  /** Counts the number of fullCheck calls to arithmetic. */
  uint32_t d_fullCheckCounter;
  std::vector<Node> cutAllBounded() const;
  Node branchIntegerVariable(ArithVar x) const;

  context::CDO<unsigned> d_cutsInContext;

  /** These fields are designed to be accessible to TheoryArith methods. */
  class Statistics {
  public:
    IntStat d_statAssertUpperConflicts, d_statAssertLowerConflicts;

    IntStat d_statUserVariables, d_statSlackVariables;
    IntStat d_statDisequalitySplits;
    IntStat d_statDisequalityConflicts;
    TimerStat d_simplifyTimer;
    TimerStat d_staticLearningTimer;

    TimerStat d_presolveTime;

    TimerStat d_newPropTime;

    IntStat d_externalBranchAndBounds;

    IntStat d_initialTableauSize;
    IntStat d_currSetToSmaller;
    IntStat d_smallerSetToCurr;
    TimerStat d_restartTimer;

    TimerStat d_boundComputationTime;
    IntStat d_boundComputations, d_boundPropagations;

    IntStat d_unknownChecks;
    IntStat d_maxUnknownsInARow;
    AverageStat d_avgUnknownsInARow;

    IntStat d_revertsOnConflicts;
    IntStat d_commitsOnConflicts;
    IntStat d_nontrivialSatChecks;

    Statistics();
    ~Statistics();
  };

  Statistics d_statistics;


};/* class TheoryArith */

}/* CVC4::theory::arith namespace */
}/* CVC4::theory namespace */
}/* CVC4 namespace */

#endif /* __CVC4__THEORY__ARITH__THEORY_ARITH_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback