summaryrefslogtreecommitdiff
path: root/src/theory/arith/theory_arith.cpp
blob: 1843ddb8a590aa22d249df6cfc36059426336e99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Tim King, Alex Ozdemir
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Arithmetic theory.
 */

#include "theory/arith/theory_arith.h"

#include "expr/proof_checker.h"
#include "expr/proof_rule.h"
#include "options/smt_options.h"
#include "smt/smt_statistics_registry.h"
#include "theory/arith/arith_rewriter.h"
#include "theory/arith/infer_bounds.h"
#include "theory/arith/nl/nonlinear_extension.h"
#include "theory/arith/theory_arith_private.h"
#include "theory/ext_theory.h"
#include "theory/rewriter.h"
#include "theory/theory_model.h"

using namespace std;
using namespace cvc5::kind;

namespace cvc5 {
namespace theory {
namespace arith {

TheoryArith::TheoryArith(context::Context* c,
                         context::UserContext* u,
                         OutputChannel& out,
                         Valuation valuation,
                         const LogicInfo& logicInfo,
                         ProofNodeManager* pnm)
    : Theory(THEORY_ARITH, c, u, out, valuation, logicInfo, pnm),
      d_internal(
          new TheoryArithPrivate(*this, c, u, out, valuation, logicInfo, pnm)),
      d_ppRewriteTimer(smtStatisticsRegistry().registerTimer(
          "theory::arith::ppRewriteTimer")),
      d_ppPfGen(pnm, c, "Arith::ppRewrite"),
      d_astate(*d_internal, c, u, valuation),
      d_im(*this, d_astate, pnm),
      d_nonlinearExtension(nullptr),
      d_opElim(pnm, logicInfo),
      d_arithPreproc(d_astate, d_im, pnm, d_opElim),
      d_rewriter(d_opElim)
{
  // indicate we are using the theory state object and inference manager
  d_theoryState = &d_astate;
  d_inferManager = &d_im;
}

TheoryArith::~TheoryArith(){
  delete d_internal;
}

TheoryRewriter* TheoryArith::getTheoryRewriter() { return &d_rewriter; }

ProofRuleChecker* TheoryArith::getProofChecker()
{
  return d_internal->getProofChecker();
}

bool TheoryArith::needsEqualityEngine(EeSetupInfo& esi)
{
  return d_internal->needsEqualityEngine(esi);
}
void TheoryArith::finishInit()
{
  if (getLogicInfo().isTheoryEnabled(THEORY_ARITH)
      && getLogicInfo().areTranscendentalsUsed())
  {
    // witness is used to eliminate square root
    d_valuation.setUnevaluatedKind(kind::WITNESS);
    // we only need to add the operators that are not syntax sugar
    d_valuation.setUnevaluatedKind(kind::EXPONENTIAL);
    d_valuation.setUnevaluatedKind(kind::SINE);
    d_valuation.setUnevaluatedKind(kind::PI);
  }
  // only need to create nonlinear extension if non-linear logic
  const LogicInfo& logicInfo = getLogicInfo();
  if (logicInfo.isTheoryEnabled(THEORY_ARITH) && !logicInfo.isLinear())
  {
    d_nonlinearExtension.reset(
        new nl::NonlinearExtension(*this, d_astate, d_equalityEngine, d_pnm));
  }
  // finish initialize internally
  d_internal->finishInit();
}

void TheoryArith::preRegisterTerm(TNode n)
{
  if (d_nonlinearExtension != nullptr)
  {
    d_nonlinearExtension->preRegisterTerm(n);
  }
  d_internal->preRegisterTerm(n);
}

void TheoryArith::notifySharedTerm(TNode n) { d_internal->notifySharedTerm(n); }

TrustNode TheoryArith::ppRewrite(TNode atom, std::vector<SkolemLemma>& lems)
{
  CodeTimer timer(d_ppRewriteTimer, /* allow_reentrant = */ true);
  Debug("arith::preprocess") << "arith::preprocess() : " << atom << endl;

  if (atom.getKind() == kind::EQUAL)
  {
    return ppRewriteEq(atom);
  }
  Assert(Theory::theoryOf(atom) == THEORY_ARITH);
  // Eliminate operators. Notice we must do this here since other
  // theories may generate lemmas that involve non-standard operators. For
  // example, quantifier instantiation may use TO_INTEGER terms; SyGuS may
  // introduce non-standard arithmetic terms appearing in grammars.
  // call eliminate operators. In contrast to expandDefinitions, we eliminate
  // *all* extended arithmetic operators here, including total ones.
  return d_arithPreproc.eliminate(atom, lems, false);
}

TrustNode TheoryArith::ppRewriteEq(TNode atom)
{
  Assert(atom.getKind() == kind::EQUAL);
  if (!options::arithRewriteEq())
  {
    return TrustNode::null();
  }
  Assert(atom[0].getType().isReal());
  Node leq = NodeBuilder(kind::LEQ) << atom[0] << atom[1];
  Node geq = NodeBuilder(kind::GEQ) << atom[0] << atom[1];
  Node rewritten = Rewriter::rewrite(leq.andNode(geq));
  Debug("arith::preprocess")
      << "arith::preprocess() : returning " << rewritten << endl;
  // don't need to rewrite terms since rewritten is not a non-standard op
  if (proofsEnabled())
  {
    return d_ppPfGen.mkTrustedRewrite(
        atom,
        rewritten,
        d_pnm->mkNode(PfRule::INT_TRUST, {}, {atom.eqNode(rewritten)}));
  }
  return TrustNode::mkTrustRewrite(atom, rewritten, nullptr);
}

Theory::PPAssertStatus TheoryArith::ppAssert(
    TrustNode tin, TrustSubstitutionMap& outSubstitutions)
{
  return d_internal->ppAssert(tin, outSubstitutions);
}

void TheoryArith::ppStaticLearn(TNode n, NodeBuilder& learned)
{
  d_internal->ppStaticLearn(n, learned);
}

bool TheoryArith::preCheck(Effort level)
{
  Trace("arith-check") << "TheoryArith::preCheck " << level << std::endl;
  return d_internal->preCheck(level);
}

void TheoryArith::postCheck(Effort level)
{
  Trace("arith-check") << "TheoryArith::postCheck " << level << std::endl;
  // check with the non-linear solver at last call
  if (level == Theory::EFFORT_LAST_CALL)
  {
    if (d_nonlinearExtension != nullptr)
    {
      d_nonlinearExtension->check(level);
    }
    return;
  }
  // otherwise, check with the linear solver
  if (d_internal->postCheck(level))
  {
    // linear solver emitted a conflict or lemma, return
    return;
  }

  if (Theory::fullEffort(level))
  {
    if (d_nonlinearExtension != nullptr)
    {
      d_nonlinearExtension->check(level);
    }
    else if (d_internal->foundNonlinear())
    {
      // set incomplete
      d_im.setIncomplete(IncompleteId::ARITH_NL_DISABLED);
    }
  }
}

bool TheoryArith::preNotifyFact(
    TNode atom, bool pol, TNode fact, bool isPrereg, bool isInternal)
{
  Trace("arith-check") << "TheoryArith::preNotifyFact: " << fact
                       << ", isPrereg=" << isPrereg
                       << ", isInternal=" << isInternal << std::endl;
  d_internal->preNotifyFact(atom, pol, fact);
  // We do not assert to the equality engine of arithmetic in the standard way,
  // hence we return "true" to indicate we are finished with this fact.
  return true;
}

bool TheoryArith::needsCheckLastEffort() {
  if (d_nonlinearExtension != nullptr)
  {
    return d_nonlinearExtension->needsCheckLastEffort();
  }
  return false;
}

TrustNode TheoryArith::explain(TNode n) { return d_internal->explain(n); }

void TheoryArith::propagate(Effort e) {
  d_internal->propagate(e);
}

bool TheoryArith::collectModelInfo(TheoryModel* m,
                                   const std::set<Node>& termSet)
{
  // this overrides behavior to not assert equality engine
  return collectModelValues(m, termSet);
}

bool TheoryArith::collectModelValues(TheoryModel* m,
                                     const std::set<Node>& termSet)
{
  // get the model from the linear solver
  std::map<Node, Node> arithModel;
  d_internal->collectModelValues(termSet, arithModel);
  // if non-linear is enabled, intercept the model, which may repair its values
  if (d_nonlinearExtension != nullptr)
  {
    // Non-linear may repair values to satisfy non-linear constraints (see
    // documentation for NonlinearExtension::interceptModel).
    d_nonlinearExtension->interceptModel(arithModel, termSet);
  }
  // We are now ready to assert the model.
  for (const std::pair<const Node, Node>& p : arithModel)
  {
    // maps to constant of comparable type
    Assert(p.first.getType().isComparableTo(p.second.getType()));
    if (m->assertEquality(p.first, p.second, true))
    {
      continue;
    }
    // If we failed to assert an equality, it is likely due to theory
    // combination, namely the repaired model for non-linear changed
    // an equality status that was agreed upon by both (linear) arithmetic
    // and another theory. In this case, we must add a lemma, or otherwise
    // we would terminate with an invalid model. Thus, we add a splitting
    // lemma of the form ( x = v V x != v ) where v is the model value
    // assigned by the non-linear solver to x.
    if (d_nonlinearExtension != nullptr)
    {
      Node eq = p.first.eqNode(p.second);
      Node lem = NodeManager::currentNM()->mkNode(kind::OR, eq, eq.negate());
      bool added = d_im.lemma(lem, InferenceId::ARITH_SPLIT_FOR_NL_MODEL);
      AlwaysAssert(added) << "The lemma was already in cache. Probably there is something wrong with theory combination...";
    }
    return false;
  }
  return true;
}

void TheoryArith::notifyRestart(){
  d_internal->notifyRestart();
}

void TheoryArith::presolve(){
  d_internal->presolve();
  if (d_nonlinearExtension != nullptr)
  {
    d_nonlinearExtension->presolve();
  }
}

EqualityStatus TheoryArith::getEqualityStatus(TNode a, TNode b) {
  return d_internal->getEqualityStatus(a,b);
}

Node TheoryArith::getModelValue(TNode var) {
  return d_internal->getModelValue( var );
}

std::pair<bool, Node> TheoryArith::entailmentCheck(TNode lit)
{
  ArithEntailmentCheckParameters def;
  def.addLookupRowSumAlgorithms();
  ArithEntailmentCheckSideEffects ase;
  std::pair<bool, Node> res = d_internal->entailmentCheck(lit, def, ase);
  return res;
}
eq::ProofEqEngine* TheoryArith::getProofEqEngine()
{
  return d_im.getProofEqEngine();
}

}  // namespace arith
}  // namespace theory
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback