summaryrefslogtreecommitdiff
path: root/src/theory/arith/theory_arith.cpp
blob: 4884d84842448ba1e8864bd59dc907cb50afad9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*********************                                                        */
/*! \file theory_arith.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Tim King, Andrew Reynolds, Dejan Jovanovic
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief [[ Add one-line brief description here ]]
 **
 ** [[ Add lengthier description here ]]
 ** \todo document this file
 **/

#include "theory/arith/theory_arith.h"

#include "options/smt_options.h"
#include "smt/smt_statistics_registry.h"
#include "theory/arith/arith_rewriter.h"
#include "theory/arith/infer_bounds.h"
#include "theory/arith/nl/nonlinear_extension.h"
#include "theory/arith/theory_arith_private.h"
#include "theory/ext_theory.h"

using namespace std;
using namespace CVC4::kind;

namespace CVC4 {
namespace theory {
namespace arith {

TheoryArith::TheoryArith(context::Context* c,
                         context::UserContext* u,
                         OutputChannel& out,
                         Valuation valuation,
                         const LogicInfo& logicInfo,
                         ProofNodeManager* pnm)
    : Theory(THEORY_ARITH, c, u, out, valuation, logicInfo, pnm),
      d_internal(
          new TheoryArithPrivate(*this, c, u, out, valuation, logicInfo, pnm)),
      d_ppRewriteTimer("theory::arith::ppRewriteTimer"),
      d_astate(*d_internal, c, u, valuation),
      d_inferenceManager(*this, d_astate, pnm),
      d_nonlinearExtension(nullptr)
{
  smtStatisticsRegistry()->registerStat(&d_ppRewriteTimer);

  // indicate we are using the theory state object
  d_theoryState = &d_astate;
}

TheoryArith::~TheoryArith(){
  smtStatisticsRegistry()->unregisterStat(&d_ppRewriteTimer);
  delete d_internal;
}

TheoryRewriter* TheoryArith::getTheoryRewriter()
{
  return d_internal->getTheoryRewriter();
}

bool TheoryArith::needsEqualityEngine(EeSetupInfo& esi)
{
  return d_internal->needsEqualityEngine(esi);
}
void TheoryArith::finishInit()
{
  if (getLogicInfo().isTheoryEnabled(THEORY_ARITH)
      && getLogicInfo().areTranscendentalsUsed())
  {
    // witness is used to eliminate square root
    d_valuation.setUnevaluatedKind(kind::WITNESS);
    // we only need to add the operators that are not syntax sugar
    d_valuation.setUnevaluatedKind(kind::EXPONENTIAL);
    d_valuation.setUnevaluatedKind(kind::SINE);
    d_valuation.setUnevaluatedKind(kind::PI);
  }
  // only need to create nonlinear extension if non-linear logic
  const LogicInfo& logicInfo = getLogicInfo();
  if (logicInfo.isTheoryEnabled(THEORY_ARITH) && !logicInfo.isLinear())
  {
    d_nonlinearExtension.reset(
        new nl::NonlinearExtension(*this, d_equalityEngine));
  }
  // finish initialize internally
  d_internal->finishInit();
}

void TheoryArith::preRegisterTerm(TNode n) { d_internal->preRegisterTerm(n); }

TrustNode TheoryArith::expandDefinition(Node node)
{
  return d_internal->expandDefinition(node);
}

void TheoryArith::notifySharedTerm(TNode n) { d_internal->addSharedTerm(n); }

TrustNode TheoryArith::ppRewrite(TNode atom)
{
  CodeTimer timer(d_ppRewriteTimer, /* allow_reentrant = */ true);
  return d_internal->ppRewrite(atom);
}

Theory::PPAssertStatus TheoryArith::ppAssert(TNode in, SubstitutionMap& outSubstitutions) {
  return d_internal->ppAssert(in, outSubstitutions);
}

void TheoryArith::ppStaticLearn(TNode n, NodeBuilder<>& learned) {
  d_internal->ppStaticLearn(n, learned);
}

void TheoryArith::check(Effort effortLevel){
  getOutputChannel().spendResource(ResourceManager::Resource::TheoryCheckStep);
  d_internal->check(effortLevel);
}

bool TheoryArith::needsCheckLastEffort() {
  return d_internal->needsCheckLastEffort();
}

TrustNode TheoryArith::explain(TNode n)
{
  Node exp = d_internal->explain(n);
  return TrustNode::mkTrustPropExp(n, exp, nullptr);
}

void TheoryArith::propagate(Effort e) {
  d_internal->propagate(e);
}
bool TheoryArith::collectModelInfo(TheoryModel* m)
{
  std::set<Node> termSet;
  // Work out which variables are needed
  const std::set<Kind>& irrKinds = m->getIrrelevantKinds();
  computeAssertedTerms(termSet, irrKinds);
  // this overrides behavior to not assert equality engine
  return collectModelValues(m, termSet);
}

bool TheoryArith::collectModelValues(TheoryModel* m,
                                     const std::set<Node>& termSet)
{
  // get the model from the linear solver
  std::map<Node, Node> arithModel;
  d_internal->collectModelValues(termSet, arithModel);
  // if non-linear is enabled, intercept the model, which may repair its values
  if (d_nonlinearExtension != nullptr)
  {
    // Non-linear may repair values to satisfy non-linear constraints (see
    // documentation for NonlinearExtension::interceptModel).
    d_nonlinearExtension->interceptModel(arithModel);
  }
  // We are now ready to assert the model.
  for (const std::pair<const Node, Node>& p : arithModel)
  {
    // maps to constant of comparable type
    Assert(p.first.getType().isComparableTo(p.second.getType()));
    Assert(p.second.isConst());
    if (m->assertEquality(p.first, p.second, true))
    {
      continue;
    }
    // If we failed to assert an equality, it is likely due to theory
    // combination, namely the repaired model for non-linear changed
    // an equality status that was agreed upon by both (linear) arithmetic
    // and another theory. In this case, we must add a lemma, or otherwise
    // we would terminate with an invalid model. Thus, we add a splitting
    // lemma of the form ( x = v V x != v ) where v is the model value
    // assigned by the non-linear solver to x.
    if (d_nonlinearExtension != nullptr)
    {
      Node eq = p.first.eqNode(p.second);
      Node lem = NodeManager::currentNM()->mkNode(kind::OR, eq, eq.negate());
      d_out->lemma(lem);
    }
    return false;
  }
  return true;
}

void TheoryArith::notifyRestart(){
  d_internal->notifyRestart();
}

void TheoryArith::presolve(){
  d_internal->presolve();
}

EqualityStatus TheoryArith::getEqualityStatus(TNode a, TNode b) {
  return d_internal->getEqualityStatus(a,b);
}

Node TheoryArith::getModelValue(TNode var) {
  return d_internal->getModelValue( var );
}

std::pair<bool, Node> TheoryArith::entailmentCheck(TNode lit)
{
  ArithEntailmentCheckParameters def;
  def.addLookupRowSumAlgorithms();
  ArithEntailmentCheckSideEffects ase;
  std::pair<bool, Node> res = d_internal->entailmentCheck(lit, def, ase);
  return res;
}

}/* CVC4::theory::arith namespace */
}/* CVC4::theory namespace */
}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback