summaryrefslogtreecommitdiff
path: root/src/theory/arith/nl/cad/cdcac.cpp
blob: 4725eb1984f4f10bdf52232eac4b2f1f75fd1e70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*********************                                                        */
/*! \file cdcac.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Gereon Kremer
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Implements the CDCAC approach.
 **
 ** Implements the CDCAC approach as described in
 ** https://arxiv.org/pdf/2003.05633.pdf.
 **/

#include "theory/arith/nl/cad/cdcac.h"

#ifdef CVC4_POLY_IMP

#include "theory/arith/nl/cad/projections.h"
#include "theory/arith/nl/cad/variable_ordering.h"

namespace std {
/** Generic streaming operator for std::vector. */
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v)
{
  CVC4::container_to_stream(os, v);
  return os;
}
}  // namespace std

namespace CVC4 {
namespace theory {
namespace arith {
namespace nl {
namespace cad {

namespace {
/** Removed duplicates from a vector. */
template <typename T>
void removeDuplicates(std::vector<T>& v)
{
  std::sort(v.begin(), v.end());
  v.erase(std::unique(v.begin(), v.end()), v.end());
}
}  // namespace

CDCAC::CDCAC() {}

CDCAC::CDCAC(const std::vector<poly::Variable>& ordering)
    : d_variableOrdering(ordering)
{
}

void CDCAC::reset()
{
  d_constraints.reset();
  d_assignment.clear();
}

void CDCAC::computeVariableOrdering()
{
  // Actually compute the variable ordering
  d_variableOrdering = d_varOrder(d_constraints.getConstraints(),
                                  VariableOrderingStrategy::BROWN);
  Trace("cdcac") << "Variable ordering is now " << d_variableOrdering
                 << std::endl;

  // Write variable ordering back to libpoly.
  lp_variable_order_t* vo = poly::Context::get_context().get_variable_order();
  lp_variable_order_clear(vo);
  for (const auto& v : d_variableOrdering)
  {
    lp_variable_order_push(vo, v.get_internal());
  }
}

Constraints& CDCAC::getConstraints() { return d_constraints; }
const Constraints& CDCAC::getConstraints() const { return d_constraints; }

const poly::Assignment& CDCAC::getModel() const { return d_assignment; }

const std::vector<poly::Variable>& CDCAC::getVariableOrdering() const
{
  return d_variableOrdering;
}

std::vector<CACInterval> CDCAC::getUnsatIntervals(
    std::size_t cur_variable) const
{
  std::vector<CACInterval> res;
  for (const auto& c : d_constraints.getConstraints())
  {
    const poly::Polynomial& p = std::get<0>(c);
    poly::SignCondition sc = std::get<1>(c);
    const Node& n = std::get<2>(c);

    if (main_variable(p) != d_variableOrdering[cur_variable])
    {
      // Constraint is in another variable, ignore it.
      continue;
    }

    Trace("cdcac") << "Infeasible intervals for " << p << " " << sc
                   << " 0 over " << d_assignment << std::endl;
    auto intervals = infeasible_regions(p, d_assignment, sc);
    for (const auto& i : intervals)
    {
      Trace("cdcac") << "-> " << i << std::endl;
      std::vector<poly::Polynomial> l, u, m, d;
      if (!is_minus_infinity(get_lower(i))) l.emplace_back(p);
      if (!is_plus_infinity(get_upper(i))) u.emplace_back(p);
      m.emplace_back(p);
      res.emplace_back(CACInterval{i, l, u, m, d, {n}});
    }
  }
  cleanIntervals(res);
  return res;
}

std::vector<poly::Polynomial> CDCAC::requiredCoefficients(
    const poly::Polynomial& p) const
{
  std::vector<poly::Polynomial> res;
  for (long deg = degree(p); deg >= 0; --deg)
  {
    auto coeff = coefficient(p, deg);
    if (lp_polynomial_is_constant(coeff.get_internal())) break;
    res.emplace_back(coeff);
    if (evaluate_constraint(coeff, d_assignment, poly::SignCondition::NE))
    {
      break;
    }
  }
  return res;
}

std::vector<poly::Polynomial> CDCAC::constructCharacterization(
    std::vector<CACInterval>& intervals)
{
  Assert(!intervals.empty()) << "A covering can not be empty";
  Trace("cdcac") << "Constructing characterization now" << std::endl;
  std::vector<poly::Polynomial> res;

  for (const auto& i : intervals)
  {
    Trace("cdcac") << "Considering " << i.d_interval << std::endl;
    Trace("cdcac") << "-> " << i.d_lowerPolys << " / " << i.d_upperPolys
                   << " and " << i.d_mainPolys << " / " << i.d_downPolys
                   << std::endl;
    Trace("cdcac") << "-> " << i.d_origins << std::endl;
    for (const auto& p : i.d_downPolys)
    {
      // Add all polynomial from lower levels.
      addPolynomial(res, p);
    }
    for (const auto& p : i.d_mainPolys)
    {
      Trace("cdcac") << "Discriminant of " << p << " -> " << discriminant(p)
                     << std::endl;
      // Add all discriminants
      addPolynomial(res, discriminant(p));

      for (const auto& q : requiredCoefficients(p))
      {
        // Add all required coefficients
        Trace("cdcac") << "Coeff of " << p << " -> " << q << std::endl;
        addPolynomial(res, q);
      }
      for (const auto& q : i.d_lowerPolys)
      {
        if (p == q) continue;
        // Check whether p(s \times a) = 0 for some a <= l
        if (!hasRootBelow(q, get_lower(i.d_interval))) continue;
        Trace("cdcac") << "Resultant of " << p << " and " << q << " -> "
                       << resultant(p, q) << std::endl;
        addPolynomial(res, resultant(p, q));
      }
      for (const auto& q : i.d_upperPolys)
      {
        if (p == q) continue;
        // Check whether p(s \times a) = 0 for some a >= u
        if (!hasRootAbove(q, get_upper(i.d_interval))) continue;
        Trace("cdcac") << "Resultant of " << p << " and " << q << " -> "
                       << resultant(p, q) << std::endl;
        addPolynomial(res, resultant(p, q));
      }
    }
  }

  for (std::size_t i = 0, n = intervals.size(); i < n - 1; ++i)
  {
    // Add resultants of consecutive intervals.
    cad::makeFinestSquareFreeBasis(intervals[i].d_upperPolys,
                                   intervals[i + 1].d_lowerPolys);
    for (const auto& p : intervals[i].d_upperPolys)
    {
      for (const auto& q : intervals[i + 1].d_lowerPolys)
      {
        Trace("cdcac") << "Resultant of " << p << " and " << q << " -> "
                       << resultant(p, q) << std::endl;
        addPolynomial(res, resultant(p, q));
      }
    }
  }

  removeDuplicates(res);
  makeFinestSquareFreeBasis(res);

  return res;
}

CACInterval CDCAC::intervalFromCharacterization(
    const std::vector<poly::Polynomial>& characterization,
    std::size_t cur_variable,
    const poly::Value& sample)
{
  std::vector<poly::Polynomial> l;
  std::vector<poly::Polynomial> u;
  std::vector<poly::Polynomial> m;
  std::vector<poly::Polynomial> d;

  for (const auto& p : characterization)
  {
    // Add polynomials to either main or down
    if (main_variable(p) == d_variableOrdering[cur_variable])
    {
      m.emplace_back(p);
    }
    else
    {
      d.emplace_back(p);
    }
  }

  // Collect -oo, all roots, oo
  std::vector<poly::Value> roots;
  roots.emplace_back(poly::Value::minus_infty());
  for (const auto& p : m)
  {
    auto tmp = isolate_real_roots(p, d_assignment);
    roots.insert(roots.end(), tmp.begin(), tmp.end());
  }
  roots.emplace_back(poly::Value::plus_infty());
  std::sort(roots.begin(), roots.end());

  // Now find the interval bounds
  poly::Value lower;
  poly::Value upper;
  for (std::size_t i = 0, n = roots.size(); i < n; ++i)
  {
    if (sample < roots[i])
    {
      lower = roots[i - 1];
      upper = roots[i];
      break;
    }
    if (roots[i] == sample)
    {
      lower = sample;
      upper = sample;
      break;
    }
  }
  Assert(!is_none(lower) && !is_none(upper));

  if (!is_minus_infinity(lower))
  {
    // Identify polynomials that have a root at the lower bound
    d_assignment.set(d_variableOrdering[cur_variable], lower);
    for (const auto& p : m)
    {
      if (evaluate_constraint(p, d_assignment, poly::SignCondition::EQ))
      {
        l.emplace_back(p);
      }
    }
    d_assignment.unset(d_variableOrdering[cur_variable]);
  }
  if (!is_plus_infinity(upper))
  {
    // Identify polynomials that have a root at the upper bound
    d_assignment.set(d_variableOrdering[cur_variable], upper);
    for (const auto& p : m)
    {
      if (evaluate_constraint(p, d_assignment, poly::SignCondition::EQ))
      {
        u.emplace_back(p);
      }
    }
    d_assignment.unset(d_variableOrdering[cur_variable]);
  }

  if (lower == upper)
  {
    // construct a point interval
    return CACInterval{
        poly::Interval(lower, false, upper, false), l, u, m, d, {}};
  }
  else
  {
    // construct an open interval
    Assert(lower < upper);
    return CACInterval{
        poly::Interval(lower, true, upper, true), l, u, m, d, {}};
  }
}

std::vector<CACInterval> CDCAC::getUnsatCover(std::size_t cur_variable)
{
  Trace("cdcac") << "Looking for unsat cover for "
                 << d_variableOrdering[cur_variable] << std::endl;
  std::vector<CACInterval> intervals = getUnsatIntervals(cur_variable);

  if (Trace.isOn("cdcac"))
  {
    Trace("cdcac") << "Unsat intervals for " << d_variableOrdering[cur_variable]
                   << ":" << std::endl;
    for (const auto& i : intervals)
    {
      Trace("cdcac") << "-> " << i.d_interval << " from " << i.d_origins
                     << std::endl;
    }
  }
  poly::Value sample;

  while (sampleOutside(intervals, sample))
  {
    if (!checkIntegrality(cur_variable, sample))
    {
      // the variable is integral, but the sample is not.
      Trace("cdcac") << "Used " << sample << " for integer variable "
                     << d_variableOrdering[cur_variable] << std::endl;
      auto new_interval = buildIntegralityInterval(cur_variable, sample);
      Trace("cdcac") << "Adding integrality interval "
                     << new_interval.d_interval << std::endl;
      intervals.emplace_back(new_interval);
      cleanIntervals(intervals);
      continue;
    }
    d_assignment.set(d_variableOrdering[cur_variable], sample);
    Trace("cdcac") << "Sample: " << d_assignment << std::endl;
    if (cur_variable == d_variableOrdering.size() - 1)
    {
      // We have a full assignment. SAT!
      Trace("cdcac") << "Found full assignment: " << d_assignment << std::endl;
      return {};
    }
    // Recurse to next variable
    auto cov = getUnsatCover(cur_variable + 1);
    if (cov.empty())
    {
      // Found SAT!
      Trace("cdcac") << "SAT!" << std::endl;
      return {};
    }
    Trace("cdcac") << "Refuting Sample: " << d_assignment << std::endl;
    auto characterization = constructCharacterization(cov);
    Trace("cdcac") << "Characterization: " << characterization << std::endl;

    d_assignment.unset(d_variableOrdering[cur_variable]);

    auto new_interval =
        intervalFromCharacterization(characterization, cur_variable, sample);
    new_interval.d_origins = collectConstraints(cov);
    intervals.emplace_back(new_interval);

    Trace("cdcac") << "Added " << intervals.back().d_interval << std::endl;
    Trace("cdcac") << "\tlower:   " << intervals.back().d_lowerPolys
                   << std::endl;
    Trace("cdcac") << "\tupper:   " << intervals.back().d_upperPolys
                   << std::endl;
    Trace("cdcac") << "\tmain:    " << intervals.back().d_mainPolys
                   << std::endl;
    Trace("cdcac") << "\tdown:    " << intervals.back().d_downPolys
                   << std::endl;
    Trace("cdcac") << "\torigins: " << intervals.back().d_origins << std::endl;

    // Remove redundant intervals
    cleanIntervals(intervals);
  }

  if (Trace.isOn("cdcac"))
  {
    Trace("cdcac") << "Returning intervals for "
                   << d_variableOrdering[cur_variable] << ":" << std::endl;
    for (const auto& i : intervals)
    {
      Trace("cdcac") << "-> " << i.d_interval << std::endl;
    }
  }
  return intervals;
}

bool CDCAC::checkIntegrality(std::size_t cur_variable, const poly::Value& value)
{
  Node var = d_constraints.varMapper()(d_variableOrdering[cur_variable]);
  if (var.getType() != NodeManager::currentNM()->integerType())
  {
    // variable is not integral
    return true;
  }
  return poly::represents_integer(value);
}

CACInterval CDCAC::buildIntegralityInterval(std::size_t cur_variable,
                                            const poly::Value& value)
{
  poly::Variable var = d_variableOrdering[cur_variable];
  poly::Integer below = poly::floor(value);
  poly::Integer above = poly::ceil(value);
  // construct var \in (below, above)
  return CACInterval{poly::Interval(below, above),
                     {var - below},
                     {var - above},
                     {var - below, var - above},
                     {},
                     {}};
}

bool CDCAC::hasRootAbove(const poly::Polynomial& p,
                         const poly::Value& val) const
{
  auto roots = poly::isolate_real_roots(p, d_assignment);
  return std::any_of(roots.begin(), roots.end(), [&val](const poly::Value& r) {
    return r >= val;
  });
}

bool CDCAC::hasRootBelow(const poly::Polynomial& p,
                         const poly::Value& val) const
{
  auto roots = poly::isolate_real_roots(p, d_assignment);
  return std::any_of(roots.begin(), roots.end(), [&val](const poly::Value& r) {
    return r <= val;
  });
}

}  // namespace cad
}  // namespace nl
}  // namespace arith
}  // namespace theory
}  // namespace CVC4

#endif
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback