summaryrefslogtreecommitdiff
path: root/src/smt/smt_engine.cpp
blob: de41a34a0f339b6b62e8b676f1f59c5bddc4f227 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
/*********************                                                        */
/*! \file smt_engine.cpp
 ** \verbatim
 ** Original author: mdeters
 ** Major contributors: barrett
 ** Minor contributors (to current version): lianah, cconway, taking, kshitij, dejan, ajreynol
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009-2012  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief The main entry point into the CVC4 library's SMT interface
 **
 ** The main entry point into the CVC4 library's SMT interface.
 **/

#include <vector>
#include <string>
#include <iterator>
#include <utility>
#include <sstream>
#include <stack>
#include <cctype>
#include <algorithm>
#include <ext/hash_map>

#include "context/cdlist.h"
#include "context/cdhashset.h"
#include "context/context.h"
#include "decision/decision_engine.h"
#include "decision/decision_mode.h"
#include "decision/options.h"
#include "expr/command.h"
#include "expr/expr.h"
#include "expr/kind.h"
#include "expr/metakind.h"
#include "expr/node_builder.h"
#include "expr/node.h"
#include "expr/node_self_iterator.h"
#include "prop/prop_engine.h"
#include "smt/modal_exception.h"
#include "smt/smt_engine.h"
#include "smt/smt_engine_scope.h"
#include "smt/model_postprocessor.h"
#include "theory/theory_engine.h"
#include "theory/bv/theory_bv_rewriter.h"
#include "proof/proof_manager.h"
#include "util/proof.h"
#include "util/boolean_simplification.h"
#include "util/node_visitor.h"
#include "util/configuration.h"
#include "util/exception.h"
#include "smt/command_list.h"
#include "smt/boolean_terms.h"
#include "smt/options.h"
#include "options/option_exception.h"
#include "util/output.h"
#include "util/hash.h"
#include "theory/substitutions.h"
#include "theory/uf/options.h"
#include "theory/arith/options.h"
#include "theory/theory_traits.h"
#include "theory/logic_info.h"
#include "theory/options.h"
#include "theory/booleans/circuit_propagator.h"
#include "theory/booleans/boolean_term_conversion_mode.h"
#include "theory/booleans/options.h"
#include "util/ite_removal.h"
#include "theory/model.h"
#include "printer/printer.h"
#include "prop/options.h"
#include "theory/arrays/options.h"
#include "util/sort_inference.h"
#include "theory/quantifiers/macros.h"
#include "theory/datatypes/options.h"

using namespace std;
using namespace CVC4;
using namespace CVC4::smt;
using namespace CVC4::prop;
using namespace CVC4::context;
using namespace CVC4::theory;

namespace CVC4 {

namespace smt {

/**
 * Representation of a defined function.  We keep these around in
 * SmtEngine to permit expanding definitions late (and lazily), to
 * support getValue() over defined functions, to support user output
 * in terms of defined functions, etc.
 */
class DefinedFunction {
  Node d_func;
  vector<Node> d_formals;
  Node d_formula;
public:
  DefinedFunction() {}
  DefinedFunction(Node func, vector<Node> formals, Node formula) :
    d_func(func),
    d_formals(formals),
    d_formula(formula) {
  }
  Node getFunction() const { return d_func; }
  vector<Node> getFormals() const { return d_formals; }
  Node getFormula() const { return d_formula; }
};/* class DefinedFunction */

struct SmtEngineStatistics {
  /** time spent in definition-expansion */
  TimerStat d_definitionExpansionTime;
  /** time spent in Boolean term rewriting */
  TimerStat d_rewriteBooleanTermsTime;
  /** time spent in non-clausal simplification */
  TimerStat d_nonclausalSimplificationTime;
  /** time spent in miplib pass */
  TimerStat d_miplibPassTime;
  /** number of assertions removed by miplib pass */
  IntStat d_numMiplibAssertionsRemoved;
  /** number of constant propagations found during nonclausal simp */
  IntStat d_numConstantProps;
  /** time spent in static learning */
  TimerStat d_staticLearningTime;
  /** time spent in simplifying ITEs */
  TimerStat d_simpITETime;
  /** time spent in simplifying ITEs */
  TimerStat d_unconstrainedSimpTime;
  /** time spent removing ITEs */
  TimerStat d_iteRemovalTime;
  /** time spent in theory preprocessing */
  TimerStat d_theoryPreprocessTime;
  /** time spent converting to CNF */
  TimerStat d_cnfConversionTime;
  /** Num of assertions before ite removal */
  IntStat d_numAssertionsPre;
  /** Num of assertions after ite removal */
  IntStat d_numAssertionsPost;
  /** time spent in checkModel() */
  TimerStat d_checkModelTime;
  /** time spent in PropEngine::checkSat() */
  TimerStat d_solveTime;
  /** time spent in pushing/popping */
  TimerStat d_pushPopTime;
  /** time spent in processAssertions() */
  TimerStat d_processAssertionsTime;

  SmtEngineStatistics() :
    d_definitionExpansionTime("smt::SmtEngine::definitionExpansionTime"),
    d_rewriteBooleanTermsTime("smt::SmtEngine::rewriteBooleanTermsTime"),
    d_nonclausalSimplificationTime("smt::SmtEngine::nonclausalSimplificationTime"),
    d_miplibPassTime("smt::SmtEngine::miplibPassTime"),
    d_numMiplibAssertionsRemoved("smt::SmtEngine::numMiplibAssertionsRemoved", 0),
    d_numConstantProps("smt::SmtEngine::numConstantProps", 0),
    d_staticLearningTime("smt::SmtEngine::staticLearningTime"),
    d_simpITETime("smt::SmtEngine::simpITETime"),
    d_unconstrainedSimpTime("smt::SmtEngine::unconstrainedSimpTime"),
    d_iteRemovalTime("smt::SmtEngine::iteRemovalTime"),
    d_theoryPreprocessTime("smt::SmtEngine::theoryPreprocessTime"),
    d_cnfConversionTime("smt::SmtEngine::cnfConversionTime"),
    d_numAssertionsPre("smt::SmtEngine::numAssertionsPreITERemoval", 0),
    d_numAssertionsPost("smt::SmtEngine::numAssertionsPostITERemoval", 0),
    d_checkModelTime("smt::SmtEngine::checkModelTime"),
    d_solveTime("smt::SmtEngine::solveTime"),
    d_pushPopTime("smt::SmtEngine::pushPopTime"),
    d_processAssertionsTime("smt::SmtEngine::processAssertionsTime") {

    StatisticsRegistry::registerStat(&d_definitionExpansionTime);
    StatisticsRegistry::registerStat(&d_rewriteBooleanTermsTime);
    StatisticsRegistry::registerStat(&d_nonclausalSimplificationTime);
    StatisticsRegistry::registerStat(&d_miplibPassTime);
    StatisticsRegistry::registerStat(&d_numMiplibAssertionsRemoved);
    StatisticsRegistry::registerStat(&d_numConstantProps);
    StatisticsRegistry::registerStat(&d_staticLearningTime);
    StatisticsRegistry::registerStat(&d_simpITETime);
    StatisticsRegistry::registerStat(&d_unconstrainedSimpTime);
    StatisticsRegistry::registerStat(&d_iteRemovalTime);
    StatisticsRegistry::registerStat(&d_theoryPreprocessTime);
    StatisticsRegistry::registerStat(&d_cnfConversionTime);
    StatisticsRegistry::registerStat(&d_numAssertionsPre);
    StatisticsRegistry::registerStat(&d_numAssertionsPost);
    StatisticsRegistry::registerStat(&d_checkModelTime);
    StatisticsRegistry::registerStat(&d_solveTime);
    StatisticsRegistry::registerStat(&d_pushPopTime);
    StatisticsRegistry::registerStat(&d_processAssertionsTime);
  }

  ~SmtEngineStatistics() {
    StatisticsRegistry::unregisterStat(&d_definitionExpansionTime);
    StatisticsRegistry::unregisterStat(&d_rewriteBooleanTermsTime);
    StatisticsRegistry::unregisterStat(&d_nonclausalSimplificationTime);
    StatisticsRegistry::unregisterStat(&d_miplibPassTime);
    StatisticsRegistry::unregisterStat(&d_numMiplibAssertionsRemoved);
    StatisticsRegistry::unregisterStat(&d_numConstantProps);
    StatisticsRegistry::unregisterStat(&d_staticLearningTime);
    StatisticsRegistry::unregisterStat(&d_simpITETime);
    StatisticsRegistry::unregisterStat(&d_unconstrainedSimpTime);
    StatisticsRegistry::unregisterStat(&d_iteRemovalTime);
    StatisticsRegistry::unregisterStat(&d_theoryPreprocessTime);
    StatisticsRegistry::unregisterStat(&d_cnfConversionTime);
    StatisticsRegistry::unregisterStat(&d_numAssertionsPre);
    StatisticsRegistry::unregisterStat(&d_numAssertionsPost);
    StatisticsRegistry::unregisterStat(&d_checkModelTime);
    StatisticsRegistry::unregisterStat(&d_solveTime);
    StatisticsRegistry::unregisterStat(&d_pushPopTime);
    StatisticsRegistry::unregisterStat(&d_processAssertionsTime);
  }
};/* struct SmtEngineStatistics */

/**
 * This is an inelegant solution, but for the present, it will work.
 * The point of this is to separate the public and private portions of
 * the SmtEngine class, so that smt_engine.h doesn't
 * include "expr/node.h", which is a private CVC4 header (and can lead
 * to linking errors due to the improper inlining of non-visible symbols
 * into user code!).
 *
 * The "real" solution (that which is usually implemented) is to move
 * ALL the implementation to SmtEnginePrivate and maintain a
 * heap-allocated instance of it in SmtEngine.  SmtEngine (the public
 * one) becomes an "interface shell" which simply acts as a forwarder
 * of method calls.
 */
class SmtEnginePrivate : public NodeManagerListener {
  SmtEngine& d_smt;

  /** The assertions yet to be preprocessed */
  vector<Node> d_assertionsToPreprocess;

  /** Learned literals */
  vector<Node> d_nonClausalLearnedLiterals;

  /** Size of assertions array when preprocessing starts */
  unsigned d_realAssertionsEnd;

  /** The converter for Boolean terms -> BITVECTOR(1). */
  BooleanTermConverter d_booleanTermConverter;

  /** A circuit propagator for non-clausal propositional deduction */
  booleans::CircuitPropagator d_propagator;
  bool d_propagatorNeedsFinish;
  std::vector<Node> d_boolVars;

  /** Assertions to push to sat */
  vector<Node> d_assertionsToCheck;

  /**
   * A context that never pushes/pops, for use by CD structures (like
   * SubstitutionMaps) that should be "global".
   */
  context::Context d_fakeContext;

  /**
   * A map of AbsractValues to their actual constants.  Only used if
   * options::abstractValues() is on.
   */
  SubstitutionMap d_abstractValueMap;

  /**
   * A mapping of all abstract values (actual value |-> abstract) that
   * we've handed out.  This is necessary to ensure that we give the
   * same AbstractValues for the same real constants.  Only used if
   * options::abstractValues() is on.
   */
  hash_map<Node, Node, NodeHashFunction> d_abstractValues;

  /**
   * Function symbol used to implement uninterpreted division-by-zero
   * semantics.  Needed to deal with partial division function ("/").
   */
  Node d_divByZero;

  /**
   * Maps from bit-vector width to divison-by-zero uninterpreted
   * function symbols.
   */
  hash_map<unsigned, Node> d_BVDivByZero;
  hash_map<unsigned, Node> d_BVRemByZero;


  /**
   * Function symbol used to implement uninterpreted
   * int-division-by-zero semantics.  Needed to deal with partial
   * function "div".
   */
  Node d_intDivByZero;

  /**
   * Function symbol used to implement uninterpreted mod-zero
   * semantics.  Needed to deal with partial function "mod".
   */
  Node d_modZero;

  /**
   * Map from skolem variables to index in d_assertionsToCheck containing
   * corresponding introduced Boolean ite
   */
  IteSkolemMap d_iteSkolemMap;

public:

  /** Instance of the ITE remover */
  RemoveITE d_iteRemover;

private:
  /** The top level substitutions */
  SubstitutionMap d_topLevelSubstitutions;

  /**
   * The last substitution that the SAT layer was told about.
   * In incremental settings, substitutions cannot be performed
   * "backward," only forward.  So SAT needs to be told of all
   * substitutions that are going to be done.  This iterator
   * holds the last substitution from d_topLevelSubstitutions
   * that was pushed out to SAT.
   * If d_lastSubstitutionPos == d_topLevelSubstitutions.end(),
   * then nothing has been pushed out yet.
   */
  context::CDO<SubstitutionMap::iterator> d_lastSubstitutionPos;

  static const bool d_doConstantProp = true;

  /**
   * Runs the nonclausal solver and tries to solve all the assigned
   * theory literals.
   *
   * Returns false if the formula simplifies to "false"
   */
  bool nonClausalSimplify();

  /**
   * Performs static learning on the assertions.
   */
  void staticLearning();

  /**
   * Remove ITEs from the assertions.
   */
  void removeITEs();

  /**
   * Helper function to fix up assertion list to restore invariants needed after ite removal
   */
  void collectSkolems(TNode n, set<TNode>& skolemSet, hash_map<Node, bool, NodeHashFunction>& cache);

  /**
   * Helper function to fix up assertion list to restore invariants needed after ite removal
   */
  bool checkForBadSkolems(TNode n, TNode skolem, hash_map<Node, bool, NodeHashFunction>& cache);


  // Simplify ITE structure
  void simpITE();

  // Simplify based on unconstrained values
  void unconstrainedSimp();

  /**
   * Any variable in an assertion that is declared as a subtype type
   * (predicate subtype or integer subrange type) must be constrained
   * to be in that type.
   */
  void constrainSubtypes(TNode n, std::vector<Node>& assertions)
    throw();

  // trace nodes back to their assertions using CircuitPropagator's BackEdgesMap
  void traceBackToAssertions(const std::vector<Node>& nodes, std::vector<TNode>& assertions);
  // remove conjuncts in toRemove from conjunction n; return # of removed conjuncts
  size_t removeFromConjunction(Node& n, const std::hash_set<unsigned>& toRemove);

  // scrub miplib encodings
  void doMiplibTrick();

  /**
   * Perform non-clausal simplification of a Node.  This involves
   * Theory implementations, but does NOT involve the SAT solver in
   * any way.
   *
   * Returns false if the formula simplifies to "false"
   */
  bool simplifyAssertions() throw(TypeCheckingException, LogicException);

public:

  SmtEnginePrivate(SmtEngine& smt) :
    d_smt(smt),
    d_assertionsToPreprocess(),
    d_nonClausalLearnedLiterals(),
    d_realAssertionsEnd(0),
    d_booleanTermConverter(d_smt),
    d_propagator(d_nonClausalLearnedLiterals, true, true),
    d_propagatorNeedsFinish(false),
    d_assertionsToCheck(),
    d_fakeContext(),
    d_abstractValueMap(&d_fakeContext),
    d_abstractValues(),
    d_divByZero(),
    d_intDivByZero(),
    d_modZero(),
    d_iteSkolemMap(),
    d_iteRemover(smt.d_userContext),
    d_topLevelSubstitutions(smt.d_userContext),
    d_lastSubstitutionPos(smt.d_userContext, d_topLevelSubstitutions.end()) {
    d_smt.d_nodeManager->subscribeEvents(this);
  }

  ~SmtEnginePrivate() {
    if(d_propagatorNeedsFinish) {
      d_propagator.finish();
      d_propagatorNeedsFinish = false;
    }
    d_smt.d_nodeManager->unsubscribeEvents(this);
  }

  void nmNotifyNewSort(TypeNode tn) {
    DeclareTypeCommand c(tn.getAttribute(expr::VarNameAttr()),
                         0,
                         tn.toType());
    d_smt.addToModelCommandAndDump(c);
  }

  void nmNotifyNewSortConstructor(TypeNode tn) {
    DeclareTypeCommand c(tn.getAttribute(expr::VarNameAttr()),
                         tn.getAttribute(expr::SortArityAttr()),
                         tn.toType());
    d_smt.addToModelCommandAndDump(c);
  }

  void nmNotifyNewDatatypes(const std::vector<DatatypeType>& dtts) {
    DatatypeDeclarationCommand c(dtts);
    d_smt.addToModelCommandAndDump(c);
  }

  void nmNotifyNewVar(TNode n, bool isGlobal) {
    DeclareFunctionCommand c(n.getAttribute(expr::VarNameAttr()),
                             n.toExpr(),
                             n.getType().toType());
    d_smt.addToModelCommandAndDump(c, isGlobal);
    if(n.getType().isBoolean() && !options::incrementalSolving()) {
      d_boolVars.push_back(n);
    }
  }

  void nmNotifyNewSkolem(TNode n, const std::string& comment, bool isGlobal) {
    string id = n.getAttribute(expr::VarNameAttr());
    DeclareFunctionCommand c(id,
                             n.toExpr(),
                             n.getType().toType());
    if(Dump.isOn("skolems") && comment != "") {
      Dump("skolems") << CommentCommand(id + " is " + comment);
    }
    d_smt.addToModelCommandAndDump(c, isGlobal, false, "skolems");
    if(n.getType().isBoolean() && !options::incrementalSolving()) {
      d_boolVars.push_back(n);
    }
  }

  Node applySubstitutions(TNode node) const {
    return Rewriter::rewrite(d_topLevelSubstitutions.apply(node));
  }

  /**
   * Process the assertions that have been asserted.
   */
  void processAssertions();

  /**
   * Process a user pop.  Clears out the non-context-dependent stuff in this
   * SmtEnginePrivate.  Necessary to clear out our assertion vectors in case
   * someone does a push-assert-pop without a check-sat.
   */
  void notifyPop() {
    d_assertionsToPreprocess.clear();
    d_nonClausalLearnedLiterals.clear();
    d_assertionsToCheck.clear();
    d_realAssertionsEnd = 0;
    d_iteSkolemMap.clear();
  }

  /**
   * Adds a formula to the current context.  Action here depends on
   * the SimplificationMode (in the current Options scope); the
   * formula might be pushed out to the propositional layer
   * immediately, or it might be simplified and kept, or it might not
   * even be simplified.
   */
  void addFormula(TNode n)
    throw(TypeCheckingException, LogicException);

  /**
   * Return the uinterpreted function symbol corresponding to division-by-zero
   * for this particular bit-width
   * @param k should be UREM or UDIV
   * @param width
   *
   * @return
   */
  Node getBVDivByZero(Kind k, unsigned width);

  /**
   * Returns the node modeling the division-by-zero semantics of node n.
   *
   * @param n
   *
   * @return
   */
  Node expandBVDivByZero(TNode n);

  /**
   * Expand definitions in n.
   */
  Node expandDefinitions(TNode n, hash_map<Node, Node, NodeHashFunction>& cache)
    throw(TypeCheckingException, LogicException);

  /**
   * Simplify node "in" by expanding definitions and applying any
   * substitutions learned from preprocessing.
   */
  Node simplify(TNode in) {
    // Substitute out any abstract values in ex.
    // Expand definitions.
    hash_map<Node, Node, NodeHashFunction> cache;
    Node n = expandDefinitions(in, cache).toExpr();
    // Make sure we've done all preprocessing, etc.
    Assert(d_assertionsToCheck.size() == 0 && d_assertionsToPreprocess.size() == 0);
    return applySubstitutions(n).toExpr();
  }

  /**
   * Pre-skolemize quantifiers.
   */
  Node preSkolemizeQuantifiers(Node n, bool polarity, std::vector<Node>& fvs);

  /**
   * Substitute away all AbstractValues in a node.
   */
  Node substituteAbstractValues(TNode n) {
    // We need to do this even if options::abstractValues() is off,
    // since the setting might have changed after we already gave out
    // some abstract values.
    return d_abstractValueMap.apply(n);
  }

  /**
   * Make a new (or return an existing) abstract value for a node.
   * Can only use this if options::abstractValues() is on.
   */
  Node mkAbstractValue(TNode n) {
    Assert(options::abstractValues());
    Node& val = d_abstractValues[n];
    if(val.isNull()) {
      val = d_smt.d_nodeManager->mkAbstractValue(n.getType());
      d_abstractValueMap.addSubstitution(val, n);
    }
    return val;
  }

};/* class SmtEnginePrivate */

}/* namespace CVC4::smt */

SmtEngine::SmtEngine(ExprManager* em) throw() :
  d_context(em->getContext()),
  d_userLevels(),
  d_userContext(new UserContext()),
  d_exprManager(em),
  d_nodeManager(d_exprManager->getNodeManager()),
  d_decisionEngine(NULL),
  d_theoryEngine(NULL),
  d_propEngine(NULL),
  d_definedFunctions(NULL),
  d_assertionList(NULL),
  d_assignments(NULL),
  d_modelGlobalCommands(),
  d_modelCommands(NULL),
  d_dumpCommands(),
  d_logic(),
  d_pendingPops(0),
  d_fullyInited(false),
  d_problemExtended(false),
  d_queryMade(false),
  d_needPostsolve(false),
  d_earlyTheoryPP(true),
  d_timeBudgetCumulative(0),
  d_timeBudgetPerCall(0),
  d_resourceBudgetCumulative(0),
  d_resourceBudgetPerCall(0),
  d_cumulativeTimeUsed(0),
  d_cumulativeResourceUsed(0),
  d_status(),
  d_private(NULL),
  d_statisticsRegistry(NULL),
  d_stats(NULL) {

  SmtScope smts(this);
  d_private = new smt::SmtEnginePrivate(*this);
  d_statisticsRegistry = new StatisticsRegistry();
  d_stats = new SmtEngineStatistics();

  // We have mutual dependency here, so we add the prop engine to the theory
  // engine later (it is non-essential there)
  d_theoryEngine = new TheoryEngine(d_context, d_userContext, d_private->d_iteRemover, const_cast<const LogicInfo&>(d_logic));

  // Add the theories
#ifdef CVC4_FOR_EACH_THEORY_STATEMENT
#undef CVC4_FOR_EACH_THEORY_STATEMENT
#endif
#define CVC4_FOR_EACH_THEORY_STATEMENT(THEORY) \
    d_theoryEngine->addTheory<TheoryTraits<THEORY>::theory_class>(THEORY);
  CVC4_FOR_EACH_THEORY;

  // global push/pop around everything, to ensure proper destruction
  // of context-dependent data structures
  d_userContext->push();
  d_context->push();

  d_definedFunctions = new(true) DefinedFunctionMap(d_userContext);
  d_modelCommands = new(true) smt::CommandList(d_userContext);
}

void SmtEngine::finishInit() {
  d_decisionEngine = new DecisionEngine(d_context, d_userContext);
  d_decisionEngine->init();   // enable appropriate strategies

  d_propEngine = new PropEngine(d_theoryEngine, d_decisionEngine, d_context, d_userContext);

  d_theoryEngine->setPropEngine(d_propEngine);
  d_theoryEngine->setDecisionEngine(d_decisionEngine);
  d_theoryEngine->finishInit();

  // [MGD 10/20/2011] keep around in incremental mode, due to a
  // cleanup ordering issue and Nodes/TNodes.  If SAT is popped
  // first, some user-context-dependent TNodes might still exist
  // with rc == 0.
  if(options::interactive() ||
     options::incrementalSolving()) {
    // In the case of incremental solving, we appear to need these to
    // ensure the relevant Nodes remain live.
    d_assertionList = new(true) AssertionList(d_userContext);
  }

  // dump out a set-logic command
  if(Dump.isOn("benchmark")) {
    // Dump("benchmark") << SetBenchmarkLogicCommand(logic.getLogicString());
    LogicInfo everything;
    everything.lock();
    Dump("benchmark") << CommentCommand("CVC4 always dumps the most general, \"all-supported\" logic (below), as some internals might require the use of a logic more general than the input.")
                      << SetBenchmarkLogicCommand(everything.getLogicString());
  }

  // dump out any pending declaration commands
  for(unsigned i = 0; i < d_dumpCommands.size(); ++i) {
    Dump("declarations") << *d_dumpCommands[i];
    delete d_dumpCommands[i];
  }
  d_dumpCommands.clear();

  if(options::perCallResourceLimit() != 0) {
    setResourceLimit(options::perCallResourceLimit(), false);
  }
  if(options::cumulativeResourceLimit() != 0) {
    setResourceLimit(options::cumulativeResourceLimit(), true);
  }
  if(options::perCallMillisecondLimit() != 0) {
    setTimeLimit(options::perCallMillisecondLimit(), false);
  }
  if(options::cumulativeMillisecondLimit() != 0) {
    setTimeLimit(options::cumulativeMillisecondLimit(), true);
  }
}

void SmtEngine::finalOptionsAreSet() {
  if(d_fullyInited) {
    return;
  }

  if(options::checkModels()) {
    if(! options::produceModels()) {
      Notice() << "SmtEngine: turning on produce-models to support check-model" << endl;
      setOption("produce-models", SExpr("true"));
    }
    if(! options::interactive()) {
      Notice() << "SmtEngine: turning on interactive-mode to support check-model" << endl;
      setOption("interactive-mode", SExpr("true"));
    }
  }

  if(options::produceAssignments() && !options::produceModels()) {
    Notice() << "SmtEngine: turning on produce-models to support produce-assignments" << endl;
    setOption("produce-models", SExpr("true"));
  }

  if(! d_logic.isLocked()) {
    // ensure that our heuristics are properly set up
    setLogicInternal();
  }

  // finish initialization, create the prop engine, etc.
  finishInit();

  AlwaysAssert( d_propEngine->getAssertionLevel() == 0,
                "The PropEngine has pushed but the SmtEngine "
                "hasn't finished initializing!" );

  d_fullyInited = true;
  Assert(d_logic.isLocked());

  d_propEngine->assertFormula(NodeManager::currentNM()->mkConst<bool>(true));
  d_propEngine->assertFormula(NodeManager::currentNM()->mkConst<bool>(false).notNode());
}

void SmtEngine::shutdown() {
  doPendingPops();

  while(options::incrementalSolving() && d_userContext->getLevel() > 1) {
    internalPop(true);
  }

  // check to see if a postsolve() is pending
  if(d_needPostsolve) {
    d_theoryEngine->postsolve();
    d_needPostsolve = false;
  }

  if(d_propEngine != NULL) {
    d_propEngine->shutdown();
  }
  if(d_theoryEngine != NULL) {
    d_theoryEngine->shutdown();
  }
  if(d_decisionEngine != NULL) {
    d_decisionEngine->shutdown();
  }
}

SmtEngine::~SmtEngine() throw() {
  SmtScope smts(this);

  try {
    shutdown();

    // global push/pop around everything, to ensure proper destruction
    // of context-dependent data structures
    d_context->pop();
    d_userContext->pop();

    if(d_assignments != NULL) {
      d_assignments->deleteSelf();
    }

    if(d_assertionList != NULL) {
      d_assertionList->deleteSelf();
    }

    for(unsigned i = 0; i < d_dumpCommands.size(); ++i) {
      delete d_dumpCommands[i];
    }
    d_dumpCommands.clear();

    if(d_modelCommands != NULL) {
      d_modelCommands->deleteSelf();
    }

    d_definedFunctions->deleteSelf();

    delete d_stats;

    delete d_private;

    delete d_theoryEngine;
    delete d_propEngine;
    delete d_decisionEngine;

    delete d_userContext;

    delete d_statisticsRegistry;

  } catch(Exception& e) {
    Warning() << "CVC4 threw an exception during cleanup." << endl
              << e << endl;
  }
}

void SmtEngine::setLogic(const LogicInfo& logic) throw(ModalException) {
  SmtScope smts(this);

  d_logic = logic;
  setLogicInternal();
}

void SmtEngine::setLogic(const std::string& s) throw(ModalException) {
  SmtScope smts(this);

  setLogic(LogicInfo(s));
}

void SmtEngine::setLogic(const char* logic) throw(ModalException){
  SmtScope smts(this);

  setLogic(LogicInfo(string(logic)));
}

LogicInfo SmtEngine::getLogicInfo() const {
  return d_logic;
}

// This function is called when d_logic has just been changed.
// The LogicInfo isn't passed in explicitly, because that might
// tempt people in the code to use the (potentially unlocked)
// version that's passed in, leading to assert-fails in certain
// uses of the CVC4 library.
void SmtEngine::setLogicInternal() throw() {
  Assert(!d_fullyInited, "setting logic in SmtEngine but the engine has already finished initializing for this run");

  d_logic.lock();

  // may need to force uninterpreted functions to be on for non-linear
  if(((d_logic.isTheoryEnabled(THEORY_ARITH) && !d_logic.isLinear()) ||
      d_logic.isTheoryEnabled(THEORY_BV)) &&
     !d_logic.isTheoryEnabled(THEORY_UF)){
    d_logic = d_logic.getUnlockedCopy();
    d_logic.enableTheory(THEORY_UF);
    d_logic.lock();
  }

  // Set the options for the theoryOf
  if(!options::theoryOfMode.wasSetByUser()) {
    if(d_logic.isSharingEnabled() && !d_logic.isTheoryEnabled(THEORY_BV)) {
      Theory::setTheoryOfMode(THEORY_OF_TERM_BASED);
    } else {
      Theory::setTheoryOfMode(THEORY_OF_TYPE_BASED);
    }
  } else {
    Theory::setTheoryOfMode(options::theoryOfMode());
  }

  // by default, symmetry breaker is on only for QF_UF
  if(! options::ufSymmetryBreaker.wasSetByUser()) {
    bool qf_uf = d_logic.isPure(THEORY_UF) && !d_logic.isQuantified();
    Trace("smt") << "setting uf symmetry breaker to " << qf_uf << endl;
    options::ufSymmetryBreaker.set(qf_uf);
  }
  // by default, nonclausal simplification is off for QF_SAT and for quantifiers
  if(! options::simplificationMode.wasSetByUser()) {
    bool qf_sat = d_logic.isPure(THEORY_BOOL) && !d_logic.isQuantified();
    bool quantifiers = d_logic.isQuantified();
    Trace("smt") << "setting simplification mode to <" << d_logic.getLogicString() << "> " << (!qf_sat && !quantifiers) << endl;
    //simplification=none works better for SMT LIB benchmarks with quantifiers, not others
    //options::simplificationMode.set(qf_sat || quantifiers ? SIMPLIFICATION_MODE_NONE : SIMPLIFICATION_MODE_BATCH);
    options::simplificationMode.set(qf_sat ? SIMPLIFICATION_MODE_NONE : SIMPLIFICATION_MODE_BATCH);
  }

  // If in arrays, set the UF handler to arrays
  if(d_logic.isTheoryEnabled(THEORY_ARRAY) && !d_logic.isQuantified()) {
    Theory::setUninterpretedSortOwner(THEORY_ARRAY);
  } else {
    Theory::setUninterpretedSortOwner(THEORY_UF);
  }
  // Turn on ite simplification for QF_LIA and QF_AUFBV
  if(! options::doITESimp.wasSetByUser()) {
    bool iteSimp = !d_logic.isQuantified() &&
      ((d_logic.isPure(THEORY_ARITH) && d_logic.isLinear() && !d_logic.isDifferenceLogic() &&  !d_logic.areRealsUsed()) ||
       (d_logic.isTheoryEnabled(THEORY_ARRAY) && d_logic.isTheoryEnabled(THEORY_UF) && d_logic.isTheoryEnabled(THEORY_BV)));
    Trace("smt") << "setting ite simplification to " << iteSimp << endl;
    options::doITESimp.set(iteSimp);
  }
  // Turn off array eager index splitting for QF_AUFLIA
  if(! options::arraysEagerIndexSplitting.wasSetByUser()) {
    if (not d_logic.isQuantified() &&
        d_logic.isTheoryEnabled(THEORY_ARRAY) &&
        d_logic.isTheoryEnabled(THEORY_UF) &&
        d_logic.isTheoryEnabled(THEORY_ARITH)) {
      Trace("smt") << "setting array eager index splitting to false" << endl;
      options::arraysEagerIndexSplitting.set(false);
    }
  }
  // Turn on model-based arrays for QF_AX (unless models are enabled)
  if(! options::arraysModelBased.wasSetByUser()) {
    if (not d_logic.isQuantified() &&
        d_logic.isTheoryEnabled(THEORY_ARRAY) &&
        d_logic.isPure(THEORY_ARRAY) &&
        !options::produceModels() &&
        !options::checkModels()) {
      Trace("smt") << "turning on model-based array solver" << endl;
      options::arraysModelBased.set(true);
    }
  }
  // Turn on multiple-pass non-clausal simplification for QF_AUFBV
  if(! options::repeatSimp.wasSetByUser()) {
    bool repeatSimp = !d_logic.isQuantified() &&
      (d_logic.isTheoryEnabled(THEORY_ARRAY) && d_logic.isTheoryEnabled(THEORY_UF) && d_logic.isTheoryEnabled(THEORY_BV));
    Trace("smt") << "setting repeat simplification to " << repeatSimp << endl;
    options::repeatSimp.set(repeatSimp);
  }
  // Turn on unconstrained simplification for QF_AUFBV
  if(! options::unconstrainedSimp.wasSetByUser() || options::incrementalSolving()) {
    //    bool qf_sat = d_logic.isPure(THEORY_BOOL) && !d_logic.isQuantified();
    //    bool uncSimp = false && !qf_sat && !options::incrementalSolving();
    bool uncSimp = !options::incrementalSolving() && !d_logic.isQuantified() && !options::produceModels() && !options::checkModels() &&
      (d_logic.isTheoryEnabled(THEORY_ARRAY) && d_logic.isTheoryEnabled(THEORY_BV));
    Trace("smt") << "setting unconstrained simplification to " << uncSimp << endl;
    options::unconstrainedSimp.set(uncSimp);
  }
  // Unconstrained simp currently does *not* support model generation
  if (options::unconstrainedSimp.wasSetByUser() && options::unconstrainedSimp()) {
    if (options::produceModels()) {
      Notice() << "SmtEngine: turning off produce-models to support unconstrainedSimp" << endl;
      setOption("produce-models", SExpr("false"));
    }
    if (options::checkModels()) {
      Notice() << "SmtEngine: turning off check-models to support unconstrainedSimp" << endl;
      setOption("check-models", SExpr("false"));
    }
  }
  // Turn on arith rewrite equalities only for pure arithmetic
  if(! options::arithRewriteEq.wasSetByUser()) {
    bool arithRewriteEq = d_logic.isPure(THEORY_ARITH) && !d_logic.isQuantified();
    Trace("smt") << "setting arith rewrite equalities " << arithRewriteEq << endl;
    options::arithRewriteEq.set(arithRewriteEq);
  }
  if(!  options::arithHeuristicPivots.wasSetByUser()) {
    int16_t heuristicPivots = 5;
    if(d_logic.isPure(THEORY_ARITH) && !d_logic.isQuantified()) {
      if(d_logic.isDifferenceLogic()) {
        heuristicPivots = -1;
      } else if(!d_logic.areIntegersUsed()) {
        heuristicPivots = 0;
      }
    }
    Trace("smt") << "setting arithHeuristicPivots  " << heuristicPivots << endl;
    options::arithHeuristicPivots.set(heuristicPivots);
  }
  if(! options::arithPivotThreshold.wasSetByUser()){
    uint16_t pivotThreshold = 2;
    if(d_logic.isPure(THEORY_ARITH) && !d_logic.isQuantified()){
      if(d_logic.isDifferenceLogic()){
        pivotThreshold = 16;
      }
    }
    Trace("smt") << "setting arith arithPivotThreshold  " << pivotThreshold << endl;
    options::arithPivotThreshold.set(pivotThreshold);
  }
  if(! options::arithStandardCheckVarOrderPivots.wasSetByUser()){
    int16_t varOrderPivots = -1;
    if(d_logic.isPure(THEORY_ARITH) && !d_logic.isQuantified()){
      varOrderPivots = 200;
    }
    Trace("smt") << "setting arithStandardCheckVarOrderPivots  " << varOrderPivots << endl;
    options::arithStandardCheckVarOrderPivots.set(varOrderPivots);
  }
  // Turn off early theory preprocessing if arithRewriteEq is on
  if (options::arithRewriteEq()) {
    d_earlyTheoryPP = false;
  }
  // Turn on justification heuristic of the decision engine for QF_BV and QF_AUFBV
  // and also use it in stop-only mode for QF_AUFLIA, QF_LRA and Quantifiers
  // BUT use neither in ALL_SUPPORTED mode (since it doesn't yet work well
  // with incrementality)
  if(!options::decisionMode.wasSetByUser()) {
    decision::DecisionMode decMode =
      // ALL_SUPPORTED
      d_logic.hasEverything() ? decision::DECISION_STRATEGY_INTERNAL :
      ( // QF_BV
        (not d_logic.isQuantified() &&
          d_logic.isPure(THEORY_BV)
          ) ||
        // QF_AUFBV or QF_ABV or QF_UFBV
        (not d_logic.isQuantified() &&
         (d_logic.isTheoryEnabled(THEORY_ARRAY) ||
          d_logic.isTheoryEnabled(THEORY_UF)) &&
         d_logic.isTheoryEnabled(THEORY_BV)
         ) ||
        // QF_AUFLIA (and may be ends up enabling QF_AUFLRA?)
        (not d_logic.isQuantified() &&
         d_logic.isTheoryEnabled(THEORY_ARRAY) &&
         d_logic.isTheoryEnabled(THEORY_UF) &&
         d_logic.isTheoryEnabled(THEORY_ARITH)
         ) ||
        // QF_LRA
        (not d_logic.isQuantified() &&
         d_logic.isPure(THEORY_ARITH) && d_logic.isLinear() && !d_logic.isDifferenceLogic() &&  !d_logic.areIntegersUsed()
         ) ||
        // Quantifiers
        d_logic.isQuantified()
        ? decision::DECISION_STRATEGY_JUSTIFICATION
        : decision::DECISION_STRATEGY_INTERNAL
      );

    bool stoponly =
      // ALL_SUPPORTED
      d_logic.hasEverything() ? false :
      ( // QF_AUFLIA
        (not d_logic.isQuantified() &&
         d_logic.isTheoryEnabled(THEORY_ARRAY) &&
         d_logic.isTheoryEnabled(THEORY_UF) &&
         d_logic.isTheoryEnabled(THEORY_ARITH)
         ) ||
        // QF_LRA
        (not d_logic.isQuantified() &&
         d_logic.isPure(THEORY_ARITH) && d_logic.isLinear() && !d_logic.isDifferenceLogic() &&  !d_logic.areIntegersUsed()
         ) ||
        // Quantifiers
        d_logic.isQuantified()
        ? true : false
      );

    Trace("smt") << "setting decision mode to " << decMode << endl;
    options::decisionMode.set(decMode);
    options::decisionStopOnly.set(stoponly);
  }

  //for finite model finding
  if( ! options::instWhenMode.wasSetByUser()){
    if( options::fmfInstEngine() ){
      Trace("smt") << "setting inst when mode to LAST_CALL" << endl;
      options::instWhenMode.set( INST_WHEN_LAST_CALL );
    }
  }

  //until bugs 371,431 are fixed
  if( ! options::minisatUseElim.wasSetByUser()){
    if( d_logic.isQuantified() || options::produceModels() || options::checkModels() ){
      options::minisatUseElim.set( false );
    }
  }
  else if (options::minisatUseElim()) {
    if (options::produceModels()) {
      Notice() << "SmtEngine: turning off produce-models to support minisatUseElim" << endl;
      setOption("produce-models", SExpr("false"));
    }
    if (options::checkModels()) {
      Notice() << "SmtEngine: turning off check-models to support minisatUseElim" << endl;
      setOption("check-models", SExpr("false"));
    }
  }

  // For now, these array theory optimizations do not support model-building
  if (options::produceModels() || options::checkModels()) {
    options::arraysOptimizeLinear.set(false);
    options::arraysLazyRIntro1.set(false);
  }

  // Non-linear arithmetic does not support models
  if (d_logic.isTheoryEnabled(THEORY_ARITH) &&
      !d_logic.isLinear()) {
    if (options::produceModels()) {
      Warning() << "SmtEngine: turning off produce-models because unsupported for nonlinear arith" << endl;
      setOption("produce-models", SExpr("false"));
    }
    if (options::checkModels()) {
      Warning() << "SmtEngine: turning off check-models because unsupported for nonlinear arith" << endl;
      setOption("check-models", SExpr("false"));
    }
  }

  // datatypes theory should assign values to all datatypes terms if logic is quantified
  if (d_logic.isQuantified() && d_logic.isTheoryEnabled(THEORY_DATATYPES)) {
    if( !options::dtForceAssignment.wasSetByUser() ){
      options::dtForceAssignment.set(true);
    }
  }
}

void SmtEngine::setInfo(const std::string& key, const CVC4::SExpr& value)
  throw(OptionException, ModalException) {

  SmtScope smts(this);

  Trace("smt") << "SMT setInfo(" << key << ", " << value << ")" << endl;
  if(Dump.isOn("benchmark")) {
    if(key == "status") {
      string s = value.getValue();
      BenchmarkStatus status =
        (s == "sat") ? SMT_SATISFIABLE :
          ((s == "unsat") ? SMT_UNSATISFIABLE : SMT_UNKNOWN);
      Dump("benchmark") << SetBenchmarkStatusCommand(status);
    } else {
      Dump("benchmark") << SetInfoCommand(key, value);
    }
  }

  // Check for CVC4-specific info keys (prefixed with "cvc4-" or "cvc4_")
  if(key.length() > 5) {
    string prefix = key.substr(0, 5);
    if(prefix == "cvc4-" || prefix == "cvc4_") {
      string cvc4key = key.substr(5);
      if(cvc4key == "logic") {
        if(! value.isAtom()) {
          throw OptionException("argument to (set-info :cvc4-logic ..) must be a string");
        }
        SmtScope smts(this);
        d_logic = value.getValue();
        setLogicInternal();
        return;
      } else {
        throw UnrecognizedOptionException();
      }
    }
  }

  // Check for standard info keys (SMT-LIB v1, SMT-LIB v2, ...)
  if(key == "name" ||
     key == "source" ||
     key == "category" ||
     key == "difficulty" ||
     key == "notes") {
    // ignore these
    return;
  } else if(key == "smt-lib-version") {
    if( (value.isInteger() && value.getIntegerValue() == Integer(2)) ||
        (value.isRational() && value.getRationalValue() == Rational(2)) ||
        (value.getValue() == "2") ) {
      // supported SMT-LIB version
      return;
    }
    Warning() << "Warning: unsupported smt-lib-version: " << value << endl;
    throw UnrecognizedOptionException();
  } else if(key == "status") {
    string s;
    if(value.isAtom()) {
      s = value.getValue();
    }
    if(s != "sat" && s != "unsat" && s != "unknown") {
      throw OptionException("argument to (set-info :status ..) must be "
                            "`sat' or `unsat' or `unknown'");
    }
    d_status = Result(s);
    return;
  }
  throw UnrecognizedOptionException();
}

CVC4::SExpr SmtEngine::getInfo(const std::string& key) const
  throw(OptionException, ModalException) {

  SmtScope smts(this);

  Trace("smt") << "SMT getInfo(" << key << ")" << endl;
  if(key == "all-statistics") {
    vector<SExpr> stats;
    for(StatisticsRegistry::const_iterator i = NodeManager::fromExprManager(d_exprManager)->getStatisticsRegistry()->begin();
        i != NodeManager::fromExprManager(d_exprManager)->getStatisticsRegistry()->end();
        ++i) {
      vector<SExpr> v;
      v.push_back((*i).first);
      v.push_back((*i).second);
      stats.push_back(v);
    }
    for(StatisticsRegistry::const_iterator i = d_statisticsRegistry->begin();
        i != d_statisticsRegistry->end();
        ++i) {
      vector<SExpr> v;
      v.push_back((*i).first);
      v.push_back((*i).second);
      stats.push_back(v);
    }
    return stats;
  } else if(key == "error-behavior") {
    // immediate-exit | continued-execution
    return SExpr::Keyword("immediate-exit");
  } else if(key == "name") {
    return Configuration::getName();
  } else if(key == "version") {
    return Configuration::getVersionString();
  } else if(key == "authors") {
    return Configuration::about();
  } else if(key == "status") {
    // sat | unsat | unknown
    switch(d_status.asSatisfiabilityResult().isSat()) {
    case Result::SAT:
      return SExpr::Keyword("sat");
    case Result::UNSAT:
      return SExpr::Keyword("unsat");
    default:
      return SExpr::Keyword("unknown");
    }
  } else if(key == "reason-unknown") {
    if(!d_status.isNull() && d_status.isUnknown()) {
      stringstream ss;
      ss << d_status.whyUnknown();
      string s = ss.str();
      transform(s.begin(), s.end(), s.begin(), ::tolower);
      return SExpr::Keyword(s);
    } else {
      throw ModalException("Can't get-info :reason-unknown when the "
                           "last result wasn't unknown!");
    }
  } else {
    throw UnrecognizedOptionException();
  }
}

void SmtEngine::defineFunction(Expr func,
                               const std::vector<Expr>& formals,
                               Expr formula) {
  Trace("smt") << "SMT defineFunction(" << func << ")" << endl;
  for(std::vector<Expr>::const_iterator i = formals.begin(); i != formals.end(); ++i) {
    if((*i).getKind() != kind::BOUND_VARIABLE) {
      stringstream ss;
      ss << "All formal arguments to defined functions must be BOUND_VARIABLEs, but in the\n"
         << "definition of function " << func << ", formal\n"
         << "  " << *i << "\n"
         << "has kind " << (*i).getKind();
      throw TypeCheckingException(func, ss.str());
    }
  }
  if(Dump.isOn("declarations")) {
    stringstream ss;
    ss << Expr::setlanguage(Expr::setlanguage::getLanguage(Dump.getStream()))
       << func;
    Dump("declarations") << DefineFunctionCommand(ss.str(), func, formals, formula);
  }
  SmtScope smts(this);

  // Substitute out any abstract values in formula
  Expr form = d_private->substituteAbstractValues(Node::fromExpr(formula)).toExpr();

  // type check body
  Type formulaType = form.getType(options::typeChecking());

  Type funcType = func.getType();
  // We distinguish here between definitions of constants and functions,
  // because the type checking for them is subtly different.  Perhaps we
  // should instead have SmtEngine::defineFunction() and
  // SmtEngine::defineConstant() for better clarity, although then that
  // doesn't match the SMT-LIBv2 standard...
  if(formals.size() > 0) {
    Type rangeType = FunctionType(funcType).getRangeType();
    if(! formulaType.isComparableTo(rangeType)) {
      stringstream ss;
      ss << "Type of defined function does not match its declaration\n"
         << "The function  : " << func << "\n"
         << "Declared type : " << rangeType << "\n"
         << "The body      : " << formula << "\n"
         << "Body type     : " << formulaType;
      throw TypeCheckingException(func, ss.str());
    }
  } else {
    if(! formulaType.isComparableTo(funcType)) {
      stringstream ss;
      ss << "Declared type of defined constant does not match its definition\n"
         << "The constant   : " << func << "\n"
         << "Declared type  : " << funcType << "\n"
         << "The definition : " << formula << "\n"
         << "Definition type: " << formulaType;
      throw TypeCheckingException(func, ss.str());
    }
  }
  TNode funcNode = func.getTNode();
  vector<Node> formalsNodes;
  for(vector<Expr>::const_iterator i = formals.begin(),
        iend = formals.end();
      i != iend;
      ++i) {
    formalsNodes.push_back((*i).getNode());
  }
  TNode formNode = form.getTNode();
  DefinedFunction def(funcNode, formalsNodes, formNode);
  // Permit (check-sat) (define-fun ...) (get-value ...) sequences.
  // Otherwise, (check-sat) (get-value ((! foo :named bar))) breaks
  // d_haveAdditions = true;
  Debug("smt") << "definedFunctions insert " << funcNode << " " << formNode << endl;
  d_definedFunctions->insert(funcNode, def);
}


Node SmtEnginePrivate::getBVDivByZero(Kind k, unsigned width) {
  NodeManager* nm = d_smt.d_nodeManager;
  if (k == kind::BITVECTOR_UDIV) {
    if (d_BVDivByZero.find(width) == d_BVDivByZero.end()) {
      // lazily create the function symbols
      ostringstream os;
      os << "BVUDivByZero_" << width;
      Node divByZero = nm->mkSkolem(os.str(),
                                    nm->mkFunctionType(nm->mkBitVectorType(width), nm->mkBitVectorType(width)),
                                    "partial bvudiv", NodeManager::SKOLEM_EXACT_NAME);
      d_BVDivByZero[width] = divByZero;
    }
    return d_BVDivByZero[width];
  }
  else if (k == kind::BITVECTOR_UREM) {
    if (d_BVRemByZero.find(width) == d_BVRemByZero.end()) {
      ostringstream os;
      os << "BVURemByZero_" << width;
      Node divByZero = nm->mkSkolem(os.str(),
                                    nm->mkFunctionType(nm->mkBitVectorType(width), nm->mkBitVectorType(width)),
                                    "partial bvurem", NodeManager::SKOLEM_EXACT_NAME);
      d_BVRemByZero[width] = divByZero;
    }
    return d_BVRemByZero[width];
  }

  Unreachable();
}


Node SmtEnginePrivate::expandBVDivByZero(TNode n) {
  // we only deal wioth the unsigned division operators as the signed ones should have been
  // expanded in terms of the unsigned operators
  NodeManager* nm = d_smt.d_nodeManager;
  unsigned width = n.getType().getBitVectorSize();
  Node divByZero = getBVDivByZero(n.getKind(), width);
  TNode num = n[0], den = n[1];
  Node den_eq_0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(BitVector(width, Integer(0))));
  Node divByZeroNum = nm->mkNode(kind::APPLY_UF, divByZero, num);
  Node divTotalNumDen = nm->mkNode(n.getKind() == kind::BITVECTOR_UDIV ? kind::BITVECTOR_UDIV_TOTAL :
                                   kind::BITVECTOR_UREM_TOTAL, num, den);
  Node node = nm->mkNode(kind::ITE, den_eq_0, divByZeroNum, divTotalNumDen);
  return node;
}


Node SmtEnginePrivate::expandDefinitions(TNode n, hash_map<Node, Node, NodeHashFunction>& cache)
  throw(TypeCheckingException, LogicException) {

  Kind k = n.getKind();

  if(k != kind::APPLY && n.getNumChildren() == 0) {
    SmtEngine::DefinedFunctionMap::const_iterator i = d_smt.d_definedFunctions->find(n);
    if(i != d_smt.d_definedFunctions->end()) {
      // replacement must be closed
      if((*i).second.getFormals().size() > 0) {
        return d_smt.d_nodeManager->mkNode(kind::LAMBDA, d_smt.d_nodeManager->mkNode(kind::BOUND_VAR_LIST, (*i).second.getFormals()), (*i).second.getFormula());
      }
      // don't bother putting in the cache
      return (*i).second.getFormula();
    }
    // don't bother putting in the cache
    return n;
  }

  // maybe it's in the cache
  hash_map<Node, Node, NodeHashFunction>::iterator cacheHit = cache.find(n);
  if(cacheHit != cache.end()) {
    TNode ret = (*cacheHit).second;
    return ret.isNull() ? n : ret;
  }

  // otherwise expand it

  Node node = n;
  NodeManager* nm = d_smt.d_nodeManager;
  // FIXME: this theory specific code should be factored out of the SmtEngine, somehow
  switch(k) {
  case kind::BITVECTOR_SDIV:
  case kind::BITVECTOR_SREM:
  case kind::BITVECTOR_SMOD: {
    node = bv::TheoryBVRewriter::eliminateBVSDiv(node);
    break;
  }

  case kind::BITVECTOR_UDIV:
  case kind::BITVECTOR_UREM: {
    node = expandBVDivByZero(node);
    break;
  }
  case kind::DIVISION: {
    // partial function: division
    if(d_smt.d_logic.isLinear()) {
      node = n;
      break;
    }
    if(d_divByZero.isNull()) {
      d_divByZero = nm->mkSkolem("divByZero", nm->mkFunctionType(nm->realType(), nm->realType()),
                                 "partial real division", NodeManager::SKOLEM_EXACT_NAME);
    }
    TNode num = n[0], den = n[1];
    Node den_eq_0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
    Node divByZeroNum = nm->mkNode(kind::APPLY_UF, d_divByZero, num);
    Node divTotalNumDen = nm->mkNode(kind::DIVISION_TOTAL, num, den);
    node = nm->mkNode(kind::ITE, den_eq_0, divByZeroNum, divTotalNumDen);
    break;
  }

  case kind::INTS_DIVISION: {
    // partial function: integer div
    if(d_smt.d_logic.isLinear()) {
      node = n;
      break;
    }
    if(d_intDivByZero.isNull()) {
      d_intDivByZero = nm->mkSkolem("intDivByZero", nm->mkFunctionType(nm->integerType(), nm->integerType()),
                                    "partial integer division", NodeManager::SKOLEM_EXACT_NAME);
    }
    TNode num = n[0], den = n[1];
    Node den_eq_0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
    Node intDivByZeroNum = nm->mkNode(kind::APPLY_UF, d_intDivByZero, num);
    Node intDivTotalNumDen = nm->mkNode(kind::INTS_DIVISION_TOTAL, num, den);
    node = nm->mkNode(kind::ITE, den_eq_0, intDivByZeroNum, intDivTotalNumDen);
    break;
  }

  case kind::INTS_MODULUS: {
    // partial function: mod
    if(d_smt.d_logic.isLinear()) {
      node = n;
      break;
    }
    if(d_modZero.isNull()) {
      d_modZero = nm->mkSkolem("modZero", nm->mkFunctionType(nm->integerType(), nm->integerType()),
                               "partial modulus", NodeManager::SKOLEM_EXACT_NAME);
    }
    TNode num = n[0], den = n[1];
    Node den_eq_0 = nm->mkNode(kind::EQUAL, den, nm->mkConst(Rational(0)));
    Node modZeroNum = nm->mkNode(kind::APPLY_UF, d_modZero, num);
    Node modTotalNumDen = nm->mkNode(kind::INTS_MODULUS_TOTAL, num, den);
    node = nm->mkNode(kind::ITE, den_eq_0, modZeroNum, modTotalNumDen);
    break;
  }

  case kind::APPLY: {
    // application of a user-defined symbol
    TNode func = n.getOperator();
    SmtEngine::DefinedFunctionMap::const_iterator i =
      d_smt.d_definedFunctions->find(func);
    DefinedFunction def = (*i).second;
    vector<Node> formals = def.getFormals();

    if(Debug.isOn("expand")) {
      Debug("expand") << "found: " << n << endl;
      Debug("expand") << " func: " << func << endl;
      string name = func.getAttribute(expr::VarNameAttr());
      Debug("expand") << "     : \"" << name << "\"" << endl;
    }
    if(i == d_smt.d_definedFunctions->end()) {
      throw TypeCheckingException(n.toExpr(), string("Undefined function: `") + func.toString() + "'");
    }
    if(Debug.isOn("expand")) {
      Debug("expand") << " defn: " << def.getFunction() << endl
                      << "       [";
      if(formals.size() > 0) {
        copy( formals.begin(), formals.end() - 1,
              ostream_iterator<Node>(Debug("expand"), ", ") );
        Debug("expand") << formals.back();
      }
      Debug("expand") << "]" << endl
                      << "       " << def.getFunction().getType() << endl
                      << "       " << def.getFormula() << endl;
    }

    TNode fm = def.getFormula();
    Node instance = fm.substitute(formals.begin(), formals.end(),
                                  n.begin(), n.end());
    Debug("expand") << "made : " << instance << endl;

    Node expanded = expandDefinitions(instance, cache);
    cache[n] = (n == expanded ? Node::null() : expanded);
    return expanded;
  }

  default:
    // unknown kind for expansion, just iterate over the children
    node = n;
  }

  // there should be children here, otherwise we short-circuited a return, above
  Assert(node.getNumChildren() > 0);

  // the partial functions can fall through, in which case we still
  // consider their children
  Debug("expand") << "cons : " << node << endl;
  NodeBuilder<> nb(node.getKind());
  if(node.getMetaKind() == kind::metakind::PARAMETERIZED) {
    Debug("expand") << "op   : " << node.getOperator() << endl;
    nb << node.getOperator();
  }
  for(Node::iterator i = node.begin(),
        iend = node.end();
      i != iend;
      ++i) {
    Node expanded = expandDefinitions(*i, cache);
    Debug("expand") << "exchld: " << expanded << endl;
    nb << expanded;
  }
  node = nb;
  cache[n] = n == node ? Node::null() : node;
  return node;
}


struct ContainsQuantAttributeId {};
typedef expr::Attribute<ContainsQuantAttributeId, uint64_t> ContainsQuantAttribute;

// check if the given node contains a universal quantifier
static bool containsQuantifiers(Node n) {
  if( n.hasAttribute(ContainsQuantAttribute()) ){
    return n.getAttribute(ContainsQuantAttribute())==1;
  } else if(n.getKind() == kind::FORALL) {
    return true;
  } else {
    bool cq = false;
    for( unsigned i = 0; i < n.getNumChildren(); ++i ){
      if( containsQuantifiers(n[i]) ){
        cq = true;
        break;
      }
    }
    ContainsQuantAttribute cqa;
    n.setAttribute(cqa, cq ? 1 : 0);
    return cq;
  }
}

Node SmtEnginePrivate::preSkolemizeQuantifiers( Node n, bool polarity, std::vector< Node >& fvs ){
  Trace("pre-sk") << "Pre-skolem " << n << " " << polarity << " " << fvs.size() << endl;
  if( n.getKind()==kind::NOT ){
    Node nn = preSkolemizeQuantifiers( n[0], !polarity, fvs );
    return nn.negate();
  }else if( n.getKind()==kind::FORALL ){
    if( polarity ){
      vector< Node > children;
      children.push_back( n[0] );
      //add children to current scope
      vector< Node > fvss;
      fvss.insert( fvss.begin(), fvs.begin(), fvs.end() );
      for( int i=0; i<(int)n[0].getNumChildren(); i++ ){
        fvss.push_back( n[0][i] );
      }
      //process body
      children.push_back( preSkolemizeQuantifiers( n[1], polarity, fvss ) );
      if( n.getNumChildren()==3 ){
        children.push_back( n[2] );
      }
      //return processed quantifier
      return NodeManager::currentNM()->mkNode( kind::FORALL, children );
    }else{
      //process body
      Node nn = preSkolemizeQuantifiers( n[1], polarity, fvs );
      //now, substitute skolems for the variables
      vector< TypeNode > argTypes;
      for( int i=0; i<(int)fvs.size(); i++ ){
        argTypes.push_back( fvs[i].getType() );
      }
      //calculate the variables and substitution
      vector< Node > vars;
      vector< Node > subs;
      for( int i=0; i<(int)n[0].getNumChildren(); i++ ){
        vars.push_back( n[0][i] );
      }
      for( int i=0; i<(int)n[0].getNumChildren(); i++ ){
        //make the new function symbol
        if( argTypes.empty() ){
          Node s = NodeManager::currentNM()->mkSkolem( "sk_$$", n[0][i].getType(), "created during pre-skolemization" );
          subs.push_back( s );
        }else{
          TypeNode typ = NodeManager::currentNM()->mkFunctionType( argTypes, n[0][i].getType() );
          Node op = NodeManager::currentNM()->mkSkolem( "skop_$$", typ, "op created during pre-skolemization" );
          //DOTHIS: set attribute on op, marking that it should not be selected as trigger
          vector< Node > funcArgs;
          funcArgs.push_back( op );
          funcArgs.insert( funcArgs.end(), fvs.begin(), fvs.end() );
          subs.push_back( NodeManager::currentNM()->mkNode( kind::APPLY_UF, funcArgs ) );
        }
      }
      //apply substitution
      nn = nn.substitute( vars.begin(), vars.end(), subs.begin(), subs.end() );
      return nn;
    }
  }else{
    //check if it contains a quantifier as a subterm
    //if so, we will write this node
    if( containsQuantifiers( n ) ){
      if( n.getType().isBoolean() ){
        if( n.getKind()==kind::ITE || n.getKind()==kind::IFF || n.getKind()==kind::XOR || n.getKind()==kind::IMPLIES ){
          Node nn;
          //must remove structure
          if( n.getKind()==kind::ITE ){
            nn = NodeManager::currentNM()->mkNode( kind::AND,
                   NodeManager::currentNM()->mkNode( kind::OR, n[0].notNode(), n[1] ),
                   NodeManager::currentNM()->mkNode( kind::OR, n[0], n[2] ) );
          }else if( n.getKind()==kind::IFF || n.getKind()==kind::XOR ){
            nn = NodeManager::currentNM()->mkNode( kind::AND,
                   NodeManager::currentNM()->mkNode( kind::OR, n[0].notNode(), n.getKind()==kind::XOR ? n[1].notNode() : n[1] ),
                   NodeManager::currentNM()->mkNode( kind::OR, n[0], n.getKind()==kind::XOR ? n[1] : n[1].notNode() ) );
          }else if( n.getKind()==kind::IMPLIES ){
            nn = NodeManager::currentNM()->mkNode( kind::OR, n[0].notNode(), n[1] );
          }
          return preSkolemizeQuantifiers( nn, polarity, fvs );
        }else if( n.getKind()==kind::AND || n.getKind()==kind::OR ){
          vector< Node > children;
          for( int i=0; i<(int)n.getNumChildren(); i++ ){
            children.push_back( preSkolemizeQuantifiers( n[i], polarity, fvs ) );
          }
          return NodeManager::currentNM()->mkNode( n.getKind(), children );
        }else{
          //must pull ite's
        }
      }
    }
    return n;
  }
}

void SmtEnginePrivate::removeITEs() {
  d_smt.finalOptionsAreSet();

  Trace("simplify") << "SmtEnginePrivate::removeITEs()" << endl;

  // Remove all of the ITE occurrences and normalize
  d_iteRemover.run(d_assertionsToCheck, d_iteSkolemMap);
  for (unsigned i = 0; i < d_assertionsToCheck.size(); ++ i) {
    d_assertionsToCheck[i] = Rewriter::rewrite(d_assertionsToCheck[i]);
  }

}

void SmtEnginePrivate::staticLearning() {
  d_smt.finalOptionsAreSet();

  TimerStat::CodeTimer staticLearningTimer(d_smt.d_stats->d_staticLearningTime);

  Trace("simplify") << "SmtEnginePrivate::staticLearning()" << endl;

  for (unsigned i = 0; i < d_assertionsToCheck.size(); ++ i) {

    NodeBuilder<> learned(kind::AND);
    learned << d_assertionsToCheck[i];
    d_smt.d_theoryEngine->ppStaticLearn(d_assertionsToCheck[i], learned);
    if(learned.getNumChildren() == 1) {
      learned.clear();
    } else {
      d_assertionsToCheck[i] = learned;
    }
  }
}

// do dumping (before/after any preprocessing pass)
static void dumpAssertions(const char* key,
                           const std::vector<Node>& assertionList) {
  if( Dump.isOn("assertions") &&
      Dump.isOn(string("assertions:") + key) ) {
    // Push the simplified assertions to the dump output stream
    for(unsigned i = 0; i < assertionList.size(); ++ i) {
      TNode n = assertionList[i];
      Dump("assertions") << AssertCommand(Expr(n.toExpr()));
    }
  }
}

// returns false if it learns a conflict
bool SmtEnginePrivate::nonClausalSimplify() {
  d_smt.finalOptionsAreSet();

  TimerStat::CodeTimer nonclausalTimer(d_smt.d_stats->d_nonclausalSimplificationTime);

  Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify()" << endl;

  if(d_propagatorNeedsFinish) {
    d_propagator.finish();
    d_propagatorNeedsFinish = false;
  }
  d_propagator.initialize();

  // Assert all the assertions to the propagator
  Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                    << "asserting to propagator" << endl;
  for (unsigned i = 0; i < d_assertionsToPreprocess.size(); ++ i) {
    Assert(Rewriter::rewrite(d_assertionsToPreprocess[i]) == d_assertionsToPreprocess[i]);
    Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): asserting " << d_assertionsToPreprocess[i] << endl;
    d_propagator.assertTrue(d_assertionsToPreprocess[i]);
  }

  Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                    << "propagating" << endl;
  if (d_propagator.propagate()) {
    // If in conflict, just return false
    Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                      << "conflict in non-clausal propagation" << endl;
    d_assertionsToPreprocess.clear();
    d_assertionsToCheck.push_back(NodeManager::currentNM()->mkConst<bool>(false));
    d_propagatorNeedsFinish = true;
    return false;
  }

  // No, conflict, go through the literals and solve them
  SubstitutionMap constantPropagations(d_smt.d_context);
  unsigned j = 0;
  for(unsigned i = 0, i_end = d_nonClausalLearnedLiterals.size(); i < i_end; ++ i) {
    // Simplify the literal we learned wrt previous substitutions
    Node learnedLiteral = d_nonClausalLearnedLiterals[i];
    Assert(Rewriter::rewrite(learnedLiteral) == learnedLiteral);
    Node learnedLiteralNew = d_topLevelSubstitutions.apply(learnedLiteral);
    if (learnedLiteral != learnedLiteralNew) {
      learnedLiteral = Rewriter::rewrite(learnedLiteralNew);
    }
    for (;;) {
      learnedLiteralNew = constantPropagations.apply(learnedLiteral);
      if (learnedLiteralNew == learnedLiteral) {
        break;
      }
      ++d_smt.d_stats->d_numConstantProps;
      learnedLiteral = Rewriter::rewrite(learnedLiteralNew);
    }
    // It might just simplify to a constant
    if (learnedLiteral.isConst()) {
      if (learnedLiteral.getConst<bool>()) {
        // If the learned literal simplifies to true, it's redundant
        continue;
      } else {
        // If the learned literal simplifies to false, we're in conflict
        Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                          << "conflict with "
                          << d_nonClausalLearnedLiterals[i] << endl;
        d_assertionsToPreprocess.clear();
        d_assertionsToCheck.push_back(NodeManager::currentNM()->mkConst<bool>(false));
        d_propagatorNeedsFinish = true;
        return false;
      }
    }
    // Solve it with the corresponding theory
    Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                      << "solving " << learnedLiteral << endl;
    Theory::PPAssertStatus solveStatus =
      d_smt.d_theoryEngine->solve(learnedLiteral, d_topLevelSubstitutions);

    switch (solveStatus) {
      case Theory::PP_ASSERT_STATUS_SOLVED: {
        // The literal should rewrite to true
        Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                          << "solved " << learnedLiteral << endl;
        Assert(Rewriter::rewrite(d_topLevelSubstitutions.apply(learnedLiteral)).isConst());
        //        vector<pair<Node, Node> > equations;
        //        constantPropagations.simplifyLHS(d_topLevelSubstitutions, equations, true);
        //        if (equations.empty()) {
        //          break;
        //        }
        //        Assert(equations[0].first.isConst() && equations[0].second.isConst() && equations[0].first != equations[0].second);
        // else fall through
        break;
      }
      case Theory::PP_ASSERT_STATUS_CONFLICT:
        // If in conflict, we return false
        Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                          << "conflict while solving "
                          << learnedLiteral << endl;
        d_assertionsToPreprocess.clear();
        d_assertionsToCheck.push_back(NodeManager::currentNM()->mkConst<bool>(false));
        d_propagatorNeedsFinish = true;
        return false;
      default:
        if (d_doConstantProp && learnedLiteral.getKind() == kind::EQUAL && (learnedLiteral[0].isConst() || learnedLiteral[1].isConst())) {
          // constant propagation
          TNode t;
          TNode c;
          if (learnedLiteral[0].isConst()) {
            t = learnedLiteral[1];
            c = learnedLiteral[0];
          }
          else {
            t = learnedLiteral[0];
            c = learnedLiteral[1];
          }
          Assert(!t.isConst());
          Assert(constantPropagations.apply(t) == t);
          Assert(d_topLevelSubstitutions.apply(t) == t);
          constantPropagations.addSubstitution(t, c);
          // vector<pair<Node,Node> > equations;a
          // constantPropagations.simplifyLHS(t, c, equations, true);
          // if (!equations.empty()) {
          //   Assert(equations[0].first.isConst() && equations[0].second.isConst() && equations[0].first != equations[0].second);
          //   d_assertionsToPreprocess.clear();
          //   d_assertionsToCheck.push_back(NodeManager::currentNM()->mkConst<bool>(false));
          //   return;
          // }
          // d_topLevelSubstitutions.simplifyRHS(constantPropagations);
        }
        else {
          // Keep the literal
          d_nonClausalLearnedLiterals[j++] = d_nonClausalLearnedLiterals[i];
        }
        break;
    }

#ifdef CVC4_ASSERTIONS
    // Check data structure invariants:
    // 1. for each lhs of d_topLevelSubstitutions, does not appear anywhere in rhs of d_topLevelSubstitutions or anywhere in constantPropagations
    // 2. each lhs of constantPropagations rewrites to itself
    // 3. if l -> r is a constant propagation and l is a subterm of l' with l' -> r' another constant propagation, then l'[l/r] -> r' should be a
    //    constant propagation too
    // 4. each lhs of constantPropagations is different from each rhs
    SubstitutionMap::iterator pos = d_topLevelSubstitutions.begin();
    for (; pos != d_topLevelSubstitutions.end(); ++pos) {
      Assert((*pos).first.isVar());
      //      Assert(d_topLevelSubstitutions.apply((*pos).second) == (*pos).second);
    }
    for (pos = constantPropagations.begin(); pos != constantPropagations.end(); ++pos) {
      Assert((*pos).second.isConst());
      Assert(Rewriter::rewrite((*pos).first) == (*pos).first);
      // Node newLeft = d_topLevelSubstitutions.apply((*pos).first);
      // if (newLeft != (*pos).first) {
      //   newLeft = Rewriter::rewrite(newLeft);
      //   Assert(newLeft == (*pos).second ||
      //          (constantPropagations.hasSubstitution(newLeft) && constantPropagations.apply(newLeft) == (*pos).second));
      // }
      // newLeft = constantPropagations.apply((*pos).first);
      // if (newLeft != (*pos).first) {
      //   newLeft = Rewriter::rewrite(newLeft);
      //   Assert(newLeft == (*pos).second ||
      //          (constantPropagations.hasSubstitution(newLeft) && constantPropagations.apply(newLeft) == (*pos).second));
      // }
      Assert(constantPropagations.apply((*pos).second) == (*pos).second);
    }
#endif
  }
  // Resize the learnt
  d_nonClausalLearnedLiterals.resize(j);

  //must add substitutions to model
  TheoryModel* m = d_smt.d_theoryEngine->getModel();
  if(m != NULL) {
    for( SubstitutionMap::iterator pos = d_topLevelSubstitutions.begin(); pos != d_topLevelSubstitutions.end(); ++pos) {
      Node n = (*pos).first;
      Node v = (*pos).second;
      Trace("model") << "Add substitution : " << n << " " << v << endl;
      m->addSubstitution( n, v );
    }
  }

  hash_set<TNode, TNodeHashFunction> s;
  for (unsigned i = 0; i < d_assertionsToPreprocess.size(); ++ i) {
    Node assertion = d_assertionsToPreprocess[i];
    Node assertionNew = d_topLevelSubstitutions.apply(assertion);
    if (assertion != assertionNew) {
      assertion = Rewriter::rewrite(assertionNew);
    }
    Assert(Rewriter::rewrite(assertion) == assertion);
    for (;;) {
      assertionNew = constantPropagations.apply(assertion);
      if (assertionNew == assertion) {
        break;
      }
      ++d_smt.d_stats->d_numConstantProps;
      assertion = Rewriter::rewrite(assertionNew);
    }
    s.insert(assertion);
    d_assertionsToCheck.push_back(assertion);
    Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                      << "non-clausal preprocessed: "
                      << assertion << endl;
  }
  d_assertionsToPreprocess.clear();

  NodeBuilder<> learnedBuilder(kind::AND);
  Assert(d_realAssertionsEnd <= d_assertionsToCheck.size());
  learnedBuilder << d_assertionsToCheck[d_realAssertionsEnd - 1];

  if( options::incrementalSolving() ||
      options::simplificationMode() == SIMPLIFICATION_MODE_INCREMENTAL ) {
    // Keep substitutions
    SubstitutionMap::iterator pos = d_lastSubstitutionPos;
    if(pos == d_topLevelSubstitutions.end()) {
      pos = d_topLevelSubstitutions.begin();
    } else {
      ++pos;
    }

    while(pos != d_topLevelSubstitutions.end()) {
      // Push out this substitution
      TNode lhs = (*pos).first, rhs = (*pos).second;
      Node n = NodeManager::currentNM()->mkNode(lhs.getType().isBoolean() ? kind::IFF : kind::EQUAL, lhs, rhs);
      learnedBuilder << n;
      Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): will notify SAT layer of substitution: " << n << endl;
      d_lastSubstitutionPos = pos;
      ++pos;
    }
  }

  for (unsigned i = 0; i < d_nonClausalLearnedLiterals.size(); ++ i) {
    Node learned = d_nonClausalLearnedLiterals[i];
    Node learnedNew = d_topLevelSubstitutions.apply(learned);
    if (learned != learnedNew) {
      learned = Rewriter::rewrite(learnedNew);
    }
    Assert(Rewriter::rewrite(learned) == learned);
    for (;;) {
      learnedNew = constantPropagations.apply(learned);
      if (learnedNew == learned) {
        break;
      }
      ++d_smt.d_stats->d_numConstantProps;
      learned = Rewriter::rewrite(learnedNew);
    }
    if (s.find(learned) != s.end()) {
      continue;
    }
    s.insert(learned);
    learnedBuilder << learned;
    Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                      << "non-clausal learned : "
                      << learned << endl;
  }
  d_nonClausalLearnedLiterals.clear();

  SubstitutionMap::iterator pos = constantPropagations.begin();
  for (; pos != constantPropagations.end(); ++pos) {
    Node cProp = (*pos).first.eqNode((*pos).second);
    Node cPropNew = d_topLevelSubstitutions.apply(cProp);
    if (cProp != cPropNew) {
      cProp = Rewriter::rewrite(cPropNew);
      Assert(Rewriter::rewrite(cProp) == cProp);
    }
    if (s.find(cProp) != s.end()) {
      continue;
    }
    s.insert(cProp);
    learnedBuilder << cProp;
    Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                      << "non-clausal constant propagation : "
                      << cProp << endl;
  }

  if(learnedBuilder.getNumChildren() > 1) {
    d_assertionsToCheck[d_realAssertionsEnd - 1] =
      Rewriter::rewrite(Node(learnedBuilder));
  }

  d_propagatorNeedsFinish = true;
  return true;
}


void SmtEnginePrivate::simpITE() {
  TimerStat::CodeTimer simpITETimer(d_smt.d_stats->d_simpITETime);

  Trace("simplify") << "SmtEnginePrivate::simpITE()" << endl;

  for (unsigned i = 0; i < d_assertionsToCheck.size(); ++ i) {

    d_assertionsToCheck[i] = d_smt.d_theoryEngine->ppSimpITE(d_assertionsToCheck[i]);
  }
}


void SmtEnginePrivate::unconstrainedSimp() {
  TimerStat::CodeTimer unconstrainedSimpTimer(d_smt.d_stats->d_unconstrainedSimpTime);

  Trace("simplify") << "SmtEnginePrivate::unconstrainedSimp()" << endl;
  d_smt.d_theoryEngine->ppUnconstrainedSimp(d_assertionsToCheck);
}


void SmtEnginePrivate::constrainSubtypes(TNode top, std::vector<Node>& assertions)
  throw() {

  Trace("constrainSubtypes") << "constrainSubtypes(): looking at " << top << endl;

  set<TNode> done;
  stack<TNode> worklist;
  worklist.push(top);
  done.insert(top);

  do {
    TNode n = worklist.top();
    worklist.pop();

    TypeNode t = n.getType();
    if(t.isPredicateSubtype()) {
      WarningOnce() << "Warning: CVC4 doesn't yet do checking that predicate subtypes are nonempty domains" << endl;
      Node pred = t.getSubtypePredicate();
      Kind k;
      // pred can be a LAMBDA, a function constant, or a datatype tester
      Trace("constrainSubtypes") << "constrainSubtypes(): pred.getType() == " << pred.getType() << endl;
      if(d_smt.d_definedFunctions->find(pred) != d_smt.d_definedFunctions->end()) {
        k = kind::APPLY;
      } else if(pred.getType().isTester()) {
        k = kind::APPLY_TESTER;
      } else {
        k = kind::APPLY_UF;
      }
      Node app = NodeManager::currentNM()->mkNode(k, pred, n);
      Trace("constrainSubtypes") << "constrainSubtypes(): assert(" << k << ") " << app << endl;
      assertions.push_back(app);
    } else if(t.isSubrange()) {
      SubrangeBounds bounds = t.getSubrangeBounds();
      Trace("constrainSubtypes") << "constrainSubtypes(): got bounds " << bounds << endl;
      if(bounds.lower.hasBound()) {
        Node c = NodeManager::currentNM()->mkConst(Rational(bounds.lower.getBound()));
        Node lb = NodeManager::currentNM()->mkNode(kind::LEQ, c, n);
        Trace("constrainSubtypes") << "constrainSubtypes(): assert " << lb << endl;
        assertions.push_back(lb);
      }
      if(bounds.upper.hasBound()) {
        Node c = NodeManager::currentNM()->mkConst(Rational(bounds.upper.getBound()));
        Node ub = NodeManager::currentNM()->mkNode(kind::LEQ, n, c);
        Trace("constrainSubtypes") << "constrainSubtypes(): assert " << ub << endl;
        assertions.push_back(ub);
      }
    }

    for(TNode::iterator i = n.begin(); i != n.end(); ++i) {
      if(done.find(*i) == done.end()) {
        worklist.push(*i);
        done.insert(*i);
      }
    }
  } while(! worklist.empty());
}

void SmtEnginePrivate::traceBackToAssertions(const std::vector<Node>& nodes, std::vector<TNode>& assertions) {
  const booleans::CircuitPropagator::BackEdgesMap& backEdges = d_propagator.getBackEdges();
  for(vector<Node>::const_iterator i = nodes.begin(); i != nodes.end(); ++i) {
    booleans::CircuitPropagator::BackEdgesMap::const_iterator j = backEdges.find(*i);
    // term must appear in map, otherwise how did we get here?!
    Assert(j != backEdges.end());
    // if term maps to empty, that means it's a top-level assertion
    if(!(*j).second.empty()) {
      traceBackToAssertions((*j).second, assertions);
    } else {
      assertions.push_back(*i);
    }
  }
}

size_t SmtEnginePrivate::removeFromConjunction(Node& n, const std::hash_set<unsigned>& toRemove) {
  Assert(n.getKind() == kind::AND);
  Node trueNode = NodeManager::currentNM()->mkConst(true);
  size_t removals = 0;
  for(Node::iterator j = n.begin(); j != n.end(); ++j) {
    size_t subremovals = 0;
    Node sub = *j;
    if(toRemove.find(sub.getId()) != toRemove.end() ||
       (sub.getKind() == kind::AND && (subremovals = removeFromConjunction(sub, toRemove)) > 0)) {
      NodeBuilder<> b(kind::AND);
      b.append(n.begin(), j);
      if(subremovals > 0) {
        removals += subremovals;
        b << sub;
      } else {
        ++removals;
      }
      for(++j; j != n.end(); ++j) {
        if(toRemove.find((*j).getId()) != toRemove.end()) {
          ++removals;
        } else if((*j).getKind() == kind::AND) {
          sub = *j;
          if((subremovals = removeFromConjunction(sub, toRemove)) > 0) {
            removals += subremovals;
            b << sub;
          } else {
            b << *j;
          }
        } else {
          b << *j;
        }
      }
      if(b.getNumChildren() == 0) {
        n = trueNode;
        b.clear();
      } else if(b.getNumChildren() == 1) {
        n = b[0];
        b.clear();
      } else {
        n = b;
      }
      n = Rewriter::rewrite(n);
      return removals;
    }
  }

  Assert(removals == 0);
  return 0;
}

void SmtEnginePrivate::doMiplibTrick() {
  Assert(d_assertionsToPreprocess.empty());
  Assert(d_realAssertionsEnd == d_assertionsToCheck.size());
  Assert(!options::incrementalSolving());

  const booleans::CircuitPropagator::BackEdgesMap& backEdges = d_propagator.getBackEdges();
  hash_set<unsigned> removeAssertions;

  NodeManager* nm = NodeManager::currentNM();
  Node zero = nm->mkConst(Rational(0)), one = nm->mkConst(Rational(1));

  hash_map<TNode, Node, TNodeHashFunction> intVars;
  for(vector<Node>::const_iterator i = d_boolVars.begin(); i != d_boolVars.end(); ++i) {
    if(d_propagator.isAssigned(*i)) {
      Debug("miplib") << "ineligible: " << *i << " because assigned " << d_propagator.getAssignment(*i) << endl;
      continue;
    }

    vector<TNode> assertions;
    booleans::CircuitPropagator::BackEdgesMap::const_iterator j = backEdges.find(*i);
    // if not in back edges map, the bool var is unconstrained, showing up in no assertions.
    // if maps to an empty vector, that means the bool var was asserted itself.
    if(j != backEdges.end()) {
      if(!(*j).second.empty()) {
        traceBackToAssertions((*j).second, assertions);
      } else {
        assertions.push_back(*i);
      }
    }
    Debug("miplib") << "for " << *i << endl;
    bool eligible = true;
    map<pair<Node, Node>, uint64_t> marks;
    map<pair<Node, Node>, vector<Rational> > coef;
    map<pair<Node, Node>, vector<Rational> > checks;
    map<pair<Node, Node>, vector<TNode> > asserts;
    for(vector<TNode>::const_iterator j = assertions.begin(); j != assertions.end(); ++j) {
      Debug("miplib") << "  found: " << *j << endl;
      if((*j).getKind() != kind::IMPLIES) {
        eligible = false;
        Debug("miplib") << "  -- INELIGIBLE -- (not =>)" << endl;
        break;
      }
      Node conj = BooleanSimplification::simplify((*j)[0]);
      if(conj.getKind() == kind::AND && conj.getNumChildren() > 6) {
        eligible = false;
        Debug("miplib") << "  -- INELIGIBLE -- (N-ary /\\ too big)" << endl;
        break;
      }
      if(conj.getKind() != kind::AND && !conj.isVar() && !(conj.getKind() == kind::NOT && conj[0].isVar())) {
        eligible = false;
        Debug("miplib") << "  -- INELIGIBLE -- (not /\\ or literal)" << endl;
        break;
      }
      if((*j)[1].getKind() != kind::EQUAL ||
         !( ( (*j)[1][0].isVar() &&
              (*j)[1][1].getKind() == kind::CONST_RATIONAL ) ||
            ( (*j)[1][0].getKind() == kind::CONST_RATIONAL &&
              (*j)[1][1].isVar() ) )) {
        eligible = false;
        Debug("miplib") << "  -- INELIGIBLE -- (=> (and X X) X)" << endl;
        break;
      }
      if(conj.getKind() == kind::AND) {
        vector<Node> posv;
        bool found_x = false;
        map<TNode, bool> neg;
        for(Node::iterator ii = conj.begin(); ii != conj.end(); ++ii) {
          if((*ii).isVar()) {
            posv.push_back(*ii);
            neg[*ii] = false;
            found_x = found_x || *i == *ii;
          } else if((*ii).getKind() == kind::NOT && (*ii)[0].isVar()) {
            posv.push_back((*ii)[0]);
            neg[(*ii)[0]] = true;
            found_x = found_x || *i == (*ii)[0];
          } else {
            eligible = false;
            Debug("miplib") << "  -- INELIGIBLE -- (non-var: " << *ii << ")" << endl;
            break;
          }
          if(d_propagator.isAssigned(posv.back())) {
            eligible = false;
            Debug("miplib") << "  -- INELIGIBLE -- (" << posv.back() << " asserted)" << endl;
            break;
          }
        }
        if(!eligible) {
          break;
        }
        if(!found_x) {
          eligible = false;
          Debug("miplib") << "  --INELIGIBLE -- (couldn't find " << *i << " in conjunction)" << endl;
          break;
        }
        sort(posv.begin(), posv.end());
        const Node pos = NodeManager::currentNM()->mkNode(kind::AND, posv);
        const TNode var = ((*j)[1][0].getKind() == kind::CONST_RATIONAL) ? (*j)[1][1] : (*j)[1][0];
        const pair<Node, Node> pos_var(pos, var);
        const Rational& constant = ((*j)[1][0].getKind() == kind::CONST_RATIONAL) ? (*j)[1][0].getConst<Rational>() : (*j)[1][1].getConst<Rational>();
        uint64_t mark = 0;
        unsigned countneg = 0, thepos = 0;
        for(unsigned ii = 0; ii < pos.getNumChildren(); ++ii) {
          if(neg[pos[ii]]) {
            ++countneg;
          } else {
            thepos = ii;
            mark |= (0x1 << ii);
          }
        }
        if((marks[pos_var] & (1lu << mark)) != 0) {
          eligible = false;
          Debug("miplib") << "  -- INELIGIBLE -- (remarked)" << endl;
          break;
        }
        Debug("miplib") << "mark is " << mark << " -- " << (1lu << mark) << endl;
        marks[pos_var] |= (1lu << mark);
        Debug("miplib") << "marks[" << pos << "," << var << "] now " << marks[pos_var] << endl;
        if(countneg == pos.getNumChildren()) {
          if(constant != 0) {
            eligible = false;
            Debug("miplib") << "  -- INELIGIBLE -- (nonzero constant)" << endl;
            break;
          }
        } else if(countneg == pos.getNumChildren() - 1) {
          Assert(coef[pos_var].size() <= 6 && thepos < 6);
          if(coef[pos_var].size() <= thepos) {
            coef[pos_var].resize(thepos + 1);
          }
          coef[pos_var][thepos] = constant;
        } else {
          if(checks[pos_var].size() <= mark) {
            checks[pos_var].resize(mark + 1);
          }
          checks[pos_var][mark] = constant;
        }
        asserts[pos_var].push_back(*j);
      } else {
        TNode x = conj;
        if(x != *i && x != (*i).notNode()) {
          eligible = false;
          Debug("miplib") << "  -- INELIGIBLE -- (x not present where I expect it)" << endl;
          break;
        }
        const bool xneg = (x.getKind() == kind::NOT);
        x = xneg ? x[0] : x;
        Debug("miplib") << "  x:" << x << "  " << xneg << endl;
        const TNode var = ((*j)[1][0].getKind() == kind::CONST_RATIONAL) ? (*j)[1][1] : (*j)[1][0];
        const pair<Node, Node> x_var(x, var);
        const Rational& constant = ((*j)[1][0].getKind() == kind::CONST_RATIONAL) ? (*j)[1][0].getConst<Rational>() : (*j)[1][1].getConst<Rational>();
        unsigned mark = (xneg ? 0 : 1);
        if((marks[x_var] & (1u << mark)) != 0) {
          eligible = false;
          Debug("miplib") << "  -- INELIGIBLE -- (remarked)" << endl;
          break;
        }
        marks[x_var] |= (1u << mark);
        if(xneg) {
          if(constant != 0) {
            eligible = false;
            Debug("miplib") << "  -- INELIGIBLE -- (nonzero constant)" << endl;
            break;
          }
        } else {
          Assert(coef[x_var].size() <= 6);
          coef[x_var].resize(6);
          coef[x_var][0] = constant;
        }
        asserts[x_var].push_back(*j);
      }
    }
    if(eligible) {
      for(map<pair<Node, Node>, uint64_t>::const_iterator j = marks.begin(); j != marks.end(); ++j) {
        const TNode pos = (*j).first.first;
        const TNode var = (*j).first.second;
        const pair<Node, Node>& pos_var = (*j).first;
        const uint64_t mark = (*j).second;
        const unsigned numVars = pos.getKind() == kind::AND ? pos.getNumChildren() : 1;
        uint64_t expected = (uint64_t(1) << (1 << numVars)) - 1;
        expected = (expected == 0) ? -1 : expected;// fix for overflow
        Debug("miplib") << "[" << pos << "] => " << hex << mark << " expect " << expected << dec << endl;
        Assert(pos.getKind() == kind::AND || pos.isVar());
        if(mark != expected) {
          Debug("miplib") << "  -- INELIGIBLE " << pos << " -- (insufficiently marked, got " << mark << " for " << numVars << " vars, expected " << expected << endl;
        } else {
          if(mark != 3) { // exclude single-var case; nothing to check there
            uint64_t sz = (uint64_t(1) << checks[pos_var].size()) - 1;
            sz = (sz == 0) ? -1 : sz;// fix for overflow
            Assert(sz == mark, "expected size %u == mark %u", sz, mark);
            for(size_t k = 0; k < checks[pos_var].size(); ++k) {
              if((k & (k - 1)) != 0) {
                Rational sum = 0;
                Debug("miplib") << k << " => " << checks[pos_var][k] << endl;
                for(size_t v = 1, kk = k; kk != 0; ++v, kk >>= 1) {
                  if((kk & 0x1) == 1) {
                    Assert(pos.getKind() == kind::AND);
                    Debug("miplib") << "var " << v << " : " << pos[v - 1] << " coef:" << coef[pos_var][v - 1] << endl;
                    sum += coef[pos_var][v - 1];
                  }
                }
                Debug("miplib") << "checkSum is " << sum << " input says " << checks[pos_var][k] << endl;
                if(sum != checks[pos_var][k]) {
                  eligible = false;
                  Debug("miplib") << "  -- INELIGIBLE " << pos << " -- (nonlinear combination)" << endl;
                  break;
                }
              } else {
                Assert(checks[pos_var][k] == 0, "checks[(%s,%s)][%u] should be 0, but it's %s", pos.toString().c_str(), var.toString().c_str(), k, checks[pos_var][k].toString().c_str());// we never set for single-positive-var
              }
            }
          }
          if(!eligible) {
            eligible = true;// next is still eligible
            continue;
          }

          Debug("miplib") << "  -- ELIGIBLE " << *i << " , " << pos << " --" << endl;
          vector<Node> newVars;
          expr::NodeSelfIterator ii, iiend;
          if(pos.getKind() == kind::AND) {
            ii = pos.begin();
            iiend = pos.end();
          } else {
            ii = expr::NodeSelfIterator::self(pos);
            iiend = expr::NodeSelfIterator::selfEnd(pos);
          }
          for(; ii != iiend; ++ii) {
            Node& varRef = intVars[*ii];
            if(varRef.isNull()) {
              stringstream ss;
              ss << "mipvar_" << *ii;
              Node newVar = nm->mkSkolem(ss.str(), nm->integerType(), "a variable introduced due to scrubbing a miplib encoding", NodeManager::SKOLEM_EXACT_NAME);
              Node geq = Rewriter::rewrite(nm->mkNode(kind::GEQ, newVar, zero));
              Node leq = Rewriter::rewrite(nm->mkNode(kind::LEQ, newVar, one));
              d_assertionsToCheck.push_back(Rewriter::rewrite(geq.andNode(leq)));
              SubstitutionMap nullMap(&d_fakeContext);
              Theory::PPAssertStatus status CVC4_UNUSED;// just for assertions
              status = d_smt.d_theoryEngine->solve(geq, nullMap);
              Assert(status == Theory::PP_ASSERT_STATUS_UNSOLVED,
                     "unexpected solution from arith's ppAssert()");
              Assert(nullMap.empty(),
                     "unexpected substitution from arith's ppAssert()");
              status = d_smt.d_theoryEngine->solve(leq, nullMap);
              Assert(status == Theory::PP_ASSERT_STATUS_UNSOLVED,
                     "unexpected solution from arith's ppAssert()");
              Assert(nullMap.empty(),
                     "unexpected substitution from arith's ppAssert()");
              d_smt.d_theoryEngine->getModel()->addSubstitution(*ii, newVar.eqNode(one));
              newVars.push_back(newVar);
              varRef = newVar;
            } else {
              newVars.push_back(varRef);
            }
            if(!d_smt.d_logic.areIntegersUsed()) {
              d_smt.d_logic = d_smt.d_logic.getUnlockedCopy();
              d_smt.d_logic.enableIntegers();
              d_smt.d_logic.lock();
            }
          }
          Node sum;
          if(pos.getKind() == kind::AND) {
            NodeBuilder<> sumb(kind::PLUS);
            for(size_t ii = 0; ii < pos.getNumChildren(); ++ii) {
              sumb << nm->mkNode(kind::MULT, nm->mkConst(coef[pos_var][ii]), newVars[ii]);
            }
            sum = sumb;
          } else {
            sum = nm->mkNode(kind::MULT, nm->mkConst(coef[pos_var][0]), newVars[0]);
          }
          Debug("miplib") << "vars[] " << var << endl
                          << "    eq " << Rewriter::rewrite(sum) << endl;
          Node newAssertion = var.eqNode(Rewriter::rewrite(sum));
          if(d_topLevelSubstitutions.hasSubstitution(newAssertion[0])) {
            //Warning() << "RE-SUBSTITUTION " << newAssertion[0] << endl;
            //Warning() << "REPLACE         " << newAssertion[1] << endl;
            //Warning() << "ORIG            " << d_topLevelSubstitutions.getSubstitution(newAssertion[0]) << endl;
            Assert(d_topLevelSubstitutions.getSubstitution(newAssertion[0]) == newAssertion[1]);
          } else if(pos.getNumChildren() <= options::arithMLTrickSubstitutions()) {
            d_topLevelSubstitutions.addSubstitution(newAssertion[0], newAssertion[1]);
            Debug("miplib") << "addSubs: " << newAssertion[0] << " to " << newAssertion[1] << endl;
          } else {
            Debug("miplib") << "skipSubs: " << newAssertion[0] << " to " << newAssertion[1] << " (threshold is " << options::arithMLTrickSubstitutions() << ")" << endl;
          }
          newAssertion = Rewriter::rewrite(newAssertion);
          Debug("miplib") << "  " << newAssertion << endl;
          d_assertionsToCheck.push_back(newAssertion);
          Debug("miplib") << "  assertions to remove: " << endl;
          for(vector<TNode>::const_iterator k = asserts[pos_var].begin(), k_end = asserts[pos_var].end(); k != k_end; ++k) {
            Debug("miplib") << "    " << *k << endl;
            removeAssertions.insert((*k).getId());
          }
        }
      }
    }
  }
  if(!removeAssertions.empty()) {
    Debug("miplib") << "SmtEnginePrivate::simplify(): scrubbing miplib encoding..." << endl;
    Node trueNode = nm->mkConst(true);
    for(size_t i = 0; i < d_realAssertionsEnd; ++i) {
      if(removeAssertions.find(d_assertionsToCheck[i].getId()) != removeAssertions.end()) {
        Debug("miplib") << "SmtEnginePrivate::simplify(): - removing " << d_assertionsToCheck[i] << endl;
        d_assertionsToCheck[i] = trueNode;
        ++d_smt.d_stats->d_numMiplibAssertionsRemoved;
      } else if(d_assertionsToCheck[i].getKind() == kind::AND) {
        size_t removals = removeFromConjunction(d_assertionsToCheck[i], removeAssertions);
        if(removals > 0) {
          Debug("miplib") << "SmtEnginePrivate::simplify(): - reduced " << d_assertionsToCheck[i] << endl;
          Debug("miplib") << "SmtEnginePrivate::simplify(): -      by " << removals << " conjuncts" << endl;
          d_smt.d_stats->d_numMiplibAssertionsRemoved += removals;
        }
      }
      Debug("miplib") << "had: " << d_assertionsToCheck[i] << endl;
      d_assertionsToCheck[i] = Rewriter::rewrite(d_topLevelSubstitutions.apply(d_assertionsToCheck[i]));
      Debug("miplib") << "now: " << d_assertionsToCheck[i] << endl;
    }
  } else {
    Debug("miplib") << "SmtEnginePrivate::simplify(): miplib pass found nothing." << endl;
  }
  d_realAssertionsEnd = d_assertionsToCheck.size();
}

// returns false if simplification led to "false"
bool SmtEnginePrivate::simplifyAssertions()
  throw(TypeCheckingException, LogicException) {
  Assert(d_smt.d_pendingPops == 0);
  try {

    Trace("simplify") << "SmtEnginePrivate::simplify()" << endl;

    if(options::simplificationMode() != SIMPLIFICATION_MODE_NONE) {
      // Perform non-clausal simplification
      Chat() << "...performing nonclausal simplification..." << endl;
      Trace("simplify") << "SmtEnginePrivate::simplify(): "
                        << "performing non-clausal simplification" << endl;
      bool noConflict = nonClausalSimplify();
      if(!noConflict) {
        return false;
      }

      // We piggy-back off of the BackEdgesMap in the CircuitPropagator to
      // do the miplib trick.
      if( // check that option is on
          options::arithMLTrick() &&
          // miplib rewrites aren't safe in incremental mode
          ! options::incrementalSolving() &&
          // only useful in arith
          d_smt.d_logic.isTheoryEnabled(THEORY_ARITH) &&
          // we add new assertions and need this (in practice, this
          // restriction only disables miplib processing during
          // re-simplification, which we don't expect to be useful anyway)
          d_realAssertionsEnd == d_assertionsToCheck.size() ) {
        Chat() << "...fixing miplib encodings..." << endl;
        Trace("simplify") << "SmtEnginePrivate::simplify(): "
                          << "looking for miplib pseudobooleans..." << endl;

        TimerStat::CodeTimer miplibTimer(d_smt.d_stats->d_miplibPassTime);

        doMiplibTrick();
      } else {
        Trace("simplify") << "SmtEnginePrivate::simplify(): "
                          << "skipping miplib pseudobooleans pass (either incrementalSolving is on, or miplib pbs are turned off)..." << endl;
      }
    } else {
      Assert(d_assertionsToCheck.empty());
      d_assertionsToCheck.swap(d_assertionsToPreprocess);
    }

    Trace("smt") << "POST nonClausalSimplify" << endl;
    Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
    Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

    // Theory preprocessing
    if (d_smt.d_earlyTheoryPP) {
      Chat() << "...doing early theory preprocessing..." << endl;
      TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_theoryPreprocessTime);
      // Call the theory preprocessors
      d_smt.d_theoryEngine->preprocessStart();
      for (unsigned i = 0; i < d_assertionsToCheck.size(); ++ i) {
        Assert(Rewriter::rewrite(d_assertionsToCheck[i]) == d_assertionsToCheck[i]);
        d_assertionsToCheck[i] = d_smt.d_theoryEngine->preprocess(d_assertionsToCheck[i]);
        Assert(Rewriter::rewrite(d_assertionsToCheck[i]) == d_assertionsToCheck[i]);
      }
    }

    Trace("smt") << "POST theoryPP" << endl;
    Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
    Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

    // ITE simplification
    if(options::doITESimp()) {
      Chat() << "...doing ITE simplification..." << endl;
      simpITE();
    }

    Trace("smt") << "POST iteSimp" << endl;
    Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
    Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

    // Unconstrained simplification
    if(options::unconstrainedSimp()) {
      Chat() << "...doing unconstrained simplification..." << endl;
      unconstrainedSimp();
    }

    Trace("smt") << "POST unconstrainedSimp" << endl;
    Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
    Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

    if(options::repeatSimp() && options::simplificationMode() != SIMPLIFICATION_MODE_NONE) {
      Chat() << "...doing another round of nonclausal simplification..." << endl;
      Trace("simplify") << "SmtEnginePrivate::simplify(): "
                        << " doing repeated simplification" << endl;
      d_assertionsToCheck.swap(d_assertionsToPreprocess);
      Assert(d_assertionsToCheck.empty());
      bool noConflict = nonClausalSimplify();
      if(!noConflict) {
        return false;
      }
    }

    Trace("smt") << "POST repeatSimp" << endl;
    Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
    Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  } catch(TypeCheckingExceptionPrivate& tcep) {
    // Calls to this function should have already weeded out any
    // typechecking exceptions via (e.g.) ensureBoolean().  But a
    // theory could still create a new expression that isn't
    // well-typed, and we don't want the C++ runtime to abort our
    // process without any error notice.
    stringstream ss;
    ss << "A bad expression was produced.  Original exception follows:\n"
       << tcep;
    InternalError(ss.str().c_str());
  }
  return true;
}

Result SmtEngine::check() {
  Assert(d_fullyInited);
  Assert(d_pendingPops == 0);

  Trace("smt") << "SmtEngine::check()" << endl;

  // Make sure the prop layer has all of the assertions
  Trace("smt") << "SmtEngine::check(): processing assertions" << endl;
  d_private->processAssertions();

  unsigned long millis = 0;
  if(d_timeBudgetCumulative != 0) {
    millis = getTimeRemaining();
    if(millis == 0) {
      return Result(Result::VALIDITY_UNKNOWN, Result::TIMEOUT);
    }
  }
  if(d_timeBudgetPerCall != 0 && (millis == 0 || d_timeBudgetPerCall < millis)) {
    millis = d_timeBudgetPerCall;
  }

  unsigned long resource = 0;
  if(d_resourceBudgetCumulative != 0) {
    resource = getResourceRemaining();
    if(resource == 0) {
      return Result(Result::VALIDITY_UNKNOWN, Result::RESOURCEOUT);
    }
  }
  if(d_resourceBudgetPerCall != 0 && (resource == 0 || d_resourceBudgetPerCall < resource)) {
    resource = d_resourceBudgetPerCall;
  }

  TimerStat::CodeTimer solveTimer(d_stats->d_solveTime);

  Chat() << "solving..." << endl;
  Trace("smt") << "SmtEngine::check(): running check" << endl;
  Result result = d_propEngine->checkSat(millis, resource);

  // PropEngine::checkSat() returns the actual amount used in these
  // variables.
  d_cumulativeTimeUsed += millis;
  d_cumulativeResourceUsed += resource;

  Trace("limit") << "SmtEngine::check(): cumulative millis " << d_cumulativeTimeUsed
                 << ", conflicts " << d_cumulativeResourceUsed << endl;

  return result;
}

Result SmtEngine::quickCheck() {
  Assert(d_fullyInited);
  Trace("smt") << "SMT quickCheck()" << endl;
  return Result(Result::VALIDITY_UNKNOWN, Result::REQUIRES_FULL_CHECK);
}


void SmtEnginePrivate::collectSkolems(TNode n, set<TNode>& skolemSet, hash_map<Node, bool, NodeHashFunction>& cache)
{
  hash_map<Node, bool, NodeHashFunction>::iterator it;
  it = cache.find(n);
  if (it != cache.end()) {
    return;
  }

  size_t sz = n.getNumChildren();
  if (sz == 0) {
    IteSkolemMap::iterator it = d_iteSkolemMap.find(n);
    if (it != d_iteSkolemMap.end()) {
      skolemSet.insert(n);
    }
    cache[n] = true;
    return;
  }

  size_t k = 0;
  for (; k < sz; ++k) {
    collectSkolems(n[k], skolemSet, cache);
  }
  cache[n] = true;
}


bool SmtEnginePrivate::checkForBadSkolems(TNode n, TNode skolem, hash_map<Node, bool, NodeHashFunction>& cache)
{
  hash_map<Node, bool, NodeHashFunction>::iterator it;
  it = cache.find(n);
  if (it != cache.end()) {
    return (*it).second;
  }

  size_t sz = n.getNumChildren();
  if (sz == 0) {
    IteSkolemMap::iterator it = d_iteSkolemMap.find(n);
    bool bad = false;
    if (it != d_iteSkolemMap.end()) {
      if (!((*it).first < n)) {
        bad = true;
      }
    }
    cache[n] = bad;
    return bad;
  }

  size_t k = 0;
  for (; k < sz; ++k) {
    if (checkForBadSkolems(n[k], skolem, cache)) {
      cache[n] = true;
      return true;
    }
  }

  cache[n] = false;
  return false;
}

void SmtEnginePrivate::processAssertions() {
  TimerStat::CodeTimer paTimer(d_smt.d_stats->d_processAssertionsTime);

  Assert(d_smt.d_fullyInited);
  Assert(d_smt.d_pendingPops == 0);

  // Dump the assertions
  dumpAssertions("pre-everything", d_assertionsToPreprocess);

  Trace("smt") << "SmtEnginePrivate::processAssertions()" << endl;

  Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
  Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  Assert(d_assertionsToCheck.size() == 0);

  // any assertions added beyond realAssertionsEnd must NOT affect the
  // equisatisfiability
  d_realAssertionsEnd = d_assertionsToPreprocess.size();
  if(d_realAssertionsEnd == 0) {
    // nothing to do
    return;
  }

  // Assertions are NOT guaranteed to be rewritten by this point

  dumpAssertions("pre-definition-expansion", d_assertionsToPreprocess);
  {
    Chat() << "expanding definitions..." << endl;
    Trace("simplify") << "SmtEnginePrivate::simplify(): expanding definitions" << endl;
    TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_definitionExpansionTime);
    hash_map<Node, Node, NodeHashFunction> cache;
    for (unsigned i = 0; i < d_assertionsToPreprocess.size(); ++ i) {
      d_assertionsToPreprocess[i] =
        expandDefinitions(d_assertionsToPreprocess[i], cache);
    }
  }
  dumpAssertions("post-definition-expansion", d_assertionsToPreprocess);

  Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
  Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  dumpAssertions("pre-boolean-terms", d_assertionsToPreprocess);
  {
    Chat() << "rewriting Boolean terms..." << endl;
    TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_rewriteBooleanTermsTime);
    for(unsigned i = 0, i_end = d_assertionsToPreprocess.size(); i != i_end; ++i) {
      Node n = d_booleanTermConverter.rewriteBooleanTerms(d_assertionsToPreprocess[i]);
      if(n != d_assertionsToPreprocess[i]) {
        switch(booleans::BooleanTermConversionMode mode = options::booleanTermConversionMode()) {
        case booleans::BOOLEAN_TERM_CONVERT_TO_BITVECTORS:
        case booleans::BOOLEAN_TERM_CONVERT_NATIVE:
          if(!d_smt.d_logic.isTheoryEnabled(THEORY_BV)) {
            d_smt.d_logic = d_smt.d_logic.getUnlockedCopy();
            d_smt.d_logic.enableTheory(THEORY_BV);
            d_smt.d_logic.lock();
          }
          break;
        case booleans::BOOLEAN_TERM_CONVERT_TO_DATATYPES:
          if(!d_smt.d_logic.isTheoryEnabled(THEORY_DATATYPES)) {
            d_smt.d_logic = d_smt.d_logic.getUnlockedCopy();
            d_smt.d_logic.enableTheory(THEORY_DATATYPES);
            d_smt.d_logic.lock();
          }
          break;
        default:
          Unhandled(mode);
        }
      }
      d_assertionsToPreprocess[i] = n;
    }
  }
  dumpAssertions("post-boolean-terms", d_assertionsToPreprocess);

  Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
  Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  dumpAssertions("pre-constrain-subtypes", d_assertionsToPreprocess);
  {
    // Any variables of subtype types need to be constrained properly.
    // Careful, here: constrainSubtypes() adds to the back of
    // d_assertionsToPreprocess, but we don't need to reprocess those.
    // We also can't use an iterator, because the vector may be moved in
    // memory during this loop.
    Chat() << "constraining subtypes..." << endl;
    for(unsigned i = 0, i_end = d_assertionsToPreprocess.size(); i != i_end; ++i) {
      constrainSubtypes(d_assertionsToPreprocess[i], d_assertionsToPreprocess);
    }
  }
  dumpAssertions("post-constrain-subtypes", d_assertionsToPreprocess);

  Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
  Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  dumpAssertions("pre-substitution", d_assertionsToPreprocess);
  // Apply the substitutions we already have, and normalize
  Chat() << "applying substitutions..." << endl;
  Trace("simplify") << "SmtEnginePrivate::nonClausalSimplify(): "
                    << "applying substitutions" << endl;
  for (unsigned i = 0; i < d_assertionsToPreprocess.size(); ++ i) {
    Trace("simplify") << "applying to " << d_assertionsToPreprocess[i] << endl;
    d_assertionsToPreprocess[i] =
      Rewriter::rewrite(d_topLevelSubstitutions.apply(d_assertionsToPreprocess[i]));
    Trace("simplify") << "  got " << d_assertionsToPreprocess[i] << endl;
  }
  dumpAssertions("post-substitution", d_assertionsToPreprocess);

  // Assertions ARE guaranteed to be rewritten by this point

  dumpAssertions("pre-skolem-quant", d_assertionsToPreprocess);
  if( options::preSkolemQuant() ){
    //apply pre-skolemization to existential quantifiers
    for (unsigned i = 0; i < d_assertionsToPreprocess.size(); ++ i) {
      Node prev = d_assertionsToPreprocess[i];
      vector< Node > fvs;
      d_assertionsToPreprocess[i] = Rewriter::rewrite( preSkolemizeQuantifiers( d_assertionsToPreprocess[i], true, fvs ) );
      if( prev!=d_assertionsToPreprocess[i] ){
        Trace("quantifiers-rewrite") << "*** Pre-skolemize " << prev << endl;
        Trace("quantifiers-rewrite") << "   ...got " << d_assertionsToPreprocess[i] << endl;
      }
    }
  }
  dumpAssertions("post-skolem-quant", d_assertionsToPreprocess);

  if( options::macrosQuant() ){
    //quantifiers macro expansion
    bool success;
    do{
      QuantifierMacros qm;
      success = qm.simplify( d_assertionsToPreprocess, true );
    }while( success );
  }

  if( options::sortInference() ){
    //sort inference technique
    d_smt.d_theoryEngine->getSortInference()->simplify( d_assertionsToPreprocess );
  }

  dumpAssertions("pre-simplify", d_assertionsToPreprocess);
  Chat() << "simplifying assertions..." << endl;
  bool noConflict = simplifyAssertions();
  dumpAssertions("post-simplify", d_assertionsToCheck);

  dumpAssertions("pre-static-learning", d_assertionsToCheck);
  if(options::doStaticLearning()) {
    // Perform static learning
    Chat() << "doing static learning..." << endl;
    Trace("simplify") << "SmtEnginePrivate::simplify(): "
                      << "performing static learning" << endl;
    staticLearning();
  }
  dumpAssertions("post-static-learning", d_assertionsToCheck);

  dumpAssertions("pre-ite-removal", d_assertionsToCheck);
  {
    Chat() << "removing term ITEs..." << endl;
    TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_iteRemovalTime);
    // Remove ITEs, updating d_iteSkolemMap
    d_smt.d_stats->d_numAssertionsPre += d_assertionsToCheck.size();
    removeITEs();
    d_smt.d_stats->d_numAssertionsPost += d_assertionsToCheck.size();
  }
  dumpAssertions("post-ite-removal", d_assertionsToCheck);

  dumpAssertions("pre-repeat-simplify", d_assertionsToCheck);
  if(options::repeatSimp()) {
    d_assertionsToCheck.swap(d_assertionsToPreprocess);
    Chat() << "re-simplifying assertions..." << endl;
    noConflict &= simplifyAssertions();
    if (noConflict) {
      // Need to fix up assertion list to maintain invariants:
      // Let Sk be the set of Skolem variables introduced by ITE's.  Let <_sk be the order in which these variables were introduced
      // during ite removal.
      // For each skolem variable sk, let iteExpr = iteMap(sk) be the ite expr mapped to by sk.

      // cache for expression traversal
      hash_map<Node, bool, NodeHashFunction> cache;

      // First, find all skolems that appear in the substitution map - their associated iteExpr will need
      // to be moved to the main assertion set
      set<TNode> skolemSet;
      SubstitutionMap::iterator pos = d_topLevelSubstitutions.begin();
      for (; pos != d_topLevelSubstitutions.end(); ++pos) {
        collectSkolems((*pos).first, skolemSet, cache);
        collectSkolems((*pos).second, skolemSet, cache);
      }

      // We need to ensure:
      // 1. iteExpr has the form (ite cond (sk = t) (sk = e))
      // 2. if some sk' in Sk appears in cond, t, or e, then sk' <_sk sk
      // If either of these is violated, we must add iteExpr as a proper assertion
      IteSkolemMap::iterator it = d_iteSkolemMap.begin();
      IteSkolemMap::iterator iend = d_iteSkolemMap.end();
      NodeBuilder<> builder(kind::AND);
      builder << d_assertionsToCheck[d_realAssertionsEnd - 1];
      vector<TNode> toErase;
      for (; it != iend; ++it) {
        if (skolemSet.find((*it).first) == skolemSet.end()) {
          TNode iteExpr = d_assertionsToCheck[(*it).second];
          if (iteExpr.getKind() == kind::ITE &&
              iteExpr[1].getKind() == kind::EQUAL &&
              iteExpr[1][0] == (*it).first &&
              iteExpr[2].getKind() == kind::EQUAL &&
              iteExpr[2][0] == (*it).first) {
            cache.clear();
            bool bad = checkForBadSkolems(iteExpr[0], (*it).first, cache);
            bad = bad || checkForBadSkolems(iteExpr[1][1], (*it).first, cache);
            bad = bad || checkForBadSkolems(iteExpr[2][1], (*it).first, cache);
            if (!bad) {
              continue;
            }
          }
        }
        // Move this iteExpr into the main assertions
        builder << d_assertionsToCheck[(*it).second];
        d_assertionsToCheck[(*it).second] = NodeManager::currentNM()->mkConst<bool>(true);
        toErase.push_back((*it).first);
      }
      if(builder.getNumChildren() > 1) {
        while (!toErase.empty()) {
          d_iteSkolemMap.erase(toErase.back());
          toErase.pop_back();
        }
        d_assertionsToCheck[d_realAssertionsEnd - 1] =
          Rewriter::rewrite(Node(builder));
      }
      // For some reason this is needed for some benchmarks, such as
      // http://church.cims.nyu.edu/benchmarks/smtlib2/QF_AUFBV/dwp_formulas/try5_small_difret_functions_dwp_tac.re_node_set_remove_at.il.dwp.smt2
      // Figure it out later
      removeITEs();
      //      Assert(iteRewriteAssertionsEnd == d_assertionsToCheck.size());
    }
  }
  dumpAssertions("post-repeat-simplify", d_assertionsToCheck);

  // begin: INVARIANT to maintain: no reordering of assertions or
  // introducing new ones
#ifdef CVC4_ASSERTIONS
  unsigned iteRewriteAssertionsEnd = d_assertionsToCheck.size();
#endif

  Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
  Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  Debug("smt") << "SmtEnginePrivate::processAssertions() POST SIMPLIFICATION" << endl;
  Debug("smt") << " d_assertionsToPreprocess: " << d_assertionsToPreprocess.size() << endl;
  Debug("smt") << " d_assertionsToCheck     : " << d_assertionsToCheck.size() << endl;

  dumpAssertions("pre-theory-preprocessing", d_assertionsToCheck);
  {
    Chat() << "theory preprocessing..." << endl;
    TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_theoryPreprocessTime);
    // Call the theory preprocessors
    d_smt.d_theoryEngine->preprocessStart();
    for (unsigned i = 0; i < d_assertionsToCheck.size(); ++ i) {
      d_assertionsToCheck[i] = d_smt.d_theoryEngine->preprocess(d_assertionsToCheck[i]);
    }
  }
  dumpAssertions("post-theory-preprocessing", d_assertionsToCheck);

  // Push the formula to decision engine
  if(noConflict) {
    Chat() << "pushing to decision engine..." << endl;
    Assert(iteRewriteAssertionsEnd == d_assertionsToCheck.size());
    d_smt.d_decisionEngine->addAssertions
      (d_assertionsToCheck, d_realAssertionsEnd, d_iteSkolemMap);
  }

  // end: INVARIANT to maintain: no reordering of assertions or
  // introducing new ones

  dumpAssertions("post-everything", d_assertionsToCheck);

  // Push the formula to SAT
  {
    Chat() << "converting to CNF..." << endl;
    TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_cnfConversionTime);
    for (unsigned i = 0; i < d_assertionsToCheck.size(); ++ i) {
      d_smt.d_propEngine->assertFormula(d_assertionsToCheck[i]);
    }
  }

  d_assertionsToCheck.clear();
  d_iteSkolemMap.clear();
}

void SmtEnginePrivate::addFormula(TNode n)
  throw(TypeCheckingException, LogicException) {

  Trace("smt") << "SmtEnginePrivate::addFormula(" << n << ")" << endl;

  // Add the normalized formula to the queue
  d_assertionsToPreprocess.push_back(n);
  //d_assertionsToPreprocess.push_back(Rewriter::rewrite(n));

  // If the mode of processing is incremental prepreocess and assert immediately
  if (options::simplificationMode() == SIMPLIFICATION_MODE_INCREMENTAL) {
    processAssertions();
  }
}

void SmtEngine::ensureBoolean(const Expr& e) throw(TypeCheckingException) {
  Type type = e.getType(options::typeChecking());
  Type boolType = d_exprManager->booleanType();
  if(type != boolType) {
    stringstream ss;
    ss << "Expected " << boolType << "\n"
       << "The assertion : " << e << "\n"
       << "Its type      : " << type;
    throw TypeCheckingException(e, ss.str());
  }
}

Result SmtEngine::checkSat(const Expr& ex) throw(TypeCheckingException, ModalException, LogicException) {
  Assert(ex.isNull() || ex.getExprManager() == d_exprManager);
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  Trace("smt") << "SmtEngine::checkSat(" << ex << ")" << endl;

  if(d_queryMade && !options::incrementalSolving()) {
    throw ModalException("Cannot make multiple queries unless "
                         "incremental solving is enabled "
                         "(try --incremental)");
  }

  Expr e;
  if(!ex.isNull()) {
    // Substitute out any abstract values in ex.
    e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();
    // Ensure expr is type-checked at this point.
    ensureBoolean(e);
  }

  // check to see if a postsolve() is pending
  if(d_needPostsolve) {
    d_theoryEngine->postsolve();
    d_needPostsolve = false;
  }

  // Push the context
  internalPush();

  // Note that a query has been made
  d_queryMade = true;

  // Add the formula
  if(!e.isNull()) {
    d_problemExtended = true;
    if(d_assertionList != NULL) {
      d_assertionList->push_back(e);
    }
    d_private->addFormula(e.getNode());
  }

  // Run the check
  Result r = check().asSatisfiabilityResult();
  d_needPostsolve = true;

  // Dump the query if requested
  if(Dump.isOn("benchmark")) {
    // the expr already got dumped out if assertion-dumping is on
    Dump("benchmark") << CheckSatCommand();
  }

  // Pop the context
  internalPop();

  // Remember the status
  d_status = r;

  d_problemExtended = false;

  Trace("smt") << "SmtEngine::checkSat(" << e << ") => " << r << endl;

  // Check that SAT results generate a model correctly.
  if(options::checkModels()) {
    if(r.asSatisfiabilityResult().isSat() == Result::SAT ||
       (r.isUnknown() && r.whyUnknown() == Result::INCOMPLETE) ){
      checkModel(/* hard failure iff */ ! r.isUnknown());
    }
  }

  return r;
}/* SmtEngine::checkSat() */

Result SmtEngine::query(const Expr& ex) throw(TypeCheckingException, ModalException, LogicException) {
  Assert(!ex.isNull());
  Assert(ex.getExprManager() == d_exprManager);
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  Trace("smt") << "SMT query(" << ex << ")" << endl;

  if(d_queryMade && !options::incrementalSolving()) {
    throw ModalException("Cannot make multiple queries unless "
                         "incremental solving is enabled "
                         "(try --incremental)");
  }

  // Substitute out any abstract values in ex
  Expr e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();

  // Ensure that the expression is type-checked at this point, and Boolean
  ensureBoolean(e);

  // check to see if a postsolve() is pending
  if(d_needPostsolve) {
    d_theoryEngine->postsolve();
    d_needPostsolve = false;
  }

  // Push the context
  internalPush();

  // Note that a query has been made
  d_queryMade = true;

  // Add the formula
  d_problemExtended = true;
  if(d_assertionList != NULL) {
    d_assertionList->push_back(e.notExpr());
  }
  d_private->addFormula(e.getNode().notNode());

  // Run the check
  Result r = check().asValidityResult();
  d_needPostsolve = true;

  // Dump the query if requested
  if(Dump.isOn("benchmark")) {
    // the expr already got dumped out if assertion-dumping is on
    Dump("benchmark") << CheckSatCommand();
  }

  // Pop the context
  internalPop();

  // Remember the status
  d_status = r;

  d_problemExtended = false;

  Trace("smt") << "SMT query(" << e << ") ==> " << r << endl;

  // Check that SAT results generate a model correctly.
  if(options::checkModels()) {
    if(r.asSatisfiabilityResult().isSat() == Result::SAT ||
       (r.isUnknown() && r.whyUnknown() == Result::INCOMPLETE) ){
      checkModel(/* hard failure iff */ ! r.isUnknown());
    }
  }

  return r;
}/* SmtEngine::query() */

Result SmtEngine::assertFormula(const Expr& ex) throw(TypeCheckingException, LogicException) {
  Assert(ex.getExprManager() == d_exprManager);
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  Trace("smt") << "SmtEngine::assertFormula(" << ex << ")" << endl;

  // Substitute out any abstract values in ex
  Expr e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();

  ensureBoolean(e);
  if(d_assertionList != NULL) {
    d_assertionList->push_back(e);
  }
  d_private->addFormula(e.getNode());
  return quickCheck().asValidityResult();
}

Node SmtEngine::postprocess(TNode node, TypeNode expectedType) {
  ModelPostprocessor mpost;
  NodeVisitor<ModelPostprocessor> visitor;
  Node value = visitor.run(mpost, node);
  Debug("boolean-terms") << "postproc: got " << value << " expect type " << expectedType << endl;
  Node realValue = mpost.rewriteAs(value, expectedType);
  Debug("boolean-terms") << "postproc: realval " << realValue << " expect type " << expectedType << endl;
  return realValue;
}

Expr SmtEngine::simplify(const Expr& ex) throw(TypeCheckingException, LogicException) {
  Assert(ex.getExprManager() == d_exprManager);
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  Trace("smt") << "SMT simplify(" << ex << ")" << endl;

  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << SimplifyCommand(ex);
  }

  Expr e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();
  if( options::typeChecking() ) {
    e.getType(true);// ensure expr is type-checked at this point
  }

  // Make sure all preprocessing is done
  d_private->processAssertions();
  Node n = d_private->simplify(Node::fromExpr(e));
  n = postprocess(n, TypeNode::fromType(e.getType()));
  return n.toExpr();
}

Expr SmtEngine::expandDefinitions(const Expr& ex) throw(TypeCheckingException, LogicException) {
  Assert(ex.getExprManager() == d_exprManager);
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  Trace("smt") << "SMT expandDefinitions(" << ex << ")" << endl;

  // Substitute out any abstract values in ex.
  Expr e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();
  if(options::typeChecking()) {
    // Ensure expr is type-checked at this point.
    e.getType(true);
  }
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << ExpandDefinitionsCommand(e);
  }
  hash_map<Node, Node, NodeHashFunction> cache;
  Node n = d_private->expandDefinitions(Node::fromExpr(e), cache);
  n = postprocess(n, TypeNode::fromType(e.getType()));
  return n.toExpr();
}

Expr SmtEngine::getValue(const Expr& ex) throw(ModalException, TypeCheckingException, LogicException) {
  Assert(ex.getExprManager() == d_exprManager);
  SmtScope smts(this);

  Trace("smt") << "SMT getValue(" << ex << ")" << endl;
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << GetValueCommand(ex);
  }

  if(!options::produceModels()) {
    const char* msg =
      "Cannot get value when produce-models options is off.";
    throw ModalException(msg);
  }
  if(d_status.isNull() ||
     d_status.asSatisfiabilityResult() == Result::UNSAT ||
     d_problemExtended) {
    const char* msg =
      "Cannot get value unless immediately preceded by SAT/INVALID or UNKNOWN response.";
    throw ModalException(msg);
  }

  // Substitute out any abstract values in ex.
  Expr e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();

  // Ensure expr is type-checked at this point.
  e.getType(options::typeChecking());

  // do not need to apply preprocessing substitutions (should be recorded
  // in model already)

  // Expand, then normalize
  hash_map<Node, Node, NodeHashFunction> cache;
  Node n = d_private->expandDefinitions(Node::fromExpr(e), cache);
  n = Rewriter::rewrite(n);

  Trace("smt") << "--- getting value of " << n << endl;
  TheoryModel* m = d_theoryEngine->getModel();
  Node resultNode;
  if(m != NULL) {
    resultNode = m->getValue(n);
  }
  Trace("smt") << "--- got value " << n << " = " << resultNode << endl;
  resultNode = postprocess(resultNode, n.getType());
  Trace("smt") << "--- model-post returned " << resultNode << endl;
  Trace("smt") << "--- model-post returned " << resultNode.getType() << endl;
  Trace("smt") << "--- model-post expected " << n.getType() << endl;

  // type-check the result we got
  Assert(resultNode.isNull() || resultNode.getType().isSubtypeOf(n.getType()));

  // ensure it's a constant
  Assert(resultNode.getKind() == kind::LAMBDA || resultNode.isConst());

  if(options::abstractValues() && resultNode.getType().isArray()) {
    resultNode = d_private->mkAbstractValue(resultNode);
  }

  return resultNode.toExpr();
}

bool SmtEngine::addToAssignment(const Expr& ex) throw() {
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  // Substitute out any abstract values in ex
  Expr e = d_private->substituteAbstractValues(Node::fromExpr(ex)).toExpr();
  Type type = e.getType(options::typeChecking());
  // must be Boolean
  CheckArgument( type.isBoolean(), e,
                 "expected Boolean-typed variable or function application "
                 "in addToAssignment()" );
  Node n = e.getNode();
  // must be an APPLY of a zero-ary defined function, or a variable
  CheckArgument( ( ( n.getKind() == kind::APPLY &&
                     ( d_definedFunctions->find(n.getOperator()) !=
                       d_definedFunctions->end() ) &&
                     n.getNumChildren() == 0 ) ||
                   n.isVar() ), e,
                 "expected variable or defined-function application "
                 "in addToAssignment(),\ngot %s", e.toString().c_str() );
  if(!options::produceAssignments()) {
    return false;
  }
  if(d_assignments == NULL) {
    d_assignments = new(true) AssignmentSet(d_context);
  }
  d_assignments->insert(n);

  return true;
}

CVC4::SExpr SmtEngine::getAssignment() throw(ModalException) {
  Trace("smt") << "SMT getAssignment()" << endl;
  SmtScope smts(this);
  finalOptionsAreSet();
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << GetAssignmentCommand();
  }
  if(!options::produceAssignments()) {
    const char* msg =
      "Cannot get the current assignment when "
      "produce-assignments option is off.";
    throw ModalException(msg);
  }
  if(d_status.isNull() ||
     d_status.asSatisfiabilityResult() == Result::UNSAT  ||
     d_problemExtended) {
    const char* msg =
      "Cannot get the current assignment unless immediately "
      "preceded by SAT/INVALID or UNKNOWN response.";
    throw ModalException(msg);
  }

  if(d_assignments == NULL) {
    return SExpr();
  }

  vector<SExpr> sexprs;
  TypeNode boolType = d_nodeManager->booleanType();
  TheoryModel* m = d_theoryEngine->getModel();
  for(AssignmentSet::const_iterator i = d_assignments->begin(),
        iend = d_assignments->end();
      i != iend;
      ++i) {
    Assert((*i).getType() == boolType);

    // Expand, then normalize
    hash_map<Node, Node, NodeHashFunction> cache;
    Node n = d_private->expandDefinitions(*i, cache);
    n = Rewriter::rewrite(n);

    Trace("smt") << "--- getting value of " << n << endl;
    Node resultNode;
    if(m != NULL) {
      resultNode = m->getValue(n);
    }

    // type-check the result we got
    Assert(resultNode.isNull() || resultNode.getType() == boolType);

    vector<SExpr> v;
    if((*i).getKind() == kind::APPLY) {
      Assert((*i).getNumChildren() == 0);
      v.push_back(SExpr::Keyword((*i).getOperator().toString()));
    } else {
      Assert((*i).isVar());
      v.push_back(SExpr::Keyword((*i).toString()));
    }
    v.push_back(SExpr::Keyword(resultNode.toString()));
    sexprs.push_back(v);
  }
  return SExpr(sexprs);
}

void SmtEngine::addToModelCommandAndDump(const Command& c, bool isGlobal, bool userVisible, const char* dumpTag) {
  Trace("smt") << "SMT addToModelCommandAndDump(" << c << ")" << endl;
  SmtScope smts(this);
  // If we aren't yet fully inited, the user might still turn on
  // produce-models.  So let's keep any commands around just in
  // case.  This is useful in two cases: (1) SMT-LIBv1 auto-declares
  // sort "U" in QF_UF before setLogic() is run and we still want to
  // support finding card(U) with --finite-model-find, and (2) to
  // decouple SmtEngine and ExprManager if the user does a few
  // ExprManager::mkSort() before SmtEngine::setOption("produce-models")
  // and expects to find their cardinalities in the model.
  if(/* userVisible && */ (!d_fullyInited || options::produceModels())) {
    doPendingPops();
    if(isGlobal) {
      d_modelGlobalCommands.push_back(c.clone());
    } else {
      d_modelCommands->push_back(c.clone());
    }
  }
  if(Dump.isOn(dumpTag)) {
    if(d_fullyInited) {
      Dump(dumpTag) << c;
    } else {
      d_dumpCommands.push_back(c.clone());
    }
  }
}

Model* SmtEngine::getModel() throw(ModalException) {
  Trace("smt") << "SMT getModel()" << endl;
  SmtScope smts(this);

  finalOptionsAreSet();

  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << GetModelCommand();
  }

  if(d_status.isNull() ||
     d_status.asSatisfiabilityResult() == Result::UNSAT ||
     d_problemExtended) {
    const char* msg =
      "Cannot get the current model unless immediately "
      "preceded by SAT/INVALID or UNKNOWN response.";
    throw ModalException(msg);
  }
  if(!options::produceModels()) {
    const char* msg =
      "Cannot get model when produce-models options is off.";
    throw ModalException(msg);
  }
  return d_theoryEngine->getModel();
}

void SmtEngine::checkModel(bool hardFailure) {
  // --check-model implies --interactive, which enables the assertion list,
  // so we should be ok.
  Assert(d_assertionList != NULL, "don't have an assertion list to check in SmtEngine::checkModel()");

  TimerStat::CodeTimer checkModelTimer(d_stats->d_checkModelTime);

  // Throughout, we use Notice() to give diagnostic output.
  //
  // If this function is running, the user gave --check-model (or equivalent),
  // and if Notice() is on, the user gave --verbose (or equivalent).

  Notice() << "SmtEngine::checkModel(): generating model" << endl;
  TheoryModel* m = d_theoryEngine->getModel();

  // Check individual theory assertions
  d_theoryEngine->checkTheoryAssertionsWithModel();

  if(Notice.isOn()) {
    // This operator<< routine is non-const (i.e., takes a non-const Model&).
    // This confuses the Notice() output routines, so extract the ostream
    // from it and output it "manually."  Should be fixed by making Model
    // accessors const.
    Notice.getStream() << *m;
  }

  // We have a "fake context" for the substitution map (we don't need it
  // to be context-dependent)
  context::Context fakeContext;
  SubstitutionMap substitutions(&fakeContext, /* substituteUnderQuantifiers = */ false);

  for(size_t k = 0; k < m->getNumCommands(); ++k) {
    const DeclareFunctionCommand* c = dynamic_cast<const DeclareFunctionCommand*>(m->getCommand(k));
    Notice() << "SmtEngine::checkModel(): model command " << k << " : " << m->getCommand(k) << endl;
    if(c == NULL) {
      // we don't care about DECLARE-DATATYPES, DECLARE-SORT, ...
      Notice() << "SmtEngine::checkModel(): skipping..." << endl;
    } else {
      // We have a DECLARE-FUN:
      //
      // We'll first do some checks, then add to our substitution map
      // the mapping: function symbol |-> value

      Expr func = c->getFunction();
      Node val = m->getValue(func);

      Notice() << "SmtEngine::checkModel(): adding substitution: " << func << " |-> " << val << endl;

      // (1) if the value is a lambda, ensure the lambda doesn't contain the
      // function symbol (since then the definition is recursive)
      if (val.getKind() == kind::LAMBDA) {
        // first apply the model substitutions we have so far
        Debug("boolean-terms") << "applying subses to " << val[1] << endl;
        Node n = substitutions.apply(val[1]);
        Debug("boolean-terms") << "++ got " << n << endl;
        // now check if n contains func by doing a substitution
        // [func->func2] and checking equality of the Nodes.
        // (this just a way to check if func is in n.)
        SubstitutionMap subs(&fakeContext);
        Node func2 = NodeManager::currentNM()->mkSkolem("", TypeNode::fromType(func.getType()), "", NodeManager::SKOLEM_NO_NOTIFY);
        subs.addSubstitution(func, func2);
        if(subs.apply(n) != n) {
          Notice() << "SmtEngine::checkModel(): *** PROBLEM: MODEL VALUE DEFINED IN TERMS OF ITSELF ***" << endl;
          stringstream ss;
          ss << "SmtEngine::checkModel(): ERRORS SATISFYING ASSERTIONS WITH MODEL:" << endl
             << "considering model value for " << func << endl
             << "body of lambda is:   " << val << endl;
          if(n != val[1]) {
            ss << "body substitutes to: " << n << endl;
          }
          ss << "so " << func << " is defined in terms of itself." << endl
             << "Run with `--check-models -v' for additional diagnostics.";
          InternalError(ss.str());
        }
      }

      // (2) check that the value is actually a value
      else if (!val.isConst()) {
        Notice() << "SmtEngine::checkModel(): *** PROBLEM: MODEL VALUE NOT A CONSTANT ***" << endl;
        stringstream ss;
        ss << "SmtEngine::checkModel(): ERRORS SATISFYING ASSERTIONS WITH MODEL:" << endl
           << "model value for " << func << endl
           << "             is " << val << endl
           << "and that is not a constant (.isConst() == false)." << endl
           << "Run with `--check-models -v' for additional diagnostics.";
        InternalError(ss.str());
      }

      // (3) checks complete, add the substitution
      Debug("boolean-terms") << "cm: adding subs " << func << " :=> " << val << endl;
      substitutions.addSubstitution(func, val);
    }
  }

  // Now go through all our user assertions checking if they're satisfied.
  for(AssertionList::const_iterator i = d_assertionList->begin(); i != d_assertionList->end(); ++i) {
    Notice() << "SmtEngine::checkModel(): checking assertion " << *i << endl;
    Node n = Node::fromExpr(*i);

    // Apply any define-funs from the problem.
    {
      hash_map<Node, Node, NodeHashFunction> cache;
      n = d_private->expandDefinitions(n, cache);
    }
    Notice() << "SmtEngine::checkModel(): -- expands to " << n << endl;

    // Apply our model value substitutions.
    Debug("boolean-terms") << "applying subses to " << n << endl;
    n = substitutions.apply(n);
    Debug("boolean-terms") << "++ got " << n << endl;
    Notice() << "SmtEngine::checkModel(): -- substitutes to " << n << endl;

    // Simplify the result.
    n = d_private->simplify(n);
    Notice() << "SmtEngine::checkModel(): -- simplifies to  " << n << endl;

    TheoryId thy = Theory::theoryOf(n);
    if(thy == THEORY_REWRITERULES) {
      // Note this "skip" is done here, rather than above.  This is
      // because (1) the quantifier could in principle simplify to false,
      // which should be reported, and (2) checking for the quantifier
      // above, before simplification, doesn't catch buried quantifiers
      // anyway (those not at the top-level).
      Notice() << "SmtEngine::checkModel(): -- skipping rewrite-rules assertion"
               << endl;
      continue;
    }

    // As a last-ditch effort, ask model to simplify it.
    // Presently, this is only an issue for quantifiers, which can have a value
    // but don't show up in our substitution map above.
    n = m->getValue(n);
    Notice() << "SmtEngine::checkModel(): -- model-substitutes to " << n << endl;

    // The result should be == true.
    if(n != NodeManager::currentNM()->mkConst(true)) {
      Notice() << "SmtEngine::checkModel(): *** PROBLEM: EXPECTED `TRUE' ***"
               << endl;
      stringstream ss;
      ss << "SmtEngine::checkModel(): "
         << "ERRORS SATISFYING ASSERTIONS WITH MODEL:" << endl
         << "assertion:     " << *i << endl
         << "simplifies to: " << n << endl
         << "expected `true'." << endl
         << "Run with `--check-models -v' for additional diagnostics.";
      if(hardFailure) {
        InternalError(ss.str());
      } else {
        Warning() << ss.str() << endl;
      }
    }
  }
  Notice() << "SmtEngine::checkModel(): all assertions checked out OK !" << endl;
}

Proof* SmtEngine::getProof() throw(ModalException) {
  Trace("smt") << "SMT getProof()" << endl;
  SmtScope smts(this);
  finalOptionsAreSet();
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << GetProofCommand();
  }
#ifdef CVC4_PROOF
  if(!options::proof()) {
    const char* msg =
      "Cannot get a proof when produce-proofs option is off.";
    throw ModalException(msg);
  }
  if(d_status.isNull() ||
     d_status.asSatisfiabilityResult() != Result::UNSAT ||
     d_problemExtended) {
    const char* msg =
      "Cannot get a proof unless immediately preceded by UNSAT/VALID response.";
    throw ModalException(msg);
  }

  return ProofManager::getProof();
#else /* CVC4_PROOF */
  throw ModalException("This build of CVC4 doesn't have proof support.");
#endif /* CVC4_PROOF */
}

vector<Expr> SmtEngine::getAssertions() throw(ModalException) {
  SmtScope smts(this);
  finalOptionsAreSet();
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << GetAssertionsCommand();
  }
  Trace("smt") << "SMT getAssertions()" << endl;
  if(!options::interactive()) {
    const char* msg =
      "Cannot query the current assertion list when not in interactive mode.";
    throw ModalException(msg);
  }
  Assert(d_assertionList != NULL);
  // copy the result out
  return vector<Expr>(d_assertionList->begin(), d_assertionList->end());
}

void SmtEngine::push() throw(ModalException, LogicException) {
  SmtScope smts(this);
  finalOptionsAreSet();
  doPendingPops();
  Trace("smt") << "SMT push()" << endl;
  d_private->processAssertions();
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << PushCommand();
  }
  if(!options::incrementalSolving()) {
    throw ModalException("Cannot push when not solving incrementally (use --incremental)");
  }

  // check to see if a postsolve() is pending
  if(d_needPostsolve) {
    d_theoryEngine->postsolve();
    d_needPostsolve = false;
  }

  d_userLevels.push_back(d_userContext->getLevel());
  internalPush();
  Trace("userpushpop") << "SmtEngine: pushed to level "
                       << d_userContext->getLevel() << endl;
}

void SmtEngine::pop() throw(ModalException) {
  SmtScope smts(this);
  finalOptionsAreSet();
  Trace("smt") << "SMT pop()" << endl;
  if(Dump.isOn("benchmark")) {
    Dump("benchmark") << PopCommand();
  }
  if(!options::incrementalSolving()) {
    throw ModalException("Cannot pop when not solving incrementally (use --incremental)");
  }
  if(d_userLevels.size() == 0) {
    throw ModalException("Cannot pop beyond the first user frame");
  }

  // check to see if a postsolve() is pending
  if(d_needPostsolve) {
    d_theoryEngine->postsolve();
    d_needPostsolve = false;
  }

  AlwaysAssert(d_userContext->getLevel() > 0);
  AlwaysAssert(d_userLevels.back() < d_userContext->getLevel());
  while (d_userLevels.back() < d_userContext->getLevel()) {
    internalPop(true);
  }
  d_userLevels.pop_back();

  // Clear out assertion queues etc., in case anything is still in there
  d_private->notifyPop();

  Trace("userpushpop") << "SmtEngine: popped to level "
                       << d_userContext->getLevel() << endl;
  // FIXME: should we reset d_status here?
  // SMT-LIBv2 spec seems to imply no, but it would make sense to..
  // Still, we want the right exit status after any final sequence
  // of pops... hm.
}

void SmtEngine::internalPush() {
  Assert(d_fullyInited);
  Trace("smt") << "SmtEngine::internalPush()" << endl;
  doPendingPops();
  if(options::incrementalSolving()) {
    d_private->processAssertions();
    TimerStat::CodeTimer pushPopTimer(d_stats->d_pushPopTime);
    d_userContext->push();
    // the d_context push is done inside of the SAT solver
    d_propEngine->push();
  }
}

void SmtEngine::internalPop(bool immediate) {
  Assert(d_fullyInited);
  Trace("smt") << "SmtEngine::internalPop()" << endl;
  if(options::incrementalSolving()) {
    ++d_pendingPops;
  }
  if(immediate) {
    doPendingPops();
  }
}

void SmtEngine::doPendingPops() {
  Assert(d_pendingPops == 0 || options::incrementalSolving());
  while(d_pendingPops > 0) {
    TimerStat::CodeTimer pushPopTimer(d_stats->d_pushPopTime);
    d_propEngine->pop();
    // the d_context pop is done inside of the SAT solver
    d_userContext->pop();
    --d_pendingPops;
  }
}

void SmtEngine::interrupt() throw(ModalException) {
  if(!d_fullyInited) {
    return;
  }
  d_propEngine->interrupt();
  d_theoryEngine->interrupt();
}

void SmtEngine::setResourceLimit(unsigned long units, bool cumulative) {
  if(cumulative) {
    Trace("limit") << "SmtEngine: setting cumulative resource limit to " << units << endl;
    d_resourceBudgetCumulative = (units == 0) ? 0 : (d_cumulativeResourceUsed + units);
  } else {
    Trace("limit") << "SmtEngine: setting per-call resource limit to " << units << endl;
    d_resourceBudgetPerCall = units;
  }
}

void SmtEngine::setTimeLimit(unsigned long millis, bool cumulative) {
  if(cumulative) {
    Trace("limit") << "SmtEngine: setting cumulative time limit to " << millis << " ms" << endl;
    d_timeBudgetCumulative = (millis == 0) ? 0 : (d_cumulativeTimeUsed + millis);
  } else {
    Trace("limit") << "SmtEngine: setting per-call time limit to " << millis << " ms" << endl;
    d_timeBudgetPerCall = millis;
  }
}

unsigned long SmtEngine::getResourceUsage() const {
  return d_cumulativeResourceUsed;
}

unsigned long SmtEngine::getTimeUsage() const {
  return d_cumulativeTimeUsed;
}

unsigned long SmtEngine::getResourceRemaining() const throw(ModalException) {
  if(d_resourceBudgetCumulative == 0) {
    throw ModalException("No cumulative resource limit is currently set");
  }

  return d_resourceBudgetCumulative <= d_cumulativeResourceUsed ? 0 :
    d_resourceBudgetCumulative - d_cumulativeResourceUsed;
}

unsigned long SmtEngine::getTimeRemaining() const throw(ModalException) {
  if(d_timeBudgetCumulative == 0) {
    throw ModalException("No cumulative time limit is currently set");
  }

  return d_timeBudgetCumulative <= d_cumulativeTimeUsed ? 0 :
    d_timeBudgetCumulative - d_cumulativeTimeUsed;
}

Statistics SmtEngine::getStatistics() const throw() {
  return Statistics(*d_statisticsRegistry);
}

SExpr SmtEngine::getStatistic(std::string name) const throw() {
  return d_statisticsRegistry->getStatistic(name);
}

void SmtEngine::setUserAttribute(const std::string& attr, Expr expr) {
  SmtScope smts(this);
  d_theoryEngine->setUserAttribute(attr, expr.getNode());
}

}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback