summaryrefslogtreecommitdiff
path: root/src/smt/proof_post_processor.cpp
blob: dedb686c33a4bc689ddefcb3abb767509dad68d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
/*********************                                                        */
/*! \file proof_post_processor.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Andrew Reynolds, Haniel Barbosa
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 ** in the top-level source directory and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Implementation of module for processing proof nodes
 **/

#include "smt/proof_post_processor.h"

#include "expr/proof_node_manager.h"
#include "expr/skolem_manager.h"
#include "options/proof_options.h"
#include "options/smt_options.h"
#include "preprocessing/assertion_pipeline.h"
#include "smt/smt_engine.h"
#include "smt/smt_statistics_registry.h"
#include "theory/builtin/proof_checker.h"
#include "theory/rewriter.h"
#include "theory/theory.h"

using namespace cvc5::kind;
using namespace cvc5::theory;

namespace cvc5 {
namespace smt {

ProofPostprocessCallback::ProofPostprocessCallback(ProofNodeManager* pnm,
                                                   SmtEngine* smte,
                                                   ProofGenerator* pppg)
    : d_pnm(pnm), d_smte(smte), d_pppg(pppg), d_wfpm(pnm)
{
  d_true = NodeManager::currentNM()->mkConst(true);
  // always check whether to update ASSUME
  d_elimRules.insert(PfRule::ASSUME);
}

void ProofPostprocessCallback::initializeUpdate()
{
  d_assumpToProof.clear();
  d_wfAssumptions.clear();
}

void ProofPostprocessCallback::setEliminateRule(PfRule rule)
{
  d_elimRules.insert(rule);
}

bool ProofPostprocessCallback::shouldUpdate(std::shared_ptr<ProofNode> pn,
                                            bool& continueUpdate)
{
  return d_elimRules.find(pn->getRule()) != d_elimRules.end();
}

bool ProofPostprocessCallback::update(Node res,
                                      PfRule id,
                                      const std::vector<Node>& children,
                                      const std::vector<Node>& args,
                                      CDProof* cdp,
                                      bool& continueUpdate)
{
  Trace("smt-proof-pp-debug") << "- Post process " << id << " " << children
                              << " / " << args << std::endl;

  if (id == PfRule::ASSUME)
  {
    // we cache based on the assumption node, not the proof node, since there
    // may be multiple occurrences of the same node.
    Node f = args[0];
    std::shared_ptr<ProofNode> pfn;
    std::map<Node, std::shared_ptr<ProofNode>>::iterator it =
        d_assumpToProof.find(f);
    if (it != d_assumpToProof.end())
    {
      Trace("smt-proof-pp-debug") << "...already computed" << std::endl;
      pfn = it->second;
    }
    else
    {
      Trace("smt-proof-pp-debug") << "...get proof" << std::endl;
      Assert(d_pppg != nullptr);
      // get proof from preprocess proof generator
      pfn = d_pppg->getProofFor(f);
      Trace("smt-proof-pp-debug") << "...finished get proof" << std::endl;
      // print for debugging
      if (pfn == nullptr)
      {
        Trace("smt-proof-pp-debug")
            << "...no proof, possibly an input assumption" << std::endl;
      }
      else
      {
        Assert(pfn->getResult() == f);
        if (Trace.isOn("smt-proof-pp"))
        {
          Trace("smt-proof-pp")
              << "=== Connect proof for preprocessing: " << f << std::endl;
          Trace("smt-proof-pp") << *pfn.get() << std::endl;
        }
      }
      d_assumpToProof[f] = pfn;
    }
    if (pfn == nullptr || pfn->getRule() == PfRule::ASSUME)
    {
      Trace("smt-proof-pp-debug") << "...do not add proof" << std::endl;
      // no update
      return false;
    }
    Trace("smt-proof-pp-debug") << "...add proof" << std::endl;
    // connect the proof
    cdp->addProof(pfn);
    return true;
  }
  Node ret = expandMacros(id, children, args, cdp);
  Trace("smt-proof-pp-debug") << "...expanded = " << !ret.isNull() << std::endl;
  return !ret.isNull();
}

bool ProofPostprocessCallback::updateInternal(Node res,
                                              PfRule id,
                                              const std::vector<Node>& children,
                                              const std::vector<Node>& args,
                                              CDProof* cdp)
{
  bool continueUpdate = true;
  return update(res, id, children, args, cdp, continueUpdate);
}

Node ProofPostprocessCallback::eliminateCrowdingLits(
    const std::vector<Node>& clauseLits,
    const std::vector<Node>& targetClauseLits,
    const std::vector<Node>& children,
    const std::vector<Node>& args,
    CDProof* cdp)
{
  Trace("smt-proof-pp-debug2") << push;
  NodeManager* nm = NodeManager::currentNM();
  Node trueNode = nm->mkConst(true);
  // get crowding lits and the position of the last clause that includes
  // them. The factoring step must be added after the last inclusion and before
  // its elimination.
  std::unordered_set<TNode, TNodeHashFunction> crowding;
  std::vector<std::pair<Node, size_t>> lastInclusion;
  // positions of eliminators of crowding literals, which are the positions of
  // the clauses that eliminate crowding literals *after* their last inclusion
  std::vector<size_t> eliminators;
  for (size_t i = 0, size = clauseLits.size(); i < size; ++i)
  {
    if (!crowding.count(clauseLits[i])
        && std::find(
               targetClauseLits.begin(), targetClauseLits.end(), clauseLits[i])
               == targetClauseLits.end())
    {
      Node crowdLit = clauseLits[i];
      crowding.insert(crowdLit);
      Trace("smt-proof-pp-debug2") << "crowding lit " << crowdLit << "\n";
      // found crowding lit, now get its last inclusion position, which is the
      // position of the last resolution link that introduces the crowding
      // literal. Note that this position has to be *before* the last link, as a
      // link *after* the last inclusion must eliminate the crowding literal.
      size_t j;
      for (j = children.size() - 1; j > 0; --j)
      {
        // notice that only non-singleton clauses may be introducing the
        // crowding literal, so we only care about non-singleton OR nodes. We
        // check then against the kind and whether the whole OR node occurs as a
        // pivot of the respective resolution
        if (children[j - 1].getKind() != kind::OR)
        {
          continue;
        }
        uint64_t pivotIndex = 2 * (j - 1);
        if (args[pivotIndex] == children[j - 1]
            || args[pivotIndex].notNode() == children[j - 1])
        {
          continue;
        }
        if (std::find(children[j - 1].begin(), children[j - 1].end(), crowdLit)
            != children[j - 1].end())
        {
          break;
        }
      }
      Assert(j > 0);
      lastInclusion.emplace_back(crowdLit, j - 1);

      Trace("smt-proof-pp-debug2") << "last inc " << j - 1 << "\n";
      // get elimination position, starting from the following link as the last
      // inclusion one. The result is the last (in the chain, but first from
      // this point on) resolution link that eliminates the crowding literal. A
      // literal l is eliminated by a link if it contains a literal l' with
      // opposite polarity to l.
      for (; j < children.size(); ++j)
      {
        bool posFirst = args[(2 * j) - 1] == trueNode;
        Node pivot = args[(2 * j)];
        Trace("smt-proof-pp-debug2")
            << "\tcheck w/ args " << posFirst << " / " << pivot << "\n";
        // To eliminate the crowding literal (crowdLit), the clause must contain
        // it with opposite polarity. There are three successful cases,
        // according to the pivot and its sign
        //
        // - crowdLit is the same as the pivot and posFirst is true, which means
        //   that the clause contains its negation and eliminates it
        //
        // - crowdLit is the negation of the pivot and posFirst is false, so the
        //   clause contains the node whose negation is crowdLit. Note that this
        //   case may either be crowdLit.notNode() == pivot or crowdLit ==
        //   pivot.notNode().
        if ((crowdLit == pivot && posFirst)
            || (crowdLit.notNode() == pivot && !posFirst)
            || (pivot.notNode() == crowdLit && !posFirst))
        {
          Trace("smt-proof-pp-debug2") << "\t\tfound it!\n";
          eliminators.push_back(j);
          break;
        }
      }
      AlwaysAssert(j < children.size());
    }
  }
  Assert(!lastInclusion.empty());
  // order map so that we process crowding literals in the order of the clauses
  // that last introduce them
  auto cmp = [](std::pair<Node, size_t>& a, std::pair<Node, size_t>& b) {
    return a.second < b.second;
  };
  std::sort(lastInclusion.begin(), lastInclusion.end(), cmp);
  // order eliminators
  std::sort(eliminators.begin(), eliminators.end());
  if (Trace.isOn("smt-proof-pp-debug"))
  {
    Trace("smt-proof-pp-debug") << "crowding lits last inclusion:\n";
    for (const auto& pair : lastInclusion)
    {
      Trace("smt-proof-pp-debug")
          << "\t- [" << pair.second << "] : " << pair.first << "\n";
    }
    Trace("smt-proof-pp-debug") << "eliminators:";
    for (size_t elim : eliminators)
    {
      Trace("smt-proof-pp-debug") << " " << elim;
    }
    Trace("smt-proof-pp-debug") << "\n";
  }
  // TODO (cvc4-wishues/issues/77): implement also simpler version and compare
  //
  // We now start to break the chain, one step at a time. Naively this breaking
  // down would be one resolution/factoring to each crowding literal, but we can
  // merge some of the cases. Effectively we do the following:
  //
  //
  // lastClause   children[start] ... children[end]
  // ---------------------------------------------- CHAIN_RES
  //         C
  //    ----------- FACTORING
  //    lastClause'                children[start'] ... children[end']
  //    -------------------------------------------------------------- CHAIN_RES
  //                                    ...
  //
  // where
  //   lastClause_0 = children[0]
  //   start_0 = 1
  //   end_0 = eliminators[0] - 1
  //   start_i+1 = nextGuardedElimPos - 1
  //
  // The important point is how end_i+1 is computed. It is based on what we call
  // the "nextGuardedElimPos", i.e., the next elimination position that requires
  // removal of duplicates. The intuition is that a factoring step may eliminate
  // the duplicates of crowding literals l1 and l2. If the last inclusion of l2
  // is before the elimination of l1, then we can go ahead and also perform the
  // elimination of l2 without another factoring. However if another literal l3
  // has its last inclusion after the elimination of l2, then the elimination of
  // l3 is the next guarded elimination.
  //
  // To do the above computation then we determine, after a resolution/factoring
  // step, the first crowded literal to have its last inclusion after "end". The
  // first elimination position to be bigger than the position of that crowded
  // literal is the next guarded elimination position.
  size_t lastElim = 0;
  Node lastClause = children[0];
  std::vector<Node> childrenRes;
  std::vector<Node> childrenResArgs;
  Node resPlaceHolder;
  size_t nextGuardedElimPos = eliminators[0];
  do
  {
    size_t start = lastElim + 1;
    size_t end = nextGuardedElimPos - 1;
    Trace("smt-proof-pp-debug2")
        << "res with:\n\tlastClause: " << lastClause << "\n\tstart: " << start
        << "\n\tend: " << end << "\n";
    childrenRes.push_back(lastClause);
    // note that the interval of insert is exclusive in the end, so we add 1
    childrenRes.insert(childrenRes.end(),
                       children.begin() + start,
                       children.begin() + end + 1);
    childrenResArgs.insert(childrenResArgs.end(),
                           args.begin() + (2 * start) - 1,
                           args.begin() + (2 * end) + 1);
    Trace("smt-proof-pp-debug2") << "res children: " << childrenRes << "\n";
    Trace("smt-proof-pp-debug2") << "res args: " << childrenResArgs << "\n";
    resPlaceHolder = d_pnm->getChecker()->checkDebug(PfRule::CHAIN_RESOLUTION,
                                                     childrenRes,
                                                     childrenResArgs,
                                                     Node::null(),
                                                     "");
    Trace("smt-proof-pp-debug2")
        << "resPlaceHorder: " << resPlaceHolder << "\n";
    cdp->addStep(
        resPlaceHolder, PfRule::CHAIN_RESOLUTION, childrenRes, childrenResArgs);
    // I need to add factoring if end < children.size(). Otherwise, this is
    // to be handled by the caller
    if (end < children.size() - 1)
    {
      lastClause = d_pnm->getChecker()->checkDebug(
          PfRule::FACTORING, {resPlaceHolder}, {}, Node::null(), "");
      if (!lastClause.isNull())
      {
        cdp->addStep(lastClause, PfRule::FACTORING, {resPlaceHolder}, {});
      }
      else
      {
        lastClause = resPlaceHolder;
      }
      Trace("smt-proof-pp-debug2") << "lastClause: " << lastClause << "\n";
    }
    else
    {
      lastClause = resPlaceHolder;
      break;
    }
    // update for next round
    childrenRes.clear();
    childrenResArgs.clear();
    lastElim = end;

    // find the position of the last inclusion of the next crowded literal
    size_t nextCrowdedInclusionPos = lastInclusion.size();
    for (size_t i = 0, size = lastInclusion.size(); i < size; ++i)
    {
      if (lastInclusion[i].second > lastElim)
      {
        nextCrowdedInclusionPos = i;
        break;
      }
    }
    Trace("smt-proof-pp-debug2")
        << "nextCrowdedInclusion/Pos: "
        << lastInclusion[nextCrowdedInclusionPos].second << "/"
        << nextCrowdedInclusionPos << "\n";
    // if there is none, then the remaining literals will be used in the next
    // round
    if (nextCrowdedInclusionPos == lastInclusion.size())
    {
      nextGuardedElimPos = children.size();
    }
    else
    {
      nextGuardedElimPos = children.size();
      for (size_t i = 0, size = eliminators.size(); i < size; ++i)
      {
        //  nextGuardedElimPos is the largest element of
        // eliminators bigger the next crowded literal's last inclusion
        if (eliminators[i] > lastInclusion[nextCrowdedInclusionPos].second)
        {
          nextGuardedElimPos = eliminators[i];
          break;
        }
      }
      Assert(nextGuardedElimPos < children.size());
    }
    Trace("smt-proof-pp-debug2")
        << "nextGuardedElimPos: " << nextGuardedElimPos << "\n";
  } while (true);
  Trace("smt-proof-pp-debug2") << pop;
  return lastClause;
}

Node ProofPostprocessCallback::expandMacros(PfRule id,
                                            const std::vector<Node>& children,
                                            const std::vector<Node>& args,
                                            CDProof* cdp)
{
  if (d_elimRules.find(id) == d_elimRules.end())
  {
    // not eliminated
    return Node::null();
  }
  // macro elimination
  if (id == PfRule::MACRO_SR_EQ_INTRO)
  {
    // (TRANS
    //   (SUBS <children> :args args[0:1])
    //   (REWRITE :args <t.substitute(x1,t1). ... .substitute(xn,tn)> args[2]))
    std::vector<Node> tchildren;
    Node t = args[0];
    Node ts;
    if (!children.empty())
    {
      std::vector<Node> sargs;
      sargs.push_back(t);
      MethodId sid = MethodId::SB_DEFAULT;
      if (args.size() >= 2)
      {
        if (builtin::BuiltinProofRuleChecker::getMethodId(args[1], sid))
        {
          sargs.push_back(args[1]);
        }
      }
      ts =
          builtin::BuiltinProofRuleChecker::applySubstitution(t, children, sid);
      Trace("smt-proof-pp-debug")
          << "...eq intro subs equality is " << t << " == " << ts << ", from "
          << sid << std::endl;
      if (ts != t)
      {
        Node eq = t.eqNode(ts);
        // apply SUBS proof rule if necessary
        if (!updateInternal(eq, PfRule::SUBS, children, sargs, cdp))
        {
          // if we specified that we did not want to eliminate, add as step
          cdp->addStep(eq, PfRule::SUBS, children, sargs);
        }
        tchildren.push_back(eq);
      }
    }
    else
    {
      // no substitute
      ts = t;
    }
    std::vector<Node> rargs;
    rargs.push_back(ts);
    MethodId rid = MethodId::RW_REWRITE;
    if (args.size() >= 3)
    {
      if (builtin::BuiltinProofRuleChecker::getMethodId(args[2], rid))
      {
        rargs.push_back(args[2]);
      }
    }
    builtin::BuiltinProofRuleChecker* builtinPfC =
        static_cast<builtin::BuiltinProofRuleChecker*>(
            d_pnm->getChecker()->getCheckerFor(PfRule::MACRO_SR_EQ_INTRO));
    Node tr = builtinPfC->applyRewrite(ts, rid);
    Trace("smt-proof-pp-debug")
        << "...eq intro rewrite equality is " << ts << " == " << tr << ", from "
        << rid << std::endl;
    if (ts != tr)
    {
      Node eq = ts.eqNode(tr);
      // apply REWRITE proof rule
      if (!updateInternal(eq, PfRule::REWRITE, {}, rargs, cdp))
      {
        // if not elimianted, add as step
        cdp->addStep(eq, PfRule::REWRITE, {}, rargs);
      }
      tchildren.push_back(eq);
    }
    if (t == tr)
    {
      // typically not necessary, but done to be robust
      cdp->addStep(t.eqNode(tr), PfRule::REFL, {}, {t});
      return t.eqNode(tr);
    }
    // must add TRANS if two step
    return addProofForTrans(tchildren, cdp);
  }
  else if (id == PfRule::MACRO_SR_PRED_INTRO)
  {
    std::vector<Node> tchildren;
    std::vector<Node> sargs = args;
    // take into account witness form, if necessary
    bool reqWitness = d_wfpm.requiresWitnessFormIntro(args[0]);
    Trace("smt-proof-pp-debug")
        << "...pred intro reqWitness=" << reqWitness << std::endl;
    // (TRUE_ELIM
    // (TRANS
    //    (MACRO_SR_EQ_INTRO <children> :args (t args[1:]))
    //    ... proof of apply_SR(t) = toWitness(apply_SR(t)) ...
    //    (MACRO_SR_EQ_INTRO {} {toWitness(apply_SR(t))})
    // ))
    // Notice this is an optimized, one sided version of the expansion of
    // MACRO_SR_PRED_TRANSFORM below.
    // We call the expandMacros method on MACRO_SR_EQ_INTRO, where notice
    // that this rule application is immediately expanded in the recursive
    // call and not added to the proof.
    Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, children, sargs, cdp);
    Trace("smt-proof-pp-debug")
        << "...pred intro conclusion is " << conc << std::endl;
    Assert(!conc.isNull());
    Assert(conc.getKind() == EQUAL);
    Assert(conc[0] == args[0]);
    tchildren.push_back(conc);
    if (reqWitness)
    {
      Node weq = addProofForWitnessForm(conc[1], cdp);
      Trace("smt-proof-pp-debug") << "...weq is " << weq << std::endl;
      if (addToTransChildren(weq, tchildren))
      {
        // toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t)))
        // rewrite again, don't need substitution. Also we always use the
        // default rewriter, due to the definition of MACRO_SR_PRED_INTRO.
        Node weqr = expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp);
        addToTransChildren(weqr, tchildren);
      }
    }
    // apply transitivity if necessary
    Node eq = addProofForTrans(tchildren, cdp);
    Assert(!eq.isNull());
    Assert(eq.getKind() == EQUAL);
    Assert(eq[0] == args[0]);
    Assert(eq[1] == d_true);

    cdp->addStep(eq[0], PfRule::TRUE_ELIM, {eq}, {});
    return eq[0];
  }
  else if (id == PfRule::MACRO_SR_PRED_ELIM)
  {
    // (EQ_RESOLVE
    //   children[0]
    //   (MACRO_SR_EQ_INTRO children[1:] :args children[0] ++ args))
    std::vector<Node> schildren(children.begin() + 1, children.end());
    std::vector<Node> srargs;
    srargs.push_back(children[0]);
    srargs.insert(srargs.end(), args.begin(), args.end());
    Node conc = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, srargs, cdp);
    Assert(!conc.isNull());
    Assert(conc.getKind() == EQUAL);
    Assert(conc[0] == children[0]);
    // apply equality resolve
    cdp->addStep(conc[1], PfRule::EQ_RESOLVE, {children[0], conc}, {});
    return conc[1];
  }
  else if (id == PfRule::MACRO_SR_PRED_TRANSFORM)
  {
    // (EQ_RESOLVE
    //   children[0]
    //   (TRANS
    //      (MACRO_SR_EQ_INTRO children[1:] :args (children[0] args[1:]))
    //      ... proof of c = wc
    //      (MACRO_SR_EQ_INTRO {} wc)
    //      (SYMM
    //        (MACRO_SR_EQ_INTRO children[1:] :args <args>)
    //        ... proof of a = wa
    //        (MACRO_SR_EQ_INTRO {} wa))))
    // where
    // wa = toWitness(apply_SR(args[0])) and
    // wc = toWitness(apply_SR(children[0])).
    Trace("smt-proof-pp-debug")
        << "Transform " << children[0] << " == " << args[0] << std::endl;
    if (CDProof::isSame(children[0], args[0]))
    {
      Trace("smt-proof-pp-debug") << "...nothing to do" << std::endl;
      // nothing to do
      return children[0];
    }
    std::vector<Node> tchildren;
    std::vector<Node> schildren(children.begin() + 1, children.end());
    std::vector<Node> sargs = args;
    // first, compute if we need
    bool reqWitness = d_wfpm.requiresWitnessFormTransform(children[0], args[0]);
    Trace("smt-proof-pp-debug") << "...reqWitness=" << reqWitness << std::endl;
    // convert both sides, in three steps, take symmetry of second chain
    for (unsigned r = 0; r < 2; r++)
    {
      std::vector<Node> tchildrenr;
      // first rewrite children[0], then args[0]
      sargs[0] = r == 0 ? children[0] : args[0];
      // t = apply_SR(t)
      Node eq = expandMacros(PfRule::MACRO_SR_EQ_INTRO, schildren, sargs, cdp);
      Trace("smt-proof-pp-debug")
          << "transform subs_rewrite (" << r << "): " << eq << std::endl;
      Assert(!eq.isNull() && eq.getKind() == EQUAL && eq[0] == sargs[0]);
      addToTransChildren(eq, tchildrenr);
      // apply_SR(t) = toWitness(apply_SR(t))
      if (reqWitness)
      {
        Node weq = addProofForWitnessForm(eq[1], cdp);
        Trace("smt-proof-pp-debug")
            << "transform toWitness (" << r << "): " << weq << std::endl;
        if (addToTransChildren(weq, tchildrenr))
        {
          // toWitness(apply_SR(t)) = apply_SR(toWitness(apply_SR(t)))
          // rewrite again, don't need substitution. Also, we always use the
          // default rewriter, due to the definition of MACRO_SR_PRED_TRANSFORM.
          Node weqr =
              expandMacros(PfRule::MACRO_SR_EQ_INTRO, {}, {weq[1]}, cdp);
          Trace("smt-proof-pp-debug") << "transform rewrite_witness (" << r
                                      << "): " << weqr << std::endl;
          addToTransChildren(weqr, tchildrenr);
        }
      }
      Trace("smt-proof-pp-debug")
          << "transform connect (" << r << ")" << std::endl;
      // add to overall chain
      if (r == 0)
      {
        // add the current chain to the overall chain
        tchildren.insert(tchildren.end(), tchildrenr.begin(), tchildrenr.end());
      }
      else
      {
        // add the current chain to cdp
        Node eqr = addProofForTrans(tchildrenr, cdp);
        if (!eqr.isNull())
        {
          Trace("smt-proof-pp-debug") << "transform connect sym " << tchildren
                                      << " " << eqr << std::endl;
          // take symmetry of above and add it to the overall chain
          addToTransChildren(eqr, tchildren, true);
        }
      }
      Trace("smt-proof-pp-debug")
          << "transform finish (" << r << ")" << std::endl;
    }

    // apply transitivity if necessary
    Node eq = addProofForTrans(tchildren, cdp);

    cdp->addStep(args[0], PfRule::EQ_RESOLVE, {children[0], eq}, {});
    return args[0];
  }
  else if (id == PfRule::MACRO_RESOLUTION)
  {
    // first generate the naive chain_resolution
    std::vector<Node> chainResArgs{args.begin() + 1, args.end()};
    Node chainConclusion = d_pnm->getChecker()->checkDebug(
        PfRule::CHAIN_RESOLUTION, children, chainResArgs, Node::null(), "");
    Trace("smt-proof-pp-debug") << "Original conclusion: " << args[0] << "\n";
    Trace("smt-proof-pp-debug")
        << "chainRes conclusion: " << chainConclusion << "\n";
    // There are n cases:
    // - if the conclusion is the same, just replace
    // - if they have the same literals but in different quantity, add a
    //   FACTORING step
    // - if the order is not the same, add a REORDERING step
    // - if there are literals in chainConclusion that are not in the original
    //   conclusion, we need to transform the MACRO_RESOLUTION into a series of
    //   CHAIN_RESOLUTION + FACTORING steps, so that we explicitly eliminate all
    //   these "crowding" literals. We do this via FACTORING so we avoid adding
    //   an exponential number of premises, which would happen if we just
    //   repeated in the premises the clauses needed for eliminating crowding
    //   literals, which could themselves add crowding literals.
    if (chainConclusion == args[0])
    {
      cdp->addStep(
          chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs);
      return chainConclusion;
    }
    NodeManager* nm = NodeManager::currentNM();
    // If we got here, then chainConclusion is NECESSARILY an OR node
    Assert(chainConclusion.getKind() == kind::OR);
    // get the literals in the chain conclusion
    std::vector<Node> chainConclusionLits{chainConclusion.begin(),
                                          chainConclusion.end()};
    std::set<Node> chainConclusionLitsSet{chainConclusion.begin(),
                                          chainConclusion.end()};
    // is args[0] a singleton clause? If it's not an OR node, then yes.
    // Otherwise, it's only a singleton if it occurs in chainConclusionLitsSet
    std::vector<Node> conclusionLits;
    // whether conclusion is singleton
    if (chainConclusionLitsSet.count(args[0]))
    {
      conclusionLits.push_back(args[0]);
    }
    else
    {
      Assert(args[0].getKind() == kind::OR);
      conclusionLits.insert(
          conclusionLits.end(), args[0].begin(), args[0].end());
    }
    std::set<Node> conclusionLitsSet{conclusionLits.begin(),
                                     conclusionLits.end()};
    // If the sets are different, there are "crowding" literals, i.e. literals
    // that were removed by implicit multi-usage of premises in the resolution
    // chain.
    if (chainConclusionLitsSet != conclusionLitsSet)
    {
      chainConclusion = eliminateCrowdingLits(
          chainConclusionLits, conclusionLits, children, args, cdp);
      // update vector of lits. Note that the set is no longer used, so we don't
      // need to update it
      //
      // We need again to check whether chainConclusion is a singleton
      // clause. As above, it's a singleton if it's in the original
      // chainConclusionLitsSet.
      chainConclusionLits.clear();
      if (chainConclusionLitsSet.count(chainConclusion))
      {
        chainConclusionLits.push_back(chainConclusion);
      }
      else
      {
        Assert(chainConclusion.getKind() == kind::OR);
        chainConclusionLits.insert(chainConclusionLits.end(),
                                   chainConclusion.begin(),
                                   chainConclusion.end());
      }
    }
    else
    {
      cdp->addStep(
          chainConclusion, PfRule::CHAIN_RESOLUTION, children, chainResArgs);
    }
    Trace("smt-proof-pp-debug")
        << "Conclusion after chain_res/elimCrowd: " << chainConclusion << "\n";
    Trace("smt-proof-pp-debug")
        << "Conclusion lits: " << chainConclusionLits << "\n";
    // Placeholder for running conclusion
    Node n = chainConclusion;
    // factoring
    if (chainConclusionLits.size() != conclusionLits.size())
    {
      // We build it rather than taking conclusionLits because the order may be
      // different
      std::vector<Node> factoredLits;
      std::unordered_set<TNode, TNodeHashFunction> clauseSet;
      for (size_t i = 0, size = chainConclusionLits.size(); i < size; ++i)
      {
        if (clauseSet.count(chainConclusionLits[i]))
        {
          continue;
        }
        factoredLits.push_back(n[i]);
        clauseSet.insert(n[i]);
      }
      Node factored = factoredLits.empty()
                          ? nm->mkConst(false)
                          : factoredLits.size() == 1
                                ? factoredLits[0]
                                : nm->mkNode(kind::OR, factoredLits);
      cdp->addStep(factored, PfRule::FACTORING, {n}, {});
      n = factored;
    }
    // either same node or n as a clause
    Assert(n == args[0] || n.getKind() == kind::OR);
    // reordering
    if (n != args[0])
    {
      cdp->addStep(args[0], PfRule::REORDERING, {n}, {args[0]});
    }
    return args[0];
  }
  else if (id == PfRule::SUBS)
  {
    NodeManager* nm = NodeManager::currentNM();
    // Notice that a naive way to reconstruct SUBS is to do a term conversion
    // proof for each substitution.
    // The proof of f(a) * { a -> g(b) } * { b -> c } = f(g(c)) is:
    //   TRANS( CONG{f}( a=g(b) ), CONG{f}( CONG{g}( b=c ) ) )
    // Notice that more optimal proofs are possible that do a single traversal
    // over t. This is done by applying later substitutions to the range of
    // previous substitutions, until a final simultaneous substitution is
    // applied to t.  For instance, in the above example, we first prove:
    //   CONG{g}( b = c )
    // by applying the second substitution { b -> c } to the range of the first,
    // giving us a proof of g(b)=g(c). We then construct the updated proof
    // by tranitivity:
    //   TRANS( a=g(b), CONG{g}( b=c ) )
    // We then apply the substitution { a -> g(c), b -> c } to f(a), to obtain:
    //   CONG{f}( TRANS( a=g(b), CONG{g}( b=c ) ) )
    // which notice is more compact than the proof above.
    Node t = args[0];
    // get the kind of substitution
    MethodId ids = MethodId::SB_DEFAULT;
    if (args.size() >= 2)
    {
      builtin::BuiltinProofRuleChecker::getMethodId(args[1], ids);
    }
    std::vector<std::shared_ptr<CDProof>> pfs;
    std::vector<TNode> vsList;
    std::vector<TNode> ssList;
    std::vector<TNode> fromList;
    std::vector<ProofGenerator*> pgs;
    // first, compute the entire substitution
    for (size_t i = 0, nchild = children.size(); i < nchild; i++)
    {
      // get the substitution
      builtin::BuiltinProofRuleChecker::getSubstitutionFor(
          children[i], vsList, ssList, fromList, ids);
      // ensure proofs for each formula in fromList
      if (children[i].getKind() == AND && ids == MethodId::SB_DEFAULT)
      {
        for (size_t j = 0, nchildi = children[i].getNumChildren(); j < nchildi;
             j++)
        {
          Node nodej = nm->mkConst(Rational(j));
          cdp->addStep(
              children[i][j], PfRule::AND_ELIM, {children[i]}, {nodej});
        }
      }
    }
    std::vector<Node> vvec;
    std::vector<Node> svec;
    for (size_t i = 0, nvs = vsList.size(); i < nvs; i++)
    {
      // Note we process in forward order, since later substitution should be
      // applied to earlier ones, and the last child of a SUBS is processed
      // first.
      TNode var = vsList[i];
      TNode subs = ssList[i];
      TNode childFrom = fromList[i];
      Trace("smt-proof-pp-debug")
          << "...process " << var << " -> " << subs << " (" << childFrom << ", "
          << ids << ")" << std::endl;
      // apply the current substitution to the range
      if (!vvec.empty())
      {
        Node ss =
            subs.substitute(vvec.begin(), vvec.end(), svec.begin(), svec.end());
        if (ss != subs)
        {
          Trace("smt-proof-pp-debug")
              << "......updated to " << var << " -> " << ss
              << " based on previous substitution" << std::endl;
          // make the proof for the tranitivity step
          std::shared_ptr<CDProof> pf = std::make_shared<CDProof>(d_pnm);
          pfs.push_back(pf);
          // prove the updated substitution
          TConvProofGenerator tcg(d_pnm,
                                  nullptr,
                                  TConvPolicy::ONCE,
                                  TConvCachePolicy::NEVER,
                                  "nested_SUBS_TConvProofGenerator",
                                  nullptr,
                                  true);
          // add previous rewrite steps
          for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++)
          {
            // substitutions are pre-rewrites
            tcg.addRewriteStep(vvec[j], svec[j], pgs[j], true);
          }
          // get the proof for the update to the current substitution
          Node seqss = subs.eqNode(ss);
          std::shared_ptr<ProofNode> pfn = tcg.getProofFor(seqss);
          Assert(pfn != nullptr);
          // add the proof
          pf->addProof(pfn);
          // get proof for childFrom from cdp
          pfn = cdp->getProofFor(childFrom);
          pf->addProof(pfn);
          // ensure we have a proof of var = subs
          Node veqs = addProofForSubsStep(var, subs, childFrom, pf.get());
          // transitivity
          pf->addStep(var.eqNode(ss), PfRule::TRANS, {veqs, seqss}, {});
          // add to the substitution
          vvec.push_back(var);
          svec.push_back(ss);
          pgs.push_back(pf.get());
          continue;
        }
      }
      // Just use equality from CDProof, but ensure we have a proof in cdp.
      // This may involve a TRUE_INTRO/FALSE_INTRO if the substitution step
      // uses the assumption childFrom as a Boolean assignment (e.g.
      // childFrom = true if we are using MethodId::SB_LITERAL).
      addProofForSubsStep(var, subs, childFrom, cdp);
      vvec.push_back(var);
      svec.push_back(subs);
      pgs.push_back(cdp);
    }
    Node ts = t.substitute(vvec.begin(), vvec.end(), svec.begin(), svec.end());
    Node eq = t.eqNode(ts);
    if (ts != t)
    {
      // should be implied by the substitution now
      TConvProofGenerator tcpg(d_pnm,
                               nullptr,
                               TConvPolicy::ONCE,
                               TConvCachePolicy::NEVER,
                               "SUBS_TConvProofGenerator",
                               nullptr,
                               true);
      for (unsigned j = 0, nvars = vvec.size(); j < nvars; j++)
      {
        // substitutions are pre-rewrites
        tcpg.addRewriteStep(vvec[j], svec[j], pgs[j], true);
      }
      // add the proof constructed by the term conversion utility
      std::shared_ptr<ProofNode> pfn = tcpg.getProofFor(eq);
      // should give a proof, if not, then tcpg does not agree with the
      // substitution.
      Assert(pfn != nullptr);
      if (pfn == nullptr)
      {
        cdp->addStep(eq, PfRule::TRUST_SUBS, {}, {eq});
      }
      else
      {
        cdp->addProof(pfn);
      }
    }
    else
    {
      // should not be necessary typically
      cdp->addStep(eq, PfRule::REFL, {}, {t});
    }
    return eq;
  }
  else if (id == PfRule::REWRITE)
  {
    // get the kind of rewrite
    MethodId idr = MethodId::RW_REWRITE;
    if (args.size() >= 2)
    {
      builtin::BuiltinProofRuleChecker::getMethodId(args[1], idr);
    }
    builtin::BuiltinProofRuleChecker* builtinPfC =
        static_cast<builtin::BuiltinProofRuleChecker*>(
            d_pnm->getChecker()->getCheckerFor(PfRule::REWRITE));
    Node ret = builtinPfC->applyRewrite(args[0], idr);
    Node eq = args[0].eqNode(ret);
    if (idr == MethodId::RW_REWRITE || idr == MethodId::RW_REWRITE_EQ_EXT)
    {
      // rewrites from theory::Rewriter
      bool isExtEq = (idr == MethodId::RW_REWRITE_EQ_EXT);
      // use rewrite with proof interface
      Rewriter* rr = d_smte->getRewriter();
      TrustNode trn = rr->rewriteWithProof(args[0], isExtEq);
      std::shared_ptr<ProofNode> pfn = trn.toProofNode();
      if (pfn == nullptr)
      {
        Trace("smt-proof-pp-debug")
            << "Use TRUST_REWRITE for " << eq << std::endl;
        // did not have a proof of rewriting, probably isExtEq is true
        if (isExtEq)
        {
          // update to THEORY_REWRITE with idr
          Assert(args.size() >= 1);
          TheoryId theoryId = Theory::theoryOf(args[0].getType());
          Node tid = builtin::BuiltinProofRuleChecker::mkTheoryIdNode(theoryId);
          cdp->addStep(eq, PfRule::THEORY_REWRITE, {}, {eq, tid, args[1]});
        }
        else
        {
          // this should never be applied
          cdp->addStep(eq, PfRule::TRUST_REWRITE, {}, {eq});
        }
      }
      else
      {
        cdp->addProof(pfn);
      }
      Assert(trn.getNode() == ret)
          << "Unexpected rewrite " << args[0] << std::endl
          << "Got: " << trn.getNode() << std::endl
          << "Expected: " << ret;
    }
    else if (idr == MethodId::RW_EVALUATE)
    {
      // change to evaluate, which is never eliminated
      cdp->addStep(eq, PfRule::EVALUATE, {}, {args[0]});
    }
    else
    {
      // don't know how to eliminate
      return Node::null();
    }
    if (args[0] == ret)
    {
      // should not be necessary typically
      cdp->addStep(eq, PfRule::REFL, {}, {args[0]});
    }
    return eq;
  }
  else if (id == PfRule::THEORY_REWRITE)
  {
    Assert(!args.empty());
    Node eq = args[0];
    Assert(eq.getKind() == EQUAL);
    // try to replay theory rewrite
    // first, check that maybe its just an evaluation step
    ProofChecker* pc = d_pnm->getChecker();
    Node ceval =
        pc->checkDebug(PfRule::EVALUATE, {}, {eq[0]}, eq, "smt-proof-pp-debug");
    if (!ceval.isNull() && ceval == eq)
    {
      cdp->addStep(eq, PfRule::EVALUATE, {}, {eq[0]});
      return eq;
    }
    // otherwise no update
    Trace("final-pf-hole") << "hole: " << id << " : " << eq << std::endl;
  }

  // TRUST, PREPROCESS, THEORY_LEMMA, THEORY_PREPROCESS?

  return Node::null();
}

Node ProofPostprocessCallback::addProofForWitnessForm(Node t, CDProof* cdp)
{
  Node tw = SkolemManager::getOriginalForm(t);
  Node eq = t.eqNode(tw);
  if (t == tw)
  {
    // not necessary, add REFL step
    cdp->addStep(eq, PfRule::REFL, {}, {t});
    return eq;
  }
  std::shared_ptr<ProofNode> pn = d_wfpm.getProofFor(eq);
  if (pn != nullptr)
  {
    // add the proof
    cdp->addProof(pn);
  }
  else
  {
    Assert(false) << "ProofPostprocessCallback::addProofForWitnessForm: failed "
                     "to add proof for witness form of "
                  << t;
  }
  return eq;
}

Node ProofPostprocessCallback::addProofForTrans(
    const std::vector<Node>& tchildren, CDProof* cdp)
{
  size_t tsize = tchildren.size();
  if (tsize > 1)
  {
    Node lhs = tchildren[0][0];
    Node rhs = tchildren[tsize - 1][1];
    Node eq = lhs.eqNode(rhs);
    cdp->addStep(eq, PfRule::TRANS, tchildren, {});
    return eq;
  }
  else if (tsize == 1)
  {
    return tchildren[0];
  }
  return Node::null();
}

Node ProofPostprocessCallback::addProofForSubsStep(Node var,
                                                   Node subs,
                                                   Node assump,
                                                   CDProof* cdp)
{
  // ensure we have a proof of var = subs
  Node veqs = var.eqNode(subs);
  if (veqs != assump)
  {
    // should be true intro or false intro
    Assert(subs.isConst());
    cdp->addStep(
        veqs,
        subs.getConst<bool>() ? PfRule::TRUE_INTRO : PfRule::FALSE_INTRO,
        {assump},
        {});
  }
  return veqs;
}

bool ProofPostprocessCallback::addToTransChildren(Node eq,
                                                  std::vector<Node>& tchildren,
                                                  bool isSymm)
{
  Assert(!eq.isNull());
  Assert(eq.getKind() == kind::EQUAL);
  if (eq[0] == eq[1])
  {
    return false;
  }
  Node equ = isSymm ? eq[1].eqNode(eq[0]) : eq;
  Assert(tchildren.empty()
         || (tchildren[tchildren.size() - 1].getKind() == kind::EQUAL
             && tchildren[tchildren.size() - 1][1] == equ[0]));
  tchildren.push_back(equ);
  return true;
}

ProofPostprocessFinalCallback::ProofPostprocessFinalCallback(
    ProofNodeManager* pnm)
    : d_ruleCount("finalProof::ruleCount"),
      d_totalRuleCount("finalProof::totalRuleCount", 0),
      d_minPedanticLevel("finalProof::minPedanticLevel", 10),
      d_numFinalProofs("finalProofs::numFinalProofs", 0),
      d_pnm(pnm),
      d_pedanticFailure(false)
{
  smtStatisticsRegistry()->registerStat(&d_ruleCount);
  smtStatisticsRegistry()->registerStat(&d_totalRuleCount);
  smtStatisticsRegistry()->registerStat(&d_minPedanticLevel);
  smtStatisticsRegistry()->registerStat(&d_numFinalProofs);
}

ProofPostprocessFinalCallback::~ProofPostprocessFinalCallback()
{
  smtStatisticsRegistry()->unregisterStat(&d_ruleCount);
  smtStatisticsRegistry()->unregisterStat(&d_totalRuleCount);
  smtStatisticsRegistry()->unregisterStat(&d_minPedanticLevel);
  smtStatisticsRegistry()->unregisterStat(&d_numFinalProofs);
}

void ProofPostprocessFinalCallback::initializeUpdate()
{
  d_pedanticFailure = false;
  d_pedanticFailureOut.str("");
  ++d_numFinalProofs;
}

bool ProofPostprocessFinalCallback::shouldUpdate(std::shared_ptr<ProofNode> pn,
                                                 bool& continueUpdate)
{
  PfRule r = pn->getRule();
  // if not doing eager pedantic checking, fail if below threshold
  if (!options::proofEagerChecking())
  {
    if (!d_pedanticFailure)
    {
      Assert(d_pedanticFailureOut.str().empty());
      if (d_pnm->getChecker()->isPedanticFailure(r, d_pedanticFailureOut))
      {
        d_pedanticFailure = true;
      }
    }
  }
  uint32_t plevel = d_pnm->getChecker()->getPedanticLevel(r);
  if (plevel != 0)
  {
    d_minPedanticLevel.minAssign(plevel);
  }
  // record stats for the rule
  d_ruleCount << r;
  ++d_totalRuleCount;
  return false;
}

bool ProofPostprocessFinalCallback::wasPedanticFailure(std::ostream& out) const
{
  if (d_pedanticFailure)
  {
    out << d_pedanticFailureOut.str();
    return true;
  }
  return false;
}

ProofPostproccess::ProofPostproccess(ProofNodeManager* pnm,
                                     SmtEngine* smte,
                                     ProofGenerator* pppg)
    : d_pnm(pnm),
      d_cb(pnm, smte, pppg),
      // the update merges subproofs
      d_updater(d_pnm, d_cb, true),
      d_finalCb(pnm),
      d_finalizer(d_pnm, d_finalCb)
{
}

ProofPostproccess::~ProofPostproccess() {}

void ProofPostproccess::process(std::shared_ptr<ProofNode> pf)
{
  // Initialize the callback, which computes necessary static information about
  // how to process, including how to process assumptions in pf.
  d_cb.initializeUpdate();
  // now, process
  d_updater.process(pf);
  // take stats and check pedantic
  d_finalCb.initializeUpdate();
  d_finalizer.process(pf);

  std::stringstream serr;
  bool wasPedanticFailure = d_finalCb.wasPedanticFailure(serr);
  if (wasPedanticFailure)
  {
    AlwaysAssert(!wasPedanticFailure)
        << "ProofPostproccess::process: pedantic failure:" << std::endl
        << serr.str();
  }
}

void ProofPostproccess::setEliminateRule(PfRule rule)
{
  d_cb.setEliminateRule(rule);
}

}  // namespace smt
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback