summaryrefslogtreecommitdiff
path: root/src/smt/process_assertions.cpp
blob: 0e2701a1a8ed11df5d119d742938dfe04bc0be5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/*********************                                                        */
/*! \file process_assertions.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Morgan Deters, Andrew Reynolds, Tim King
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Implementation of module for processing assertions for an SMT engine.
 **/

#include "smt/process_assertions.h"

#include <stack>
#include <utility>

#include "expr/node_manager_attributes.h"
#include "options/arith_options.h"
#include "options/base_options.h"
#include "options/bv_options.h"
#include "options/proof_options.h"
#include "options/quantifiers_options.h"
#include "options/sep_options.h"
#include "options/smt_options.h"
#include "options/uf_options.h"
#include "preprocessing/assertion_pipeline.h"
#include "preprocessing/preprocessing_pass_registry.h"
#include "smt/defined_function.h"
#include "smt/smt_engine.h"
#include "theory/logic_info.h"
#include "theory/quantifiers/fun_def_process.h"
#include "theory/theory_engine.h"

using namespace CVC4::preprocessing;
using namespace CVC4::theory;
using namespace CVC4::kind;

namespace CVC4 {
namespace smt {

/** Useful for counting the number of recursive calls. */
class ScopeCounter
{
 public:
  ScopeCounter(unsigned& d) : d_depth(d) { ++d_depth; }
  ~ScopeCounter() { --d_depth; }

 private:
  unsigned& d_depth;
};

ProcessAssertions::ProcessAssertions(SmtEngine& smt, ResourceManager& rm)
    : d_smt(smt),
      d_resourceManager(rm),
      d_preprocessingPassContext(nullptr),
      d_fmfRecFunctionsDefined(nullptr)
{
  d_true = NodeManager::currentNM()->mkConst(true);
  d_fmfRecFunctionsDefined = new (true) NodeList(d_smt.getUserContext());
}

ProcessAssertions::~ProcessAssertions()
{
  d_fmfRecFunctionsDefined->deleteSelf();
}

void ProcessAssertions::finishInit(PreprocessingPassContext* pc)
{
  Assert(d_preprocessingPassContext == nullptr);
  d_preprocessingPassContext = pc;

  PreprocessingPassRegistry& ppReg = PreprocessingPassRegistry::getInstance();
  // TODO: this will likely change when we add support for actually assembling
  // preprocessing pipelines. For now, we just create an instance of each
  // available preprocessing pass.
  std::vector<std::string> passNames = ppReg.getAvailablePasses();
  for (const std::string& passName : passNames)
  {
    d_passes[passName].reset(
        ppReg.createPass(d_preprocessingPassContext, passName));
  }
}

void ProcessAssertions::cleanup() { d_passes.clear(); }

void ProcessAssertions::spendResource(ResourceManager::Resource r)
{
  d_resourceManager.spendResource(r);
}

bool ProcessAssertions::apply(AssertionPipeline& assertions)
{
  Assert(d_preprocessingPassContext != nullptr);
  // Dump the assertions
  dumpAssertions("pre-everything", assertions);

  Trace("smt-proc") << "ProcessAssertions::processAssertions() begin" << endl;
  Trace("smt") << "ProcessAssertions::processAssertions()" << endl;

  Debug("smt") << "#Assertions : " << assertions.size() << endl;
  Debug("smt") << "#Assumptions: " << assertions.getNumAssumptions() << endl;

  if (assertions.size() == 0)
  {
    // nothing to do
    return true;
  }

  SubstitutionMap& top_level_substs =
      d_preprocessingPassContext->getTopLevelSubstitutions();

  if (options::bvGaussElim())
  {
    d_passes["bv-gauss"]->apply(&assertions);
  }

  // Add dummy assertion in last position - to be used as a
  // placeholder for any new assertions to get added
  assertions.push_back(d_true);
  // any assertions added beyond realAssertionsEnd must NOT affect the
  // equisatisfiability
  assertions.updateRealAssertionsEnd();

  // Assertions are NOT guaranteed to be rewritten by this point

  Trace("smt-proc")
      << "ProcessAssertions::processAssertions() : pre-definition-expansion"
      << endl;
  dumpAssertions("pre-definition-expansion", assertions);
  {
    Chat() << "expanding definitions..." << endl;
    Trace("simplify") << "ProcessAssertions::simplify(): expanding definitions"
                      << endl;
    TimerStat::CodeTimer codeTimer(d_smt.d_stats->d_definitionExpansionTime);
    unordered_map<Node, Node, NodeHashFunction> cache;
    for (size_t i = 0, nasserts = assertions.size(); i < nasserts; ++i)
    {
      assertions.replace(i, expandDefinitions(assertions[i], cache));
    }
  }
  Trace("smt-proc")
      << "ProcessAssertions::processAssertions() : post-definition-expansion"
      << endl;
  dumpAssertions("post-definition-expansion", assertions);

  // save the assertions now
  THEORY_PROOF(
      for (size_t i = 0, nasserts = assertions.size(); i < nasserts; ++i) {
        ProofManager::currentPM()->addAssertion(assertions[i].toExpr());
      });

  Debug("smt") << " assertions     : " << assertions.size() << endl;

  if (options::globalNegate())
  {
    // global negation of the formula
    d_passes["global-negate"]->apply(&assertions);
    d_smt.d_globalNegation = !d_smt.d_globalNegation;
  }

  if (options::nlExtPurify())
  {
    d_passes["nl-ext-purify"]->apply(&assertions);
  }

  if (options::solveRealAsInt())
  {
    d_passes["real-to-int"]->apply(&assertions);
  }

  if (options::solveIntAsBV() > 0)
  {
    d_passes["int-to-bv"]->apply(&assertions);
  }

  if (options::ackermann())
  {
    d_passes["ackermann"]->apply(&assertions);
  }

  if (options::bvAbstraction())
  {
    d_passes["bv-abstraction"]->apply(&assertions);
  }

  Debug("smt") << " assertions     : " << assertions.size() << endl;

  bool noConflict = true;

  if (options::extRewPrep())
  {
    d_passes["ext-rew-pre"]->apply(&assertions);
  }

  // Unconstrained simplification
  if (options::unconstrainedSimp())
  {
    d_passes["rewrite"]->apply(&assertions);
    d_passes["unconstrained-simplifier"]->apply(&assertions);
  }

  if (options::bvIntroducePow2())
  {
    d_passes["bv-intro-pow2"]->apply(&assertions);
  }

  // Since this pass is not robust for the information tracking necessary for
  // unsat cores, it's only applied if we are not doing unsat core computation
  if (!options::unsatCores())
  {
    d_passes["apply-substs"]->apply(&assertions);
  }

  // Assertions MUST BE guaranteed to be rewritten by this point
  d_passes["rewrite"]->apply(&assertions);

  // Lift bit-vectors of size 1 to bool
  if (options::bitvectorToBool())
  {
    d_passes["bv-to-bool"]->apply(&assertions);
  }
  if (options::solveBVAsInt() > 0)
  {
    d_passes["bv-to-int"]->apply(&assertions);
  }

  // Convert non-top-level Booleans to bit-vectors of size 1
  if (options::boolToBitvector() != options::BoolToBVMode::OFF)
  {
    d_passes["bool-to-bv"]->apply(&assertions);
  }
  if (options::sepPreSkolemEmp())
  {
    d_passes["sep-skolem-emp"]->apply(&assertions);
  }

  if (d_smt.d_logic.isQuantified())
  {
    // remove rewrite rules, apply pre-skolemization to existential quantifiers
    d_passes["quantifiers-preprocess"]->apply(&assertions);
    if (options::macrosQuant())
    {
      // quantifiers macro expansion
      d_passes["quantifier-macros"]->apply(&assertions);
    }

    // fmf-fun : assume admissible functions, applying preprocessing reduction
    // to FMF
    if (options::fmfFunWellDefined())
    {
      quantifiers::FunDefFmf fdf;
      Assert(d_fmfRecFunctionsDefined != NULL);
      // must carry over current definitions (in case of incremental)
      for (context::CDList<Node>::const_iterator fit =
               d_fmfRecFunctionsDefined->begin();
           fit != d_fmfRecFunctionsDefined->end();
           ++fit)
      {
        Node f = (*fit);
        Assert(d_fmfRecFunctionsAbs.find(f) != d_fmfRecFunctionsAbs.end());
        TypeNode ft = d_fmfRecFunctionsAbs[f];
        fdf.d_sorts[f] = ft;
        std::map<Node, std::vector<Node>>::iterator fcit =
            d_fmfRecFunctionsConcrete.find(f);
        Assert(fcit != d_fmfRecFunctionsConcrete.end());
        for (const Node& fcc : fcit->second)
        {
          fdf.d_input_arg_inj[f].push_back(fcc);
        }
      }
      fdf.simplify(assertions.ref());
      // must store new definitions (in case of incremental)
      for (const Node& f : fdf.d_funcs)
      {
        d_fmfRecFunctionsAbs[f] = fdf.d_sorts[f];
        d_fmfRecFunctionsConcrete[f].clear();
        for (const Node& fcc : fdf.d_input_arg_inj[f])
        {
          d_fmfRecFunctionsConcrete[f].push_back(fcc);
        }
        d_fmfRecFunctionsDefined->push_back(f);
      }
    }
  }

  if (options::sortInference() || options::ufssFairnessMonotone())
  {
    d_passes["sort-inference"]->apply(&assertions);
  }

  if (options::pbRewrites())
  {
    d_passes["pseudo-boolean-processor"]->apply(&assertions);
  }

  // rephrasing normal inputs as sygus problems
  if (!d_smt.d_isInternalSubsolver)
  {
    if (options::sygusInference())
    {
      d_passes["sygus-infer"]->apply(&assertions);
    }
    else if (options::sygusRewSynthInput())
    {
      // do candidate rewrite rule synthesis
      d_passes["synth-rr"]->apply(&assertions);
    }
  }

  Trace("smt-proc") << "ProcessAssertions::processAssertions() : pre-simplify"
                    << endl;
  dumpAssertions("pre-simplify", assertions);
  Chat() << "simplifying assertions..." << endl;
  noConflict = simplifyAssertions(assertions);
  if (!noConflict)
  {
    ++(d_smt.d_stats->d_simplifiedToFalse);
  }
  Trace("smt-proc") << "ProcessAssertions::processAssertions() : post-simplify"
                    << endl;
  dumpAssertions("post-simplify", assertions);

  if (options::doStaticLearning())
  {
    d_passes["static-learning"]->apply(&assertions);
  }
  Debug("smt") << " assertions     : " << assertions.size() << endl;

  {
    d_smt.d_stats->d_numAssertionsPre += assertions.size();
    d_passes["ite-removal"]->apply(&assertions);
    // This is needed because when solving incrementally, removeITEs may
    // introduce skolems that were solved for earlier and thus appear in the
    // substitution map.
    d_passes["apply-substs"]->apply(&assertions);
    d_smt.d_stats->d_numAssertionsPost += assertions.size();
  }

  dumpAssertions("pre-repeat-simplify", assertions);
  if (options::repeatSimp())
  {
    Trace("smt-proc")
        << "ProcessAssertions::processAssertions() : pre-repeat-simplify"
        << endl;
    Chat() << "re-simplifying assertions..." << endl;
    ScopeCounter depth(d_simplifyAssertionsDepth);
    noConflict &= simplifyAssertions(assertions);
    if (noConflict)
    {
      // Need to fix up assertion list to maintain invariants:
      // Let Sk be the set of Skolem variables introduced by ITE's.  Let <_sk be
      // the order in which these variables were introduced during ite removal.
      // For each skolem variable sk, let iteExpr = iteMap(sk) be the ite expr
      // mapped to by sk.

      // cache for expression traversal
      unordered_map<Node, bool, NodeHashFunction> cache;

      IteSkolemMap& iskMap = assertions.getIteSkolemMap();
      // First, find all skolems that appear in the substitution map - their
      // associated iteExpr will need to be moved to the main assertion set
      set<TNode> skolemSet;
      SubstitutionMap::iterator pos = top_level_substs.begin();
      for (; pos != top_level_substs.end(); ++pos)
      {
        collectSkolems(iskMap, (*pos).first, skolemSet, cache);
        collectSkolems(iskMap, (*pos).second, skolemSet, cache);
      }
      // We need to ensure:
      // 1. iteExpr has the form (ite cond (sk = t) (sk = e))
      // 2. if some sk' in Sk appears in cond, t, or e, then sk' <_sk sk
      // If either of these is violated, we must add iteExpr as a proper
      // assertion
      IteSkolemMap::iterator it = iskMap.begin();
      IteSkolemMap::iterator iend = iskMap.end();
      NodeBuilder<> builder(AND);
      builder << assertions[assertions.getRealAssertionsEnd() - 1];
      vector<TNode> toErase;
      for (; it != iend; ++it)
      {
        if (skolemSet.find((*it).first) == skolemSet.end())
        {
          TNode iteExpr = assertions[(*it).second];
          if (iteExpr.getKind() == ITE && iteExpr[1].getKind() == EQUAL
              && iteExpr[1][0] == (*it).first && iteExpr[2].getKind() == EQUAL
              && iteExpr[2][0] == (*it).first)
          {
            cache.clear();
            bool bad =
                checkForBadSkolems(iskMap, iteExpr[0], (*it).first, cache);
            bad = bad
                  || checkForBadSkolems(
                         iskMap, iteExpr[1][1], (*it).first, cache);
            bad = bad
                  || checkForBadSkolems(
                         iskMap, iteExpr[2][1], (*it).first, cache);
            if (!bad)
            {
              continue;
            }
          }
        }
        // Move this iteExpr into the main assertions
        builder << assertions[(*it).second];
        assertions[(*it).second] = d_true;
        toErase.push_back((*it).first);
      }
      if (builder.getNumChildren() > 1)
      {
        while (!toErase.empty())
        {
          iskMap.erase(toErase.back());
          toErase.pop_back();
        }
        assertions[assertions.getRealAssertionsEnd() - 1] =
            Rewriter::rewrite(Node(builder));
      }
      // TODO(b/1256): For some reason this is needed for some benchmarks, such
      // as
      // QF_AUFBV/dwp_formulas/try5_small_difret_functions_dwp_tac.re_node_set_remove_at.il.dwp.smt2
      d_passes["ite-removal"]->apply(&assertions);
      d_passes["apply-substs"]->apply(&assertions);
    }
    Trace("smt-proc")
        << "ProcessAssertions::processAssertions() : post-repeat-simplify"
        << endl;
  }
  dumpAssertions("post-repeat-simplify", assertions);

  if (options::ufHo())
  {
    d_passes["ho-elim"]->apply(&assertions);
  }

  // begin: INVARIANT to maintain: no reordering of assertions or
  // introducing new ones

  Debug("smt") << " assertions     : " << assertions.size() << endl;

  Debug("smt") << "ProcessAssertions::processAssertions() POST SIMPLIFICATION"
               << endl;
  Debug("smt") << " assertions     : " << assertions.size() << endl;

  d_passes["theory-preprocess"]->apply(&assertions);

  if (options::bitblastMode() == options::BitblastMode::EAGER)
  {
    d_passes["bv-eager-atoms"]->apply(&assertions);
  }

  Trace("smt-proc") << "SmtEnginePrivate::processAssertions() end" << endl;
  dumpAssertions("post-everything", assertions);

  return noConflict;
}

// returns false if simplification led to "false"
bool ProcessAssertions::simplifyAssertions(AssertionPipeline& assertions)
{
  spendResource(ResourceManager::Resource::PreprocessStep);
  Assert(d_smt.d_pendingPops == 0);
  try
  {
    ScopeCounter depth(d_simplifyAssertionsDepth);

    Trace("simplify") << "SmtEnginePrivate::simplify()" << endl;

    if (options::simplificationMode() != options::SimplificationMode::NONE)
    {
      if (!options::unsatCores() && !options::fewerPreprocessingHoles())
      {
        // Perform non-clausal simplification
        PreprocessingPassResult res =
            d_passes["non-clausal-simp"]->apply(&assertions);
        if (res == PreprocessingPassResult::CONFLICT)
        {
          return false;
        }
      }

      // We piggy-back off of the BackEdgesMap in the CircuitPropagator to
      // do the miplib trick.
      if (  // check that option is on
          options::arithMLTrick() &&
          // only useful in arith
          d_smt.d_logic.isTheoryEnabled(THEORY_ARITH) &&
          // we add new assertions and need this (in practice, this
          // restriction only disables miplib processing during
          // re-simplification, which we don't expect to be useful anyway)
          assertions.getRealAssertionsEnd() == assertions.size())
      {
        d_passes["miplib-trick"]->apply(&assertions);
      }
      else
      {
        Trace("simplify") << "SmtEnginePrivate::simplify(): "
                          << "skipping miplib pseudobooleans pass..." << endl;
      }
    }

    Debug("smt") << " assertions     : " << assertions.size() << endl;

    // before ppRewrite check if only core theory for BV theory
    d_smt.d_theoryEngine->staticInitializeBVOptions(assertions.ref());

    // Theory preprocessing
    bool doEarlyTheoryPp = !options::arithRewriteEq();
    if (doEarlyTheoryPp)
    {
      d_passes["theory-preprocess"]->apply(&assertions);
    }

    // ITE simplification
    if (options::doITESimp()
        && (d_simplifyAssertionsDepth <= 1 || options::doITESimpOnRepeat()))
    {
      PreprocessingPassResult res = d_passes["ite-simp"]->apply(&assertions);
      if (res == PreprocessingPassResult::CONFLICT)
      {
        Chat() << "...ITE simplification found unsat..." << endl;
        return false;
      }
    }

    Debug("smt") << " assertions     : " << assertions.size() << endl;

    // Unconstrained simplification
    if (options::unconstrainedSimp())
    {
      d_passes["unconstrained-simplifier"]->apply(&assertions);
    }

    if (options::repeatSimp()
        && options::simplificationMode() != options::SimplificationMode::NONE
        && !options::unsatCores() && !options::fewerPreprocessingHoles())
    {
      PreprocessingPassResult res =
          d_passes["non-clausal-simp"]->apply(&assertions);
      if (res == PreprocessingPassResult::CONFLICT)
      {
        return false;
      }
    }

    dumpAssertions("post-repeatsimp", assertions);
    Trace("smt") << "POST repeatSimp" << endl;
    Debug("smt") << " assertions     : " << assertions.size() << endl;
  }
  catch (TypeCheckingExceptionPrivate& tcep)
  {
    // Calls to this function should have already weeded out any
    // typechecking exceptions via (e.g.) ensureBoolean().  But a
    // theory could still create a new expression that isn't
    // well-typed, and we don't want the C++ runtime to abort our
    // process without any error notice.
    InternalError()
        << "A bad expression was produced.  Original exception follows:\n"
        << tcep;
  }
  return true;
}

void ProcessAssertions::dumpAssertions(const char* key,
                                       const AssertionPipeline& assertionList)
{
  if (Dump.isOn("assertions") && Dump.isOn(string("assertions:") + key))
  {
    // Push the simplified assertions to the dump output stream
    for (unsigned i = 0; i < assertionList.size(); ++i)
    {
      TNode n = assertionList[i];
      Dump("assertions") << AssertCommand(Expr(n.toExpr()));
    }
  }
}

Node ProcessAssertions::expandDefinitions(
    TNode n,
    unordered_map<Node, Node, NodeHashFunction>& cache,
    bool expandOnly)
{
  NodeManager* nm = d_smt.d_nodeManager;
  std::stack<std::tuple<Node, Node, bool>> worklist;
  std::stack<Node> result;
  worklist.push(std::make_tuple(Node(n), Node(n), false));
  // The worklist is made of triples, each is input / original node then the
  // output / rewritten node and finally a flag tracking whether the children
  // have been explored (i.e. if this is a downward or upward pass).

  do
  {
    spendResource(ResourceManager::Resource::PreprocessStep);

    // n is the input / original
    // node is the output / result
    Node node;
    bool childrenPushed;
    std::tie(n, node, childrenPushed) = worklist.top();
    worklist.pop();

    // Working downwards
    if (!childrenPushed)
    {
      Kind k = n.getKind();

      // we can short circuit (variable) leaves
      if (n.isVar())
      {
        SmtEngine::DefinedFunctionMap::const_iterator i =
            d_smt.d_definedFunctions->find(n);
        if (i != d_smt.d_definedFunctions->end())
        {
          Node f = (*i).second.getFormula();
          // must expand its definition
          Node fe = expandDefinitions(f, cache, expandOnly);
          // replacement must be closed
          if ((*i).second.getFormals().size() > 0)
          {
            result.push(
                nm->mkNode(LAMBDA,
                           nm->mkNode(BOUND_VAR_LIST, (*i).second.getFormals()),
                           fe));
            continue;
          }
          // don't bother putting in the cache
          result.push(fe);
          continue;
        }
        // don't bother putting in the cache
        result.push(n);
        continue;
      }

      // maybe it's in the cache
      unordered_map<Node, Node, NodeHashFunction>::iterator cacheHit =
          cache.find(n);
      if (cacheHit != cache.end())
      {
        TNode ret = (*cacheHit).second;
        result.push(ret.isNull() ? n : ret);
        continue;
      }

      // otherwise expand it
      bool doExpand = false;
      if (k == APPLY_UF)
      {
        // Always do beta-reduction here. The reason is that there may be
        // operators such as INTS_MODULUS in the body of the lambda that would
        // otherwise be introduced by beta-reduction via the rewriter, but are
        // not expanded here since the traversal in this function does not
        // traverse the operators of nodes. Hence, we beta-reduce here to
        // ensure terms in the body of the lambda are expanded during this
        // call.
        if (n.getOperator().getKind() == LAMBDA)
        {
          doExpand = true;
        }
        else
        {
          // We always check if this operator corresponds to a defined function.
          doExpand = d_smt.isDefinedFunction(n.getOperator().toExpr());
        }
      }
      if (doExpand)
      {
        vector<Node> formals;
        TNode fm;
        if (n.getOperator().getKind() == LAMBDA)
        {
          TNode op = n.getOperator();
          // lambda
          for (unsigned i = 0; i < op[0].getNumChildren(); i++)
          {
            formals.push_back(op[0][i]);
          }
          fm = op[1];
        }
        else
        {
          // application of a user-defined symbol
          TNode func = n.getOperator();
          SmtEngine::DefinedFunctionMap::const_iterator i =
              d_smt.d_definedFunctions->find(func);
          if (i == d_smt.d_definedFunctions->end())
          {
            throw TypeCheckingException(
                n.toExpr(),
                string("Undefined function: `") + func.toString() + "'");
          }
          DefinedFunction def = (*i).second;
          formals = def.getFormals();

          if (Debug.isOn("expand"))
          {
            Debug("expand") << "found: " << n << endl;
            Debug("expand") << " func: " << func << endl;
            string name = func.getAttribute(expr::VarNameAttr());
            Debug("expand") << "     : \"" << name << "\"" << endl;
          }
          if (Debug.isOn("expand"))
          {
            Debug("expand") << " defn: " << def.getFunction() << endl
                            << "       [";
            if (formals.size() > 0)
            {
              copy(formals.begin(),
                   formals.end() - 1,
                   ostream_iterator<Node>(Debug("expand"), ", "));
              Debug("expand") << formals.back();
            }
            Debug("expand") << "]" << endl
                            << "       " << def.getFunction().getType() << endl
                            << "       " << def.getFormula() << endl;
          }

          fm = def.getFormula();
        }

        Node instance = fm.substitute(formals.begin(),
                                      formals.end(),
                                      n.begin(),
                                      n.begin() + formals.size());
        Debug("expand") << "made : " << instance << endl;

        Node expanded = expandDefinitions(instance, cache, expandOnly);
        cache[n] = (n == expanded ? Node::null() : expanded);
        result.push(expanded);
        continue;
      }
      else if (!expandOnly)
      {
        // do not do any theory stuff if expandOnly is true

        theory::Theory* t = d_smt.d_theoryEngine->theoryOf(node);

        Assert(t != NULL);
        node = t->expandDefinition(n);
      }

      // the partial functions can fall through, in which case we still
      // consider their children
      worklist.push(std::make_tuple(
          Node(n), node, true));  // Original and rewritten result

      for (size_t i = 0; i < node.getNumChildren(); ++i)
      {
        worklist.push(
            std::make_tuple(node[i],
                            node[i],
                            false));  // Rewrite the children of the result only
      }
    }
    else
    {
      // Working upwards
      // Reconstruct the node from it's (now rewritten) children on the stack

      Debug("expand") << "cons : " << node << endl;
      if (node.getNumChildren() > 0)
      {
        // cout << "cons : " << node << endl;
        NodeBuilder<> nb(node.getKind());
        if (node.getMetaKind() == metakind::PARAMETERIZED)
        {
          Debug("expand") << "op   : " << node.getOperator() << endl;
          // cout << "op   : " << node.getOperator() << endl;
          nb << node.getOperator();
        }
        for (size_t i = 0, nchild = node.getNumChildren(); i < nchild; ++i)
        {
          Assert(!result.empty());
          Node expanded = result.top();
          result.pop();
          // cout << "exchld : " << expanded << endl;
          Debug("expand") << "exchld : " << expanded << endl;
          nb << expanded;
        }
        node = nb;
      }
      // Only cache once all subterms are expanded
      cache[n] = n == node ? Node::null() : node;
      result.push(node);
    }
  } while (!worklist.empty());

  AlwaysAssert(result.size() == 1);

  return result.top();
}

void ProcessAssertions::collectSkolems(
    IteSkolemMap& iskMap,
    TNode n,
    set<TNode>& skolemSet,
    unordered_map<Node, bool, NodeHashFunction>& cache)
{
  unordered_map<Node, bool, NodeHashFunction>::iterator it;
  it = cache.find(n);
  if (it != cache.end())
  {
    return;
  }

  size_t sz = n.getNumChildren();
  if (sz == 0)
  {
    if (iskMap.find(n) != iskMap.end())
    {
      skolemSet.insert(n);
    }
    cache[n] = true;
    return;
  }

  size_t k = 0;
  for (; k < sz; ++k)
  {
    collectSkolems(iskMap, n[k], skolemSet, cache);
  }
  cache[n] = true;
}

bool ProcessAssertions::checkForBadSkolems(
    IteSkolemMap& iskMap,
    TNode n,
    TNode skolem,
    unordered_map<Node, bool, NodeHashFunction>& cache)
{
  unordered_map<Node, bool, NodeHashFunction>::iterator it;
  it = cache.find(n);
  if (it != cache.end())
  {
    return (*it).second;
  }

  size_t sz = n.getNumChildren();
  if (sz == 0)
  {
    IteSkolemMap::iterator iit = iskMap.find(n);
    bool bad = false;
    if (iit != iskMap.end())
    {
      if (!((*iit).first < n))
      {
        bad = true;
      }
    }
    cache[n] = bad;
    return bad;
  }

  size_t k = 0;
  for (; k < sz; ++k)
  {
    if (checkForBadSkolems(iskMap, n[k], skolem, cache))
    {
      cache[n] = true;
      return true;
    }
  }

  cache[n] = false;
  return false;
}

}  // namespace smt
}  // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback