summaryrefslogtreecommitdiff
path: root/src/prop/theory_proxy.cpp
blob: a6908ff52b295054440a5fc8bcd78cd10147fb7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*********************                                                        */
/*! \file theory_proxy.cpp
 ** \verbatim
 ** Original author: Dejan Jovanovic
 ** Major contributors: Kshitij Bansal, Morgan Deters
 ** Minor contributors (to current version): Clark Barrett, Christopher L. Conway, Tim King, Liana Hadarean
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2013  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief [[ Add one-line brief description here ]]
 **
 ** [[ Add lengthier description here ]]
 ** \todo document this file
 **/

#include "prop/cnf_stream.h"
#include "prop/prop_engine.h"
#include "prop/theory_proxy.h"
#include "context/context.h"
#include "theory/theory_engine.h"
#include "theory/rewriter.h"
#include "expr/expr_stream.h"
#include "decision/decision_engine.h"
#include "decision/options.h"
#include "util/lemma_input_channel.h"
#include "util/lemma_output_channel.h"
#include "util/statistics_registry.h"

namespace CVC4 {
namespace prop {

void TheoryProxy::variableNotify(SatVariable var) {
  d_theoryEngine->preRegister(getNode(SatLiteral(var)));
}

void TheoryProxy::theoryCheck(theory::Theory::Effort effort) {
  while (!d_queue.empty()) {
    TNode assertion = d_queue.front();
    d_queue.pop();
    d_theoryEngine->assertFact(assertion);
  }
  d_theoryEngine->check(effort);
}

void TheoryProxy::theoryPropagate(std::vector<SatLiteral>& output) {
  // Get the propagated literals
  std::vector<TNode> outputNodes;
  d_theoryEngine->getPropagatedLiterals(outputNodes);
  for (unsigned i = 0, i_end = outputNodes.size(); i < i_end; ++ i) {
    Debug("prop-explain") << "theoryPropagate() => " << outputNodes[i] << std::endl;
    output.push_back(d_cnfStream->getLiteral(outputNodes[i]));
  }
}

void TheoryProxy::explainPropagation(SatLiteral l, SatClause& explanation) {
  TNode lNode = d_cnfStream->getNode(l);
  Debug("prop-explain") << "explainPropagation(" << lNode << ")" << std::endl;
  Node theoryExplanation = d_theoryEngine->getExplanation(lNode);
  Debug("prop-explain") << "explainPropagation() => " <<  theoryExplanation << std::endl;
  if (theoryExplanation.getKind() == kind::AND) {
    Node::const_iterator it = theoryExplanation.begin();
    Node::const_iterator it_end = theoryExplanation.end();
    explanation.push_back(l);
    for (; it != it_end; ++ it) {
      explanation.push_back(~d_cnfStream->getLiteral(*it));
    }
  } else {
    explanation.push_back(l);
    explanation.push_back(~d_cnfStream->getLiteral(theoryExplanation));
  }
}

void TheoryProxy::enqueueTheoryLiteral(const SatLiteral& l) {
  Node literalNode = d_cnfStream->getNode(l);
  Debug("prop") << "enqueueing theory literal " << l << " " << literalNode << std::endl;
  Assert(!literalNode.isNull());
  d_queue.push(literalNode);
}

SatLiteral TheoryProxy::getNextDecisionRequest(bool &stopSearch) {
  TNode n = d_theoryEngine->getNextDecisionRequest();
  if(not n.isNull()) {
    return d_cnfStream->getLiteral(n);
  }

  // If theory doesn't give us a deicsion ask the decision engine. It
  // may return in undefSatLiteral in which case the sat solver uses
  // whatever default heuristic it has.
  Assert(d_decisionEngine != NULL);
  Assert(stopSearch != true);
  SatLiteral ret = d_decisionEngine->getNext(stopSearch);
  if(stopSearch) {
    Trace("decision") << "  ***  Decision Engine stopped search *** " << std::endl;
  }
  return options::decisionStopOnly() ? undefSatLiteral : ret;
}

bool TheoryProxy::theoryNeedCheck() const {
  return d_theoryEngine->needCheck();
}

TNode TheoryProxy::getNode(SatLiteral lit) {
  return d_cnfStream->getNode(lit);
}

void TheoryProxy::notifyRestart() {
  d_propEngine->checkTime();
  d_theoryEngine->notifyRestart();

  static uint32_t lemmaCount = 0;

  if(options::lemmaInputChannel() != NULL) {
    while(options::lemmaInputChannel()->hasNewLemma()) {
      Debug("shared") << "shared" << std::endl;
      Expr lemma = options::lemmaInputChannel()->getNewLemma();
      Node asNode = lemma.getNode();
      asNode = theory::Rewriter::rewrite(asNode);

      if(d_shared.find(asNode) == d_shared.end()) {
        d_shared.insert(asNode);
        if(asNode.getKind() == kind::OR) {
          ++lemmaCount;
          if(lemmaCount % 1 == 0) {
            Debug("shared") << "=) " << asNode << std::endl;
          }
          d_propEngine->assertLemma(d_theoryEngine->preprocess(asNode), false, true);
        } else {
          Debug("shared") << "=(" << asNode << std::endl;
        }
      } else {
        Debug("shared") <<"drop shared " << asNode << std::endl;
      }
    }
  }
}

void TheoryProxy::notifyNewLemma(SatClause& lemma) {
  Assert(lemma.size() > 0);
  if(options::lemmaOutputChannel() != NULL) {
    if(lemma.size() == 1) {
      // cannot share units yet
      //options::lemmaOutputChannel()->notifyNewLemma(d_cnfStream->getNode(lemma[0]).toExpr());
    } else {
      NodeBuilder<> b(kind::OR);
      for(unsigned i = 0, i_end = lemma.size(); i < i_end; ++i) {
        b << d_cnfStream->getNode(lemma[i]);
      }
      Node n = b;

      if(d_shared.find(n) == d_shared.end()) {
        d_shared.insert(n);
        options::lemmaOutputChannel()->notifyNewLemma(n.toExpr());
      } else {
        Debug("shared") <<"drop new " << n << std::endl;
      }
    }
  }
}

SatLiteral TheoryProxy::getNextReplayDecision() {
#ifdef CVC4_REPLAY
  if(options::replayStream() != NULL) {
    Expr e = options::replayStream()->nextExpr();
    if(!e.isNull()) { // we get null node when out of decisions to replay
      // convert & return
      ++d_replayedDecisions;
      return d_cnfStream->getLiteral(e);
    }
  }
#endif /* CVC4_REPLAY */
  return undefSatLiteral;
}

void TheoryProxy::logDecision(SatLiteral lit) {
#ifdef CVC4_REPLAY
  if(options::replayLog() != NULL) {
    Assert(lit != undefSatLiteral, "logging an `undef' decision ?!");
    *options::replayLog() << d_cnfStream->getNode(lit) << std::endl;
  }
#endif /* CVC4_REPLAY */
}

void TheoryProxy::checkTime() {
  d_propEngine->checkTime();
}

bool TheoryProxy::isDecisionRelevant(SatVariable var) {
  return d_decisionEngine->isRelevant(var);
}

bool TheoryProxy::isDecisionEngineDone() {
  return d_decisionEngine->isDone();
}

SatValue TheoryProxy::getDecisionPolarity(SatVariable var) {
  return d_decisionEngine->getPolarity(var);
}

}/* CVC4::prop namespace */
}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback