summaryrefslogtreecommitdiff
path: root/src/prop/cnf_stream.h
blob: c085fd3840fa70df18c14ec6891ca4c74f77c9d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*********************                                                        */
/*! \file cnf_stream.h
 ** \verbatim
 ** Original author: taking
 ** Major contributors: mdeters, dejan
 ** Minor contributors (to current version): barrett, lianah, cconway
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009-2012  New York University and The University of Iowa
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief This class transforms a sequence of formulas into clauses.
 **
 ** This class takes a sequence of formulas.
 ** It outputs a stream of clauses that is propositionally
 ** equi-satisfiable with the conjunction of the formulas.
 ** This stream is maintained in an online fashion.
 **
 ** Unlike other parts of the system it is aware of the PropEngine's
 ** internals such as the representation and translation of [??? -Chris]
 **/

#include "cvc4_private.h"

#ifndef __CVC4__PROP__CNF_STREAM_H
#define __CVC4__PROP__CNF_STREAM_H

#include "expr/node.h"
#include "prop/theory_proxy.h"
#include "prop/registrar.h"
#include "context/cdlist.h"

#include <ext/hash_map>

namespace CVC4 {
namespace prop {


class PropEngine;

/**
 * Comments for the behavior of the whole class... [??? -Chris]
 * @author Tim King <taking@cs.nyu.edu>
 */
class CnfStream {

public:

  /** Cache of what nodes have been registered to a literal. */
  typedef __gnu_cxx::hash_map<SatLiteral, TNode, SatLiteralHashFunction> NodeCache;

  /** Per node translation information */
  struct TranslationInfo {
    bool recorded;
    /** The level at which this node was translated (negative if not translated) */
    int level;
    /** The literal of this node */
    SatLiteral literal;
  };

  /** Cache of what literals have been registered to a node. */
  typedef __gnu_cxx::hash_map<Node, TranslationInfo, NodeHashFunction> TranslationCache;

protected:

  /** The SAT solver we will be using */
  SatSolver *d_satSolver;

  /** Boolean variables that we translated */
  context::CDList<TNode> d_booleanVariables;

  TranslationCache d_translationCache;
  NodeCache d_nodeCache;

  /**
   * True if the lit-to-Node map should be kept for all lits, not just
   * theory lits.  This is true if e.g. replay logging is on, which
   * dumps the Nodes corresponding to decision literals.
   */
  const bool d_fullLitToNodeMap;

  /** The "registrar" for pre-registration of terms */
  Registrar* d_registrar;

  /** Top level nodes that we translated */
  std::vector<TNode> d_translationTrail;

  /**
   * How many literals were already mapped at the top-level when we
   * tried to convertAndAssert() something.  This
   * achieves early detection of units and leads to fewer
   * clauses.  It's motivated by the following pattern:
   *
   *   ASSERT  BIG FORMULA => x
   *   (and then later...)
   *   ASSERT  BIG FORMULA
   *
   * With the first assert, BIG FORMULA is clausified, and a literal
   * is assigned for the top level so that the final clause for the
   * implication is "lit => x".  But without "fortunate literal
   * detection," when BIG FORMULA is later asserted, it is clausified
   * separately, and "lit" is never asserted as a unit clause.
   */
  //KEEP_STATISTIC(IntStat, d_fortunateLiterals, "prop::CnfStream::fortunateLiterals", 0);

  /** Remove nots from the node */
  TNode stripNot(TNode node) {
    while (node.getKind() == kind::NOT) {
      node = node[0];
    }
    return node;
  }

  /** Record this translation */
  void recordTranslation(TNode node, bool alwaysRecord = false);

  /**
   * Moves the node and all of it's parents to level 0.
   */
  void moveToBaseLevel(TNode node);

  /**
   * Mark the node, and all parent at levels above level as untranslated.
   */
  void undoTranslate(TNode node, int level);

  /**
   * Are we asserting a removable clause (true) or a permanent clause (false).
   * This is set at the begining of convertAndAssert so that it doesn't
   * need to be passed on over the stack.
   */
  bool d_removable;

  /**
   * Asserts the given clause to the sat solver.
   * @param node the node giving rise to this clause
   * @param clause the clause to assert
   */
  void assertClause(TNode node, SatClause& clause);

  /**
   * Asserts the unit clause to the sat solver.
   * @param node the node giving rise to this clause
   * @param a the unit literal of the clause
   */
  void assertClause(TNode node, SatLiteral a);

  /**
   * Asserts the binary clause to the sat solver.
   * @param node the node giving rise to this clause
   * @param a the first literal in the clause
   * @param b the second literal in the clause
   */
  void assertClause(TNode node, SatLiteral a, SatLiteral b);

  /**
   * Asserts the ternary clause to the sat solver.
   * @param node the node giving rise to this clause
   * @param a the first literal in the clause
   * @param b the second literal in the clause
   * @param c the thirs literal in the clause
   */
  void assertClause(TNode node, SatLiteral a, SatLiteral b, SatLiteral c);

  /**
   * Acquires a new variable from the SAT solver to represent the node
   * and inserts the necessary data it into the mapping tables.
   * @param node a formula
   * @param theoryLiteral whether this literal a theory literal (and
   * therefore the theory is to be informed when set to true/false)
   * @return the literal corresponding to the formula
   */
  SatLiteral newLiteral(TNode node, bool theoryLiteral = false);

  /**
   * Constructs a new literal for an atom and returns it.  Calls
   * newLiteral().
   *
   * @param node the node to convert; there should be no boolean
   * structure in this expression.  Assumed to not be in the
   * translation cache.
   */
  SatLiteral convertAtom(TNode node);

public:

  /**
   * Constructs a CnfStream that sends constructs an equi-satisfiable
   * set of clauses and sends them to the given sat solver.
   * @param satSolver the sat solver to use
   * @param registrar the entity that takes care of preregistration of Nodes
   * @param context the context that the CNF should respect
   * @param fullLitToNodeMap maintain a full SAT-literal-to-Node mapping,
   * even for non-theory literals
   */
  CnfStream(SatSolver* satSolver, Registrar* registrar, context::Context* context, bool fullLitToNodeMap = false);

  /**
   * Destructs a CnfStream.  This implementation does nothing, but we
   * need a virtual destructor for safety in case subclasses have a
   * destructor.
   */
  virtual ~CnfStream() {
  }

  /**
   * Converts and asserts a formula.
   * @param node node to convert and assert
   * @param removable whether the sat solver can choose to remove the clauses
   * @param negated whether we are asserting the node negated
   */
  virtual void convertAndAssert(TNode node, bool removable, bool negated) = 0;

  /**
   * Get the node that is represented by the given SatLiteral.
   * @param literal the literal from the sat solver
   * @return the actual node
   */
  TNode getNode(const SatLiteral& literal);

  /**
   * Returns true if the node has been cached in the translation cache.
   * @param node the node
   * @return true if the node has been cached
   */
  bool isTranslated(TNode node) const;

  /**
   * Returns true iff the node has an assigned literal (it might not be translated).
   * @param node the node
   */
  bool hasLiteral(TNode node) const;

  /**
   * Ensure that the given node will have a designated SAT literal
   * that is definitionally equal to it.  The result of this function
   * is that the Node can be queried via getSatValue().  Essentially,
   * this is like a "convert-but-don't-assert" version of
   * convertAndAssert().
   */
  virtual void ensureLiteral(TNode n) = 0;

  /**
   * Returns the literal that represents the given node in the SAT CNF
   * representation.
   * @param node [Presumably there are some constraints on the kind of
   * node? E.g., it needs to be a boolean? -Chris]
   */
  SatLiteral getLiteral(TNode node);

  /**
   * Returns the Boolean variables from the input problem.
   */
  void getBooleanVariables(std::vector<TNode>& outputVariables) const;

  const TranslationCache& getTranslationCache() const {
    return d_translationCache;
  }

  const NodeCache& getNodeCache() const {
    return d_nodeCache;
  }

  /**
   * Removes all the translation information of clauses that have the given associated assert level.
   */
  void removeClausesAboveLevel(int level);

};/* class CnfStream */


/**
 * TseitinCnfStream is based on the following recursive algorithm
 * http://people.inf.ethz.ch/daniekro/classes/251-0247-00/f2007/readings/Tseitin70.pdf
 * The general idea is to introduce a new literal that
 * will be equivalent to each subexpression in the constructed equi-satisfiable
 * formula, then substitute the new literal for the formula, and so on,
 * recursively.
 *
 * This implementation does this in a single recursive pass. [??? -Chris]
 */
class TseitinCnfStream : public CnfStream {

public:

  /**
   * Convert a given formula to CNF and assert it to the SAT solver.
   * @param node the formula to assert
   * @param removable is this something that can be erased
   * @param negated true if negated
   */
  void convertAndAssert(TNode node, bool removable, bool negated);

  /**
   * Constructs the stream to use the given sat solver.
   * @param satSolver the sat solver to use
   * @param registrar the entity that takes care of pre-registration of Nodes
   * @param fullLitToNodeMap maintain a full SAT-literal-to-Node mapping,
   * even for non-theory literals
   */
  TseitinCnfStream(SatSolver* satSolver, Registrar* registrar, context::Context* context, bool fullLitToNodeMap = false);

private:

  /**
   * Same as above, except that removable is remembered.
   */
  void convertAndAssert(TNode node, bool negated);

  // Each of these formulas handles takes care of a Node of each Kind.
  //
  // Each handleX(Node &n) is responsible for:
  //   - constructing a new literal, l (if necessary)
  //   - calling registerNode(n,l)
  //   - adding clauses assure that l is equivalent to the Node
  //   - calling toCNF on its children (if necessary)
  //   - returning l
  //
  // handleX( n ) can assume that n is not in d_translationCache
  SatLiteral handleNot(TNode node);
  SatLiteral handleXor(TNode node);
  SatLiteral handleImplies(TNode node);
  SatLiteral handleIff(TNode node);
  SatLiteral handleIte(TNode node);
  SatLiteral handleAnd(TNode node);
  SatLiteral handleOr(TNode node);

  void convertAndAssertAnd(TNode node, bool negated);
  void convertAndAssertOr(TNode node, bool negated);
  void convertAndAssertXor(TNode node, bool negated);
  void convertAndAssertIff(TNode node, bool negated);
  void convertAndAssertImplies(TNode node, bool negated);
  void convertAndAssertIte(TNode node, bool negated);

  /**
   * Transforms the node into CNF recursively.
   * @param node the formula to transform
   * @param negated whether the literal is negated
   * @return the literal representing the root of the formula
   */
  SatLiteral toCNF(TNode node, bool negated = false);

  void ensureLiteral(TNode n);

};/* class TseitinCnfStream */


}/* CVC4::prop namespace */
}/* CVC4 namespace */

#endif /* __CVC4__PROP__CNF_STREAM_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback