summaryrefslogtreecommitdiff
path: root/src/proof/arith_proof.cpp
blob: 8b55c29dba478d13d0563852435f58c5ca8344b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
/*********************                                                        */
/*! \file arith_proof.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Alex Ozdemir, Guy Katz, Liana Hadarean
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** [[ Add lengthier description here ]]

 ** \todo document this file

**/
#include "proof/arith_proof.h"

#include <memory>
#include <stack>

#include "expr/node.h"
#include "proof/proof_manager.h"
#include "proof/theory_proof.h"
#include "theory/arith/constraint_forward.h"
#include "theory/arith/theory_arith.h"

#define CVC4_ARITH_VAR_TERM_PREFIX "term."

namespace CVC4 {

inline static Node eqNode(TNode n1, TNode n2) {
  return NodeManager::currentNM()->mkNode(kind::EQUAL, n1, n2);
}

// congrence matching term helper
inline static bool match(TNode n1, TNode n2) {
  Debug("pf::arith") << "match " << n1 << " " << n2 << std::endl;
  if(ProofManager::currentPM()->hasOp(n1)) {
    n1 = ProofManager::currentPM()->lookupOp(n1);
  }
  if(ProofManager::currentPM()->hasOp(n2)) {
    n2 = ProofManager::currentPM()->lookupOp(n2);
  }
  Debug("pf::arith") << "+ match " << n1 << " " << n2 << std::endl;
  if(n1 == n2) {
    return true;
  }
  if(n1.getType().isFunction() && n2.hasOperator()) {
    if(ProofManager::currentPM()->hasOp(n2.getOperator())) {
      return n1 == ProofManager::currentPM()->lookupOp(n2.getOperator());
    } else {
      return n1 == n2.getOperator();
    }
  }
  if(n2.getType().isFunction() && n1.hasOperator()) {
    if(ProofManager::currentPM()->hasOp(n1.getOperator())) {
      return n2 == ProofManager::currentPM()->lookupOp(n1.getOperator());
    } else {
      return n2 == n1.getOperator();
    }
  }
  if(n1.hasOperator() && n2.hasOperator() && n1.getOperator() != n2.getOperator()) {
    return false;
  }
  for(size_t i = 0; i < n1.getNumChildren() && i < n2.getNumChildren(); ++i) {
    if(n1[i] != n2[i]) {
      return false;
    }
  }
  return true;
}

void ProofArith::toStream(std::ostream& out) const
{
  Trace("theory-proof-debug") << "; Print Arith proof..." << std::endl;
  //AJR : carry this further?
  ProofLetMap map;
  toStreamLFSC(out, ProofManager::getArithProof(), *d_proof, map);
}

void ProofArith::toStreamLFSC(std::ostream& out,
                              TheoryProof* tp,
                              const theory::eq::EqProof& pf,
                              const ProofLetMap& map)
{
  Debug("lfsc-arith") << "Printing arith proof in LFSC : " << std::endl;
  pf.debug_print("lfsc-arith");
  Debug("lfsc-arith") << std::endl;
  toStreamRecLFSC(out, tp, pf, 0, map);
}

Node ProofArith::toStreamRecLFSC(std::ostream& out,
                                 TheoryProof* tp,
                                 const theory::eq::EqProof& pf,
                                 unsigned tb,
                                 const ProofLetMap& map)
{
  Debug("pf::arith") << std::endl
                     << std::endl
                     << "toStreamRecLFSC called. tb = " << tb
                     << " . proof:" << std::endl;
  pf.debug_print("pf::arith");
  Debug("pf::arith") << std::endl;

  if(tb == 0) {
    Assert(pf.d_id == theory::eq::MERGED_THROUGH_TRANS);
    Assert(!pf.d_node.isNull());
    Assert(pf.d_children.size() >= 2);

    int neg = -1;
    std::shared_ptr<theory::eq::EqProof> subTrans =
        std::make_shared<theory::eq::EqProof>();
    subTrans->d_id = theory::eq::MERGED_THROUGH_TRANS;
    subTrans->d_node = pf.d_node;

    size_t i = 0;
    while (i < pf.d_children.size()) {
      // Look for the negative clause, with which we will form a contradiction.
      if(!pf.d_children[i]->d_node.isNull() && pf.d_children[i]->d_node.getKind() == kind::NOT) {
        Assert(neg < 0);
        neg = i;
        ++i;
      }

      // Handle congruence closures over equalities.
      else if (pf.d_children[i]->d_id==theory::eq::MERGED_THROUGH_CONGRUENCE && pf.d_children[i]->d_node.isNull()) {
        Debug("pf::arith") << "Handling congruence over equalities" << std::endl;

        // Gather the sequence of consecutive congruence closures.
        std::vector<std::shared_ptr<const theory::eq::EqProof>> congruenceClosures;
        unsigned count;
        Debug("pf::arith") << "Collecting congruence sequence" << std::endl;
        for (count = 0;
             i + count < pf.d_children.size() &&
             pf.d_children[i + count]->d_id==theory::eq::MERGED_THROUGH_CONGRUENCE &&
             pf.d_children[i + count]->d_node.isNull();
             ++count) {
          Debug("pf::arith") << "Found a congruence: " << std::endl;
          pf.d_children[i+count]->debug_print("pf::arith");
          congruenceClosures.push_back(pf.d_children[i+count]);
        }

        Debug("pf::arith") << "Total number of congruences found: " << congruenceClosures.size() << std::endl;

        // Determine if the "target" of the congruence sequence appears right before or right after the sequence.
        bool targetAppearsBefore = true;
        bool targetAppearsAfter = true;

        if ((i == 0) || (i == 1 && neg == 0)) {
          Debug("pf::arith") << "Target does not appear before" << std::endl;
          targetAppearsBefore = false;
        }

        if ((i + count >= pf.d_children.size()) ||
            (!pf.d_children[i + count]->d_node.isNull() &&
             pf.d_children[i + count]->d_node.getKind() == kind::NOT)) {
          Debug("pf::arith") << "Target does not appear after" << std::endl;
          targetAppearsAfter = false;
        }

        // Assert that we have precisely one target clause.
        Assert(targetAppearsBefore != targetAppearsAfter);

        // Begin breaking up the congruences and ordering the equalities correctly.
        std::vector<std::shared_ptr<theory::eq::EqProof>> orderedEqualities;


        // Insert target clause first.
        if (targetAppearsBefore) {
          orderedEqualities.push_back(pf.d_children[i - 1]);
          // The target has already been added to subTrans; remove it.
          subTrans->d_children.pop_back();
        } else {
          orderedEqualities.push_back(pf.d_children[i + count]);
        }

        // Start with the congruence closure closest to the target clause, and work our way back/forward.
        if (targetAppearsBefore) {
          for (unsigned j = 0; j < count; ++j) {
            if (pf.d_children[i + j]->d_children[0]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY)
              orderedEqualities.insert(orderedEqualities.begin(), pf.d_children[i + j]->d_children[0]);
            if (pf.d_children[i + j]->d_children[1]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY)
            orderedEqualities.insert(orderedEqualities.end(), pf.d_children[i + j]->d_children[1]);
          }
        } else {
          for (unsigned j = 0; j < count; ++j) {
            if (pf.d_children[i + count - 1 - j]->d_children[0]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY)
              orderedEqualities.insert(orderedEqualities.begin(), pf.d_children[i + count - 1 - j]->d_children[0]);
            if (pf.d_children[i + count - 1 - j]->d_children[1]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY)
              orderedEqualities.insert(orderedEqualities.end(), pf.d_children[i + count - 1 - j]->d_children[1]);
          }
        }

        // Copy the result into the main transitivity proof.
        subTrans->d_children.insert(subTrans->d_children.end(), orderedEqualities.begin(), orderedEqualities.end());

        // Increase i to skip over the children that have been processed.
        i += count;
        if (targetAppearsAfter) {
          ++i;
        }
      }

      // Else, just copy the child proof as is
      else {
        subTrans->d_children.push_back(pf.d_children[i]);
        ++i;
      }
    }
    Assert(neg >= 0);

    Node n1;
    std::stringstream ss;
    //Assert(subTrans->d_children.size() == pf.d_children.size() - 1);
    Debug("pf::arith") << "\nsubtrans has " << subTrans->d_children.size() << " children\n";
    if(pf.d_children.size() > 2) {
      n1 = toStreamRecLFSC(ss, tp, *subTrans, 1, map);
    } else {
      n1 = toStreamRecLFSC(ss, tp, *(subTrans->d_children[0]), 1, map);
      Debug("pf::arith") << "\nsubTrans unique child " << subTrans->d_children[0]->d_id << " was proven\ngot: " << n1 << std::endl;
    }

    Node n2 = pf.d_children[neg]->d_node;
    Assert(n2.getKind() == kind::NOT);
    out << "(clausify_false (contra _ ";
    Debug("pf::arith") << "\nhave proven: " << n1 << std::endl;
    Debug("pf::arith") << "n2 is " << n2[0] << std::endl;

    if (n2[0].getNumChildren() > 0) { Debug("pf::arith") << "\nn2[0]: " << n2[0][0] << std::endl; }
    if (n1.getNumChildren() > 1) { Debug("pf::arith") << "n1[1]: " << n1[1] << std::endl; }

    if(n2[0].getKind() == kind::APPLY_UF) {
      out << "(trans _ _ _ _ ";
      out << "(symm _ _ _ ";
      out << ss.str();
      out << ") (pred_eq_f _ " << ProofManager::getLitName(n2[0]) << ")) t_t_neq_f))" << std::endl;
    } else {
      Assert((n1[0] == n2[0][0] && n1[1] == n2[0][1]) || (n1[1] == n2[0][0] && n1[0] == n2[0][1]));
      if(n1[1] == n2[0][0]) {
        out << "(symm _ _ _ " << ss.str() << ")";
      } else {
        out << ss.str();
      }
      out << " " << ProofManager::getLitName(n2[0]) << "))" << std::endl;
    }
    return Node();
  }

  switch(pf.d_id) {
  case theory::eq::MERGED_THROUGH_CONGRUENCE: {
    Debug("pf::arith") << "\nok, looking at congruence:\n";
    pf.debug_print("pf::arith");
    std::stack<const theory::eq::EqProof*> stk;
    for (const theory::eq::EqProof* pf2 = &pf;
         pf2->d_id == theory::eq::MERGED_THROUGH_CONGRUENCE;
         pf2 = pf2->d_children[0].get()) {
      Assert(!pf2->d_node.isNull());
      Assert(pf2->d_node.getKind() == kind::PARTIAL_APPLY_UF || pf2->d_node.getKind() == kind::BUILTIN || pf2->d_node.getKind() == kind::APPLY_UF || pf2->d_node.getKind() == kind::SELECT || pf2->d_node.getKind() == kind::STORE);
      Assert(pf2->d_children.size() == 2);
      out << "(cong _ _ _ _ _ _ ";
      stk.push(pf2);
    }
    Assert(stk.top()->d_children[0]->d_id != theory::eq::MERGED_THROUGH_CONGRUENCE);
    NodeBuilder<> b1(kind::PARTIAL_APPLY_UF), b2(kind::PARTIAL_APPLY_UF);
    const theory::eq::EqProof* pf2 = stk.top();
    stk.pop();
    Assert(pf2->d_id == theory::eq::MERGED_THROUGH_CONGRUENCE);
    Node n1 = toStreamRecLFSC(out, tp, *(pf2->d_children[0]), tb + 1, map);
    out << " ";
    std::stringstream ss;
    Node n2 = toStreamRecLFSC(ss, tp, *(pf2->d_children[1]), tb + 1, map);
    Debug("pf::arith") << "\nok, in FIRST cong[" << stk.size() << "]" << "\n";
    pf2->debug_print("pf::arith");
    Debug("pf::arith") << "looking at " << pf2->d_node << "\n";
    Debug("pf::arith") << "           " << n1 << "\n";
    Debug("pf::arith") << "           " << n2 << "\n";
    int side = 0;
    if(match(pf2->d_node, n1[0])) {
      //if(tb == 1) {
      Debug("pf::arith") << "SIDE IS 0\n";
      //}
      side = 0;
    } else {
      //if(tb == 1) {
      Debug("pf::arith") << "SIDE IS 1\n";
      //}
      if(!match(pf2->d_node, n1[1])) {
      Debug("pf::arith") << "IN BAD CASE, our first subproof is\n";
      pf2->d_children[0]->debug_print("pf::arith");
      }
      Assert(match(pf2->d_node, n1[1]));
      side = 1;
    }
    if(n1[side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::PARTIAL_APPLY_UF || n1[side].getKind() == kind::SELECT || n1[side].getKind() == kind::STORE) {
      if(n1[side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::PARTIAL_APPLY_UF) {
        b1 << n1[side].getOperator();
      } else {
        b1 << ProofManager::currentPM()->mkOp(n1[side].getOperator());
      }
      b1.append(n1[side].begin(), n1[side].end());
    } else {
      b1 << n1[side];
    }
    if(n1[1-side].getKind() == kind::PARTIAL_APPLY_UF || n1[1-side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::SELECT || n1[side].getKind() == kind::STORE) {
      if(n1[1-side].getKind() == kind::PARTIAL_APPLY_UF || n1[1-side].getKind() == kind::APPLY_UF) {
        b2 << n1[1-side].getOperator();
      } else {
        b2 << ProofManager::currentPM()->mkOp(n1[1-side].getOperator());
      }
      b2.append(n1[1-side].begin(), n1[1-side].end());
    } else {
      b2 << n1[1-side];
    }
    Debug("pf::arith") << "pf2->d_node " << pf2->d_node << std::endl;
    Debug("pf::arith") << "b1.getNumChildren() " << b1.getNumChildren() << std::endl;
    Debug("pf::arith") << "n1 " << n1 << std::endl;
    Debug("pf::arith") << "n2 " << n2 << std::endl;
    Debug("pf::arith") << "side " << side << std::endl;
    if(pf2->d_node[b1.getNumChildren() - (pf2->d_node.getMetaKind() == kind::metakind::PARAMETERIZED ? 0 : 1)] == n2[side]) {
      b1 << n2[side];
      b2 << n2[1-side];
      out << ss.str();
    } else {
      Assert(pf2->d_node[b1.getNumChildren() - (pf2->d_node.getMetaKind() == kind::metakind::PARAMETERIZED ? 0 : 1)] == n2[1-side]);
      b1 << n2[1-side];
      b2 << n2[side];
      out << "(symm _ _ _ " << ss.str() << ")";
    }
    out << ")";
    while(!stk.empty()) {
      if(tb == 1) {
      Debug("pf::arith") << "\nMORE TO DO\n";
      }
      pf2 = stk.top();
      stk.pop();
      Assert(pf2->d_id == theory::eq::MERGED_THROUGH_CONGRUENCE);
      out << " ";
      ss.str("");
      n2 = toStreamRecLFSC(ss, tp, *(pf2->d_children[1]), tb + 1, map);
      Debug("pf::arith") << "\nok, in cong[" << stk.size() << "]" << "\n";
      Debug("pf::arith") << "looking at " << pf2->d_node << "\n";
      Debug("pf::arith") << "           " << n1 << "\n";
      Debug("pf::arith") << "           " << n2 << "\n";
      Debug("pf::arith") << "           " << b1 << "\n";
      Debug("pf::arith") << "           " << b2 << "\n";
      if(pf2->d_node[b1.getNumChildren()] == n2[side]) {
        b1 << n2[side];
        b2 << n2[1-side];
        out << ss.str();
      } else {
        Assert(pf2->d_node[b1.getNumChildren()] == n2[1-side]);
        b1 << n2[1-side];
        b2 << n2[side];
        out << "(symm _ _ _ " << ss.str() << ")";
      }
      out << ")";
    }
    n1 = b1;
    n2 = b2;
    Debug("pf::arith") << "at end assert, got " << pf2->d_node << "  and  " << n1 << std::endl;
    if(pf2->d_node.getKind() == kind::PARTIAL_APPLY_UF) {
      Assert(n1 == pf2->d_node);
    }
    if(n1.getOperator().getType().getNumChildren() == n1.getNumChildren() + 1) {
      if(ProofManager::currentPM()->hasOp(n1.getOperator())) {
        b1.clear(ProofManager::currentPM()->lookupOp(n2.getOperator()).getConst<Kind>());
      } else {
        b1.clear(kind::APPLY_UF);
        b1 << n1.getOperator();
      }
      b1.append(n1.begin(), n1.end());
      n1 = b1;
      Debug("pf::arith") << "at[2] end assert, got " << pf2->d_node << "  and  " << n1 << std::endl;
      if(pf2->d_node.getKind() == kind::APPLY_UF) {
        Assert(n1 == pf2->d_node);
      }
    }
    if(n2.getOperator().getType().getNumChildren() == n2.getNumChildren() + 1) {
      if(ProofManager::currentPM()->hasOp(n2.getOperator())) {
        b2.clear(ProofManager::currentPM()->lookupOp(n2.getOperator()).getConst<Kind>());
      } else {
        b2.clear(kind::APPLY_UF);
        b2 << n2.getOperator();
      }
      b2.append(n2.begin(), n2.end());
      n2 = b2;
    }
    Node n = (side == 0 ? eqNode(n1, n2) : eqNode(n2, n1));
    if(tb == 1) {
    Debug("pf::arith") << "\ncong proved: " << n << "\n";
    }
    return n;
  }

  case theory::eq::MERGED_THROUGH_REFLEXIVITY:
    Assert(!pf.d_node.isNull());
    Assert(pf.d_children.empty());
    out << "(refl _ ";
    tp->printTerm(NodeManager::currentNM()->toExpr(pf.d_node), out, map);
    out << ")";
    return eqNode(pf.d_node, pf.d_node);

  case theory::eq::MERGED_THROUGH_EQUALITY:
    Assert(!pf.d_node.isNull());
    Assert(pf.d_children.empty());
    out << ProofManager::getLitName(pf.d_node.negate());
    return pf.d_node;

  case theory::eq::MERGED_THROUGH_TRANS: {
    Assert(!pf.d_node.isNull());
    Assert(pf.d_children.size() >= 2);
    std::stringstream ss;
    Debug("pf::arith") << "\ndoing trans proof[[\n";
    pf.debug_print("pf::arith");
    Debug("pf::arith") << "\n";
    Node n1 = toStreamRecLFSC(ss, tp, *(pf.d_children[0]), tb + 1, map);
    Debug("pf::arith") << "\ndoing trans proof, got n1 " << n1 << "\n";
    if(tb == 1) {
      Debug("pf::arith") << "\ntrans proof[0], got n1 " << n1 << "\n";
    }

    bool identicalEqualities = false;
    bool evenLengthSequence;
    Node nodeAfterEqualitySequence;

    std::map<size_t, Node> childToStream;

    for(size_t i = 1; i < pf.d_children.size(); ++i) {
      std::stringstream ss1(ss.str()), ss2;
      ss.str("");

      // It is possible that we've already converted the i'th child to stream. If so,
      // use previously stored result. Otherwise, convert and store.
      Node n2;
      if (childToStream.find(i) != childToStream.end())
        n2 = childToStream[i];
      else {
        n2 = toStreamRecLFSC(ss2, tp, *(pf.d_children[i]), tb + 1, map);
        childToStream[i] = n2;
      }

      // The following branch is dedicated to handling sequences of identical equalities,
      // i.e. trans[ a=b, a=b, a=b ].
      //
      // There are two cases:
      //    1. The number of equalities is odd. Then, the sequence can be collapsed to just one equality,
      //       i.e. a=b.
      //    2. The number of equalities is even. Now, we have two options: a=a or b=b. To determine this,
      //       we look at the node after the equality sequence. If it needs a, we go for a=a; and if it needs
      //       b, we go for b=b. If there is no following node, we look at the goal of the transitivity proof,
      //       and use it to determine which option we need.
      if(n2.getKind() == kind::EQUAL) {
        if (((n1[0] == n2[0]) && (n1[1] == n2[1])) || ((n1[0] == n2[1]) && (n1[1] == n2[0]))) {
          // We are in a sequence of identical equalities

          Debug("pf::arith") << "Detected identical equalities: " << std::endl << "\t" << n1 << std::endl;

          if (!identicalEqualities) {
            // The sequence of identical equalities has started just now
            identicalEqualities = true;

            Debug("pf::arith") << "The sequence is just beginning. Determining length..." << std::endl;

            // Determine whether the length of this sequence is odd or even.
            evenLengthSequence = true;
            bool sequenceOver = false;
            size_t j = i + 1;

            while (j < pf.d_children.size() && !sequenceOver) {
              std::stringstream dontCare;
              nodeAfterEqualitySequence = toStreamRecLFSC(
                  dontCare, tp, *(pf.d_children[j]), tb + 1, map);

              if (((nodeAfterEqualitySequence[0] == n1[0]) && (nodeAfterEqualitySequence[1] == n1[1])) ||
                  ((nodeAfterEqualitySequence[0] == n1[1]) && (nodeAfterEqualitySequence[1] == n1[0]))) {
                evenLengthSequence = !evenLengthSequence;
              } else {
                sequenceOver = true;
              }

              ++j;
            }

            if (evenLengthSequence) {
              // If the length is even, we need to apply transitivity for the "correct" hand of the equality.

              Debug("pf::arith") << "Equality sequence of even length" << std::endl;
              Debug("pf::arith") << "n1 is: " << n1 << std::endl;
              Debug("pf::arith") << "n2 is: " << n2 << std::endl;
              Debug("pf::arith") << "pf-d_node is: " << pf.d_node << std::endl;
              Debug("pf::arith") << "Next node is: " << nodeAfterEqualitySequence << std::endl;

              ss << "(trans _ _ _ _ ";

              // If the sequence is at the very end of the transitivity proof, use pf.d_node to guide us.
              if (!sequenceOver) {
                if (match(n1[0], pf.d_node[0])) {
                  n1 = eqNode(n1[0], n1[0]);
                  ss << ss1.str() << " (symm _ _ _ " << ss1.str() << ")";
                } else if (match(n1[1], pf.d_node[1])) {
                  n1 = eqNode(n1[1], n1[1]);
                  ss << " (symm _ _ _ " << ss1.str() << ")" << ss1.str();
                } else {
                  Debug("pf::arith") << "Error: identical equalities over, but hands don't match what we're proving."
                                     << std::endl;
                  Assert(false);
                }
              } else {
                // We have a "next node". Use it to guide us.

                Assert(nodeAfterEqualitySequence.getKind() == kind::EQUAL);

                if ((n1[0] == nodeAfterEqualitySequence[0]) || (n1[0] == nodeAfterEqualitySequence[1])) {

                  // Eliminate n1[1]
                  ss << ss1.str() << " (symm _ _ _ " << ss1.str() << ")";
                  n1 = eqNode(n1[0], n1[0]);

                } else if ((n1[1] == nodeAfterEqualitySequence[0]) || (n1[1] == nodeAfterEqualitySequence[1])) {

                  // Eliminate n1[0]
                  ss << " (symm _ _ _ " << ss1.str() << ")" << ss1.str();
                  n1 = eqNode(n1[1], n1[1]);

                } else {
                  Debug("pf::arith") << "Error: even length sequence, but I don't know which hand to keep!" << std::endl;
                  Assert(false);
                }
              }

              ss << ")";

            } else {
              Debug("pf::arith") << "Equality sequence length is odd!" << std::endl;
              ss.str(ss1.str());
            }

            Debug("pf::arith") << "Have proven: " << n1 << std::endl;
          } else {
            ss.str(ss1.str());
          }

          // Ignore the redundancy.
          continue;
        }
      }

      if (identicalEqualities) {
        // We were in a sequence of identical equalities, but it has now ended. Resume normal operation.
        identicalEqualities = false;
      }

      Debug("pf::arith") << "\ndoing trans proof, got n2 " << n2 << "\n";
      if(tb == 1) {
        Debug("pf::arith") << "\ntrans proof[" << i << "], got n2 " << n2 << "\n";
        Debug("pf::arith") << (n2.getKind() == kind::EQUAL) << "\n";

        if ((n1.getNumChildren() >= 2) && (n2.getNumChildren() >= 2)) {
          Debug("pf::arith") << n1[0].getId() << " " << n1[1].getId() << " / " << n2[0].getId() << " " << n2[1].getId() << "\n";
          Debug("pf::arith") << n1[0].getId() << " " << n1[0] << "\n";
          Debug("pf::arith") << n1[1].getId() << " " << n1[1] << "\n";
          Debug("pf::arith") << n2[0].getId() << " " << n2[0] << "\n";
          Debug("pf::arith") << n2[1].getId() << " " << n2[1] << "\n";
          Debug("pf::arith") << (n1[0] == n2[0]) << "\n";
          Debug("pf::arith") << (n1[1] == n2[1]) << "\n";
          Debug("pf::arith") << (n1[0] == n2[1]) << "\n";
          Debug("pf::arith") << (n1[1] == n2[0]) << "\n";
        }
      }
      ss << "(trans _ _ _ _ ";

      if((n2.getKind() == kind::EQUAL) && (n1.getKind() == kind::EQUAL))
        // Both elements of the transitivity rule are equalities/iffs
      {
        if(n1[0] == n2[0]) {
            if(tb == 1) { Debug("pf::arith") << "case 1\n"; }
            n1 = eqNode(n1[1], n2[1]);
            ss << "(symm _ _ _ " << ss1.str() << ") " << ss2.str();
        } else if(n1[1] == n2[1]) {
          if(tb == 1) { Debug("pf::arith") << "case 2\n"; }
          n1 = eqNode(n1[0], n2[0]);
          ss << ss1.str() << " (symm _ _ _ " << ss2.str() << ")";
        } else if(n1[0] == n2[1]) {
            if(tb == 1) { Debug("pf::arith") << "case 3\n"; }
            n1 = eqNode(n2[0], n1[1]);
            ss << ss2.str() << " " << ss1.str();
            if(tb == 1) { Debug("pf::arith") << "++ proved " << n1 << "\n"; }
        } else if(n1[1] == n2[0]) {
          if(tb == 1) { Debug("pf::arith") << "case 4\n"; }
          n1 = eqNode(n1[0], n2[1]);
          ss << ss1.str() << " " << ss2.str();
        } else {
          Warning() << "\n\ntrans proof failure at step " << i << "\n\n";
          Warning() << "0 proves " << n1 << "\n";
          Warning() << "1 proves " << n2 << "\n\n";
          pf.debug_print("pf::arith",0);
          //toStreamRec(Warning.getStream(), pf, 0);
          Warning() << "\n\n";
          Unreachable();
        }
        Debug("pf::arith") << "++ trans proof[" << i << "], now have " << n1 << std::endl;
      } else if(n1.getKind() == kind::EQUAL) {
        // n1 is an equality/iff, but n2 is a predicate
        if(n1[0] == n2) {
          n1 = n1[1];
          ss << "(symm _ _ _ " << ss1.str() << ") (pred_eq_t _ " << ss2.str() << ")";
        } else if(n1[1] == n2) {
          n1 = n1[0];
          ss << ss1.str() << " (pred_eq_t _ " << ss2.str() << ")";
        } else {
          Unreachable();
        }
      } else if(n2.getKind() == kind::EQUAL) {
        // n2 is an equality/iff, but n1 is a predicate
        if(n2[0] == n1) {
          n1 = n2[1];
          ss << "(symm _ _ _ " << ss2.str() << ") (pred_eq_t _ " << ss1.str() << ")";
        } else if(n2[1] == n1) {
          n1 = n2[0];
          ss << ss2.str() << " (pred_eq_t _ " << ss1.str() << ")";
        } else {
          Unreachable();
        }
      } else {
        // Both n1 and n2 are prediacates. Don't know what to do...
        Unreachable();
      }

      ss << ")";
    }
    out << ss.str();
    Debug("pf::arith") << "\n++ trans proof done, have proven " << n1 << std::endl;
    return n1;
  }

  default:
    Assert(!pf.d_node.isNull());
    Assert(pf.d_children.empty());
    Debug("pf::arith") << "theory proof: " << pf.d_node << " by rule " << int(pf.d_id) << std::endl;
    AlwaysAssert(false);
    return pf.d_node;
  }
}

ArithProof::ArithProof(theory::arith::TheoryArith* arith, TheoryProofEngine* pe)
  : TheoryProof(arith, pe), d_recorder(), d_realMode(false)
{
  arith->setProofRecorder(&d_recorder);
}

theory::TheoryId ArithProof::getTheoryId() { return theory::THEORY_ARITH; }
void ArithProof::registerTerm(Expr term) {
  Debug("pf::arith") << "Arith register term: " << term << ". Kind: " << term.getKind()
                            << ". Type: " << term.getType() << std::endl;

  if (term.getType().isReal() && !term.getType().isInteger()) {
    Debug("pf::arith") << "Entering real mode" << std::endl;
    d_realMode = true;
  }

  if (term.isVariable() && !ProofManager::getSkolemizationManager()->isSkolem(term)) {
    d_declarations.insert(term);
  }

  // recursively declare all other terms
  for (unsigned i = 0; i < term.getNumChildren(); ++i) {
    // could belong to other theories
    d_proofEngine->registerTerm(term[i]);
  }
}

void LFSCArithProof::printOwnedTerm(Expr term, std::ostream& os, const ProofLetMap& map) {
  Debug("pf::arith") << "Arith print term: " << term << ". Kind: " << term.getKind()
                     << ". Type: " << term.getType()
                     << ". Number of children: " << term.getNumChildren() << std::endl;

  // !d_realMode <--> term.getType().isInteger()

  Assert (theory::Theory::theoryOf(term) == theory::THEORY_ARITH);
  switch (term.getKind())
  {
    case kind::CONST_RATIONAL:
    {
      Assert(term.getNumChildren() == 0);
      Assert(term.getType().isInteger() || term.getType().isReal());

      const Rational& r = term.getConst<Rational>();
      bool neg = (r < 0);

      os << (!d_realMode ? "(a_int " : "(a_real ");

      if (neg)
      {
        os << "(~ ";
      }

      if (!d_realMode)
      {
        os << r.abs();
      }
      else
      {
        printRational(os, r.abs());
      }

      if (neg)
      {
        os << ") ";
      }

      os << ") ";
      return;
    }

    case kind::UMINUS:
    {
      Assert(term.getNumChildren() == 1);
      Assert(term.getType().isInteger() || term.getType().isReal());
      os << (!d_realMode ? "(u-_Int " : "(u-_Real ");
      d_proofEngine->printBoundTerm(term[0], os, map);
      os << ") ";
      return;
    }

    case kind::PLUS:
    {
      Assert(term.getNumChildren() >= 2);

      std::stringstream paren;
      for (unsigned i = 0; i < term.getNumChildren() - 1; ++i)
      {
        os << (!d_realMode ? "(+_Int " : "(+_Real ");
        d_proofEngine->printBoundTerm(term[i], os, map);
        os << " ";
        paren << ") ";
      }

      d_proofEngine->printBoundTerm(term[term.getNumChildren() - 1], os, map);
      os << paren.str();
      return;
    }

    case kind::MINUS:
    {
      Assert(term.getNumChildren() >= 2);

      std::stringstream paren;
      for (unsigned i = 0; i < term.getNumChildren() - 1; ++i)
      {
        os << (!d_realMode ? "(-_Int " : "(-_Real ");
        d_proofEngine->printBoundTerm(term[i], os, map);
        os << " ";
        paren << ") ";
      }

      d_proofEngine->printBoundTerm(term[term.getNumChildren() - 1], os, map);
      os << paren.str();
      return;
    }

    case kind::MULT:
    {
      Assert(term.getNumChildren() >= 2);

      std::stringstream paren;
      for (unsigned i = 0; i < term.getNumChildren() - 1; ++i)
      {
        os << (!d_realMode ? "(*_Int " : "(*_Real ");
        d_proofEngine->printBoundTerm(term[i], os, map);
        os << " ";
        paren << ") ";
      }

      d_proofEngine->printBoundTerm(term[term.getNumChildren() - 1], os, map);
      os << paren.str();
      return;
    }

    case kind::DIVISION:
    case kind::DIVISION_TOTAL:
    {
      Assert(term.getNumChildren() >= 2);

      std::stringstream paren;
      for (unsigned i = 0; i < term.getNumChildren() - 1; ++i)
      {
        os << (!d_realMode ? "(/_Int " : "(/_Real ");
        d_proofEngine->printBoundTerm(term[i], os, map);
        os << " ";
        paren << ") ";
      }

      d_proofEngine->printBoundTerm(term[term.getNumChildren() - 1], os, map);
      os << paren.str();
      return;
    }

    case kind::GT:
      Assert(term.getNumChildren() == 2);
      os << (!d_realMode ? "(>_Int " : "(>_Real ");
      d_proofEngine->printBoundTerm(term[0], os, map);
      os << " ";
      d_proofEngine->printBoundTerm(term[1], os, map);
      os << ") ";
      return;

    case kind::GEQ:
      Assert(term.getNumChildren() == 2);
      os << (!d_realMode ? "(>=_Int " : "(>=_Real ");
      d_proofEngine->printBoundTerm(term[0], os, map);
      os << " ";
      d_proofEngine->printBoundTerm(term[1], os, map);
      os << ") ";
      return;

    case kind::LT:
      Assert(term.getNumChildren() == 2);
      os << (!d_realMode ? "(<_Int " : "(<_Real ");
      d_proofEngine->printBoundTerm(term[0], os, map);
      os << " ";
      d_proofEngine->printBoundTerm(term[1], os, map);
      os << ") ";
      return;

    case kind::LEQ:
      Assert(term.getNumChildren() == 2);
      os << (!d_realMode ? "(<=_Int " : "(<=_Real ");
      d_proofEngine->printBoundTerm(term[0], os, map);
      os << " ";
      d_proofEngine->printBoundTerm(term[1], os, map);
      os << ") ";
      return;

    case kind::VARIABLE:
    case kind::SKOLEM:
      os << CVC4_ARITH_VAR_TERM_PREFIX << ProofManager::sanitize(term);
      return;

    default:
      Debug("pf::arith") << "Default printing of term: " << term << std::endl;
      os << term;
      return;
  }
}

void LFSCArithProof::printOwnedSort(Type type, std::ostream& os) {
  Debug("pf::arith") << "Arith print sort: " << type << std::endl;

  if (type.isInteger() && d_realMode) {
    // If in "real mode", don't use type Int for, e.g., equality.
    os << "Real";
  } else {
    os << type;
  }
}

void LFSCArithProof::printRational(std::ostream& o, const Rational& r)
{
  if (r.sgn() < 0)
  {
    o << "(~ " << r.getNumerator().abs() << "/" << r.getDenominator().abs()
      << ")";
  }
  else
  {
    o << r.getNumerator() << "/" << r.getDenominator();
  }
}

void LFSCArithProof::printLinearPolynomialNormalizer(std::ostream& o,
                                                     const Node& n)
{
  switch (n.getKind())
  {
    case kind::PLUS:
    {
      // Since our axioms are binary, but n may be n-ary, we rig up
      // a right-associative tree.
      size_t nchildren = n.getNumChildren();
      for (size_t i = 0; i < nchildren; ++i)
      {
        if (i < nchildren - 1)
        {
          o << "\n      (pn_+ _ _ _ _ _ ";
        }
        printLinearMonomialNormalizer(o, n[i]);
      }
      std::fill_n(std::ostream_iterator<char>(o), nchildren - 1, ')');
      break;
    }
    case kind::MULT:
    case kind::VARIABLE:
    case kind::CONST_RATIONAL:
    case kind::SKOLEM:
    {
      printLinearMonomialNormalizer(o, n);
      break;
    }
    default:
#ifdef CVC4_ASSERTIONS
      std::ostringstream msg;
      msg << "Invalid operation " << n.getKind() << " in linear polynomial";
      Unreachable(msg.str().c_str());
#endif  // CVC4_ASSERTIONS
      break;
  }
}

void LFSCArithProof::printLinearMonomialNormalizer(std::ostream& o,
                                                   const Node& n)
{
  switch (n.getKind())
  {
    case kind::MULT: {
#ifdef CVC4_ASSERTIONS
      std::ostringstream s;
      s << "node " << n << " is not a linear monomial";
      s << " " << n[0].getKind() << " " << n[1].getKind();
      Assert((n[0].getKind() == kind::CONST_RATIONAL
              && (n[1].getKind() == kind::VARIABLE
                  || n[1].getKind() == kind::SKOLEM)),
             s.str().c_str());
#endif  // CVC4_ASSERTIONS

      o << "\n        (pn_mul_c_L _ _ _ ";
      printConstRational(o, n[0]);
      o << " ";
      printVariableNormalizer(o, n[1]);
      o << ")";
      break;
    }
    case kind::CONST_RATIONAL:
    {
      o << "\n        (pn_const ";
      printConstRational(o, n);
      o << ")";
      break;
    }
    case kind::VARIABLE:
    case kind::SKOLEM:
    {
      o << "\n        ";
      printVariableNormalizer(o, n);
      break;
    }
    default:
#ifdef CVC4_ASSERTIONS
      std::ostringstream msg;
      msg << "Invalid operation " << n.getKind() << " in linear monomial";
      Unreachable(msg.str().c_str());
#endif  // CVC4_ASSERTIONS
      break;
  }
}

void LFSCArithProof::printConstRational(std::ostream& o, const Node& n)
{
  Assert(n.getKind() == kind::CONST_RATIONAL);
  const Rational value = n.getConst<Rational>();
  printRational(o, value);
}

void LFSCArithProof::printVariableNormalizer(std::ostream& o, const Node& n)
{
  std::ostringstream msg;
  msg << "Invalid variable kind " << n.getKind() << " in linear monomial";
  Assert(n.getKind() == kind::VARIABLE || n.getKind() == kind::SKOLEM,
         msg.str().c_str());
  o << "(pn_var " << n << ")";
}

void LFSCArithProof::printLinearPolynomialPredicateNormalizer(std::ostream& o,
                                                              const Node& n)
{
  Assert(n.getKind() == kind::GEQ,
         "can only print normalization witnesses for (>=) nodes");
  Assert(n[1].getKind() == kind::CONST_RATIONAL);
  o << "(poly_formula_norm_>= _ _ _ ";
  o << "\n    (pn_- _ _ _ _ _ ";
  printLinearPolynomialNormalizer(o, n[0]);
  o << "\n      (pn_const ";
  printConstRational(o, n[1]);
  o << ")))";
}

void LFSCArithProof::printTheoryLemmaProof(std::vector<Expr>& lemma,
                                           std::ostream& os,
                                           std::ostream& paren,
                                           const ProofLetMap& map)
{
  Debug("pf::arith") << "Printing proof for lemma " << lemma << std::endl;
  // Prefixes for the names of linearity witnesses
  const char* linearityWitnessPrefix = "lp";
  const char* linearizedProofPrefix = "pf_lp";
  std::ostringstream lemmaParen;

  // Construct the set of conflicting literals
  std::set<Node> conflictSet;
  std::transform(lemma.begin(),
                 lemma.end(),
                 std::inserter(conflictSet, conflictSet.begin()),
                 [](const Expr& e) {
                   return NodeManager::currentNM()->fromExpr(e).negate();
                 });

  // If we have Farkas coefficients stored for this lemma, use them to write a
  // proof. Otherwise, just `trust` the lemma.
  if (d_recorder.hasFarkasCoefficients(conflictSet))
  {
    // Get farkas coefficients & literal order
    const auto& farkasInfo = d_recorder.getFarkasCoefficients(conflictSet);
    const Node& conflict = farkasInfo.first;
    theory::arith::RationalVectorCP farkasCoefficients = farkasInfo.second;
    Assert(farkasCoefficients != theory::arith::RationalVectorCPSentinel);
    Assert(conflict.getNumChildren() == farkasCoefficients->size());
    const size_t nAntecedents = conflict.getNumChildren();

    // Print proof
    os << "\n;; Farkas Proof" << std::endl;

    // Construct witness that the literals are linear polynomials
    os << ";  Linear Polynomial Normalization Witnesses" << std::endl;
    for (size_t i = 0; i != nAntecedents; ++i)
    {
      const Node& antecedent = conflict[i];
      const Rational farkasC = (*farkasCoefficients)[i];
      os << "\n; " << antecedent << " w/ farkas c = " << farkasC << std::endl;
      os << "  (@ "
         << ProofManager::getLitName(antecedent.negate(),
                                     linearityWitnessPrefix)
         << " ";
      const Node& nonneg =
          antecedent.getKind() == kind::NOT ? antecedent[0] : antecedent;
      printLinearPolynomialPredicateNormalizer(os, nonneg);
      lemmaParen << ")";
    }

    // Prove linear polynomial constraints
    os << "\n;  Linear Polynomial Proof Conversions";
    for (size_t i = 0; i != nAntecedents; ++i)
    {
      const Node& antecedent = conflict[i];
      os << "\n  (@ "
         << ProofManager::getLitName(antecedent.negate(), linearizedProofPrefix)
         << " ";
      lemmaParen << ")";
      switch (conflict[i].getKind())
      {
        case kind::NOT:
        {
          Assert(conflict[i][0].getKind() == kind::GEQ);
          os << "(poly_flip_not_>= _ _ "
             << "(poly_form_not _ _ "
             << ProofManager::getLitName(antecedent.negate(),
                                         linearityWitnessPrefix)
             << " " << ProofManager::getLitName(antecedent.negate(), "")
             << "))";
          break;
        }
        case kind::GEQ:
        {
          os << "(poly_form _ _ "
             << ProofManager::getLitName(antecedent.negate(),
                                         linearityWitnessPrefix)
             << " " << ProofManager::getLitName(antecedent.negate(), "") << ")";
          break;
        }
        default: Unreachable();
      }
    }

    /* Combine linear polynomial constraints to derive a contradiction.
     *
     * The linear polynomial constraints are refered to as **antecedents**,
     * since they are antecedents to the contradiction.
     *
     * The structure of the combination is a tree
     *
     *   (=> <=)
     *      |
     *      +                   0
     *     / \
     *    *   +                 1
     *       / \
     *      *   +               2
     *         / \
     *        *  ...            i
     *             \
     *              +           n-1
     *             / \
     *            *   (0 >= 0)
     *
     * Where each * is a linearized antecedant being scaled by a farkas
     * coefficient and each + is the sum of inequalities. The tricky bit is that
     * each antecedent can be strict (>) or relaxed (>=) and the axiom used for
     * each * and + depends on this... The axiom for * depends on the
     * strictness of its linear polynomial input, and the axiom for + depends
     * on the strictness of **both** its inputs. The contradiction axiom is
     * also a function of the strictness of its input.
     *
     * There are n *s and +s and we precompute
     *    1. The strictness of the ith antecedant  (`ith_antecedent_is_strict`)
     *    2. The strictness of the right argument of the ith sum
     * (`ith_acc_is_strict`)
     *    3. The strictness of the final result (`strict_contradiction`)
     *
     * Precomupation is helpful since
     *    the computation is post-order,
     *    but printing is pre-order.
     */
    std::vector<bool> ith_antecedent_is_strict(nAntecedents, false);
    std::vector<bool> ith_acc_is_strict(nAntecedents, false);
    for (int i = nAntecedents - 1; i >= 0; --i)
    {
      ith_antecedent_is_strict[i] = conflict[i].getKind() == kind::NOT;
      if (i == (int)nAntecedents - 1)
      {
        ith_acc_is_strict[i] = false;
      }
      else
      {
        ith_acc_is_strict[i] =
            ith_acc_is_strict[i + 1] || ith_antecedent_is_strict[i + 1];
      }
    }
    bool strict_contradiction =
        ith_acc_is_strict[0] || ith_antecedent_is_strict[0];

    // Now, print the proof
    os << "\n;  Farkas Combination";
    // Choose the appropriate contradiction axiom
    os << "\n  (lra_contra_" << (strict_contradiction ? ">" : ">=") << " _ ";
    for (size_t i = 0; i != nAntecedents; ++i)
    {
      const Node& lit = conflict[i];
      const char* ante_op = ith_antecedent_is_strict[i] ? ">" : ">=";
      const char* acc_op = ith_acc_is_strict[i] ? ">" : ">=";
      os << "\n    (lra_add_" << ante_op << "_" << acc_op << " _ _ _ ";
      os << "\n       (lra_mul_c_" << ante_op << " _ _ ";
      printRational(os, (*farkasCoefficients)[i].abs());
      os << " " << ProofManager::getLitName(lit.negate(), linearizedProofPrefix)
         << ")"
         << " ; " << lit;
    }

    // The basis, at least, is always the same...
    os << "\n    (lra_axiom_>= 0/1)";
    std::fill_n(std::ostream_iterator<char>(os),
                nAntecedents,
                ')');  // close lra_add_*_*
    os << ")";         // close lra_contra_*

    os << lemmaParen.str();  // close normalizers and proof-normalizers
  }
  else
  {
    os << "\n; Arithmetic proofs which use reasoning more complex than Farkas "
          "proofs are currently unsupported\n(clausify_false trust)\n";
  }
}

void LFSCArithProof::printSortDeclarations(std::ostream& os, std::ostream& paren) {
  // Nothing to do here at this point.
}

void LFSCArithProof::printTermDeclarations(std::ostream& os, std::ostream& paren) {
  for (ExprSet::const_iterator it = d_declarations.begin();
       it != d_declarations.end();
       ++it)
  {
    Expr term = *it;
    Assert(term.isVariable());
    os << "(% " << ProofManager::sanitize(term) << " var_real\n";
    os << "(@ " << CVC4_ARITH_VAR_TERM_PREFIX << ProofManager::sanitize(term)
       << " ";
    os << "(a_var_real " << ProofManager::sanitize(term) << ")\n";
    paren << ")";
    paren << ")";
  }
}

void LFSCArithProof::printDeferredDeclarations(std::ostream& os, std::ostream& paren) {
  // Nothing to do here at this point.
}

void LFSCArithProof::printAliasingDeclarations(std::ostream& os, std::ostream& paren, const ProofLetMap &globalLetMap) {
  // Nothing to do here at this point.
}

} /* CVC4  namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback