summaryrefslogtreecommitdiff
path: root/src/preprocessing/passes/int_to_bv.cpp
blob: 99770583559b3b1039f38c3a54bb248995091f70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/*********************                                                        */
/*! \file int_to_bv.cpp
 ** \verbatim
 ** Top contributors (to current version):
 **   Andres Noetzli
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief The IntToBV preprocessing pass
 **
 ** Converts integer operations into bitvector operations. The width of the
 ** bitvectors is controlled through the `--solve-int-as-bv` command line
 ** option.
 **/

#include "preprocessing/passes/int_to_bv.h"

#include <string>
#include <unordered_map>
#include <vector>

#include "expr/node.h"
#include "theory/rewriter.h"
#include "theory/theory.h"

namespace CVC4 {
namespace preprocessing {
namespace passes {

using namespace CVC4::theory;

using NodeMap = std::unordered_map<Node, Node, NodeHashFunction>;

namespace {

// TODO: clean this up
struct intToBV_stack_element
{
  TNode node;
  bool children_added;
  intToBV_stack_element(TNode node) : node(node), children_added(false) {}
}; /* struct intToBV_stack_element */

Node intToBVMakeBinary(TNode n, NodeMap& cache)
{
  // Do a topological sort of the subexpressions and substitute them
  vector<intToBV_stack_element> toVisit;
  toVisit.push_back(n);

  while (!toVisit.empty())
  {
    // The current node we are processing
    intToBV_stack_element& stackHead = toVisit.back();
    TNode current = stackHead.node;

    NodeMap::iterator find = cache.find(current);
    if (find != cache.end())
    {
      toVisit.pop_back();
      continue;
    }
    if (stackHead.children_added)
    {
      // Children have been processed, so rebuild this node
      Node result;
      NodeManager* nm = NodeManager::currentNM();
      if (current.getNumChildren() > 2
          && (current.getKind() == kind::PLUS
              || current.getKind() == kind::MULT))
      {
        Assert(cache.find(current[0]) != cache.end());
        result = cache[current[0]];
        for (unsigned i = 1; i < current.getNumChildren(); ++i)
        {
          Assert(cache.find(current[i]) != cache.end());
          Node child = current[i];
          Node childRes = cache[current[i]];
          result = nm->mkNode(current.getKind(), result, childRes);
        }
      }
      else
      {
        NodeBuilder<> builder(current.getKind());
        for (unsigned i = 0; i < current.getNumChildren(); ++i)
        {
          Assert(cache.find(current[i]) != cache.end());
          builder << cache[current[i]];
        }
        result = builder;
      }
      cache[current] = result;
      toVisit.pop_back();
    }
    else
    {
      // Mark that we have added the children if any
      if (current.getNumChildren() > 0)
      {
        stackHead.children_added = true;
        // We need to add the children
        for (TNode::iterator child_it = current.begin();
             child_it != current.end();
             ++child_it)
        {
          TNode childNode = *child_it;
          NodeMap::iterator childFind = cache.find(childNode);
          if (childFind == cache.end())
          {
            toVisit.push_back(childNode);
          }
        }
      }
      else
      {
        cache[current] = current;
        toVisit.pop_back();
      }
    }
  }
  return cache[n];
}

Node intToBV(TNode n, NodeMap& cache)
{
  int size = options::solveIntAsBV();
  AlwaysAssert(size > 0);
  AlwaysAssert(!options::incrementalSolving());

  vector<intToBV_stack_element> toVisit;
  NodeMap binaryCache;
  Node n_binary = intToBVMakeBinary(n, binaryCache);
  toVisit.push_back(TNode(n_binary));

  while (!toVisit.empty())
  {
    // The current node we are processing
    intToBV_stack_element& stackHead = toVisit.back();
    TNode current = stackHead.node;

    // If node is already in the cache we're done, pop from the stack
    NodeMap::iterator find = cache.find(current);
    if (find != cache.end())
    {
      toVisit.pop_back();
      continue;
    }

    // Not yet substituted, so process
    NodeManager* nm = NodeManager::currentNM();
    if (stackHead.children_added)
    {
      // Children have been processed, so rebuild this node
      vector<Node> children;
      unsigned max = 0;
      for (unsigned i = 0; i < current.getNumChildren(); ++i)
      {
        Assert(cache.find(current[i]) != cache.end());
        TNode childRes = cache[current[i]];
        TypeNode type = childRes.getType();
        if (type.isBitVector())
        {
          unsigned bvsize = type.getBitVectorSize();
          if (bvsize > max)
          {
            max = bvsize;
          }
        }
        children.push_back(childRes);
      }

      kind::Kind_t newKind = current.getKind();
      if (max > 0)
      {
        switch (newKind)
        {
          case kind::PLUS:
            Assert(children.size() == 2);
            newKind = kind::BITVECTOR_PLUS;
            max = max + 1;
            break;
          case kind::MULT:
            Assert(children.size() == 2);
            newKind = kind::BITVECTOR_MULT;
            max = max * 2;
            break;
          case kind::MINUS:
            Assert(children.size() == 2);
            newKind = kind::BITVECTOR_SUB;
            max = max + 1;
            break;
          case kind::UMINUS:
            Assert(children.size() == 1);
            newKind = kind::BITVECTOR_NEG;
            max = max + 1;
            break;
          case kind::LT: newKind = kind::BITVECTOR_SLT; break;
          case kind::LEQ: newKind = kind::BITVECTOR_SLE; break;
          case kind::GT: newKind = kind::BITVECTOR_SGT; break;
          case kind::GEQ: newKind = kind::BITVECTOR_SGE; break;
          case kind::EQUAL:
          case kind::ITE: break;
          default:
            if (Theory::theoryOf(current) == THEORY_BOOL)
            {
              break;
            }
            throw TypeCheckingException(
                current.toExpr(),
                string("Cannot translate to BV: ") + current.toString());
        }
        for (unsigned i = 0; i < children.size(); ++i)
        {
          TypeNode type = children[i].getType();
          if (!type.isBitVector())
          {
            continue;
          }
          unsigned bvsize = type.getBitVectorSize();
          if (bvsize < max)
          {
            // sign extend
            Node signExtendOp = nm->mkConst<BitVectorSignExtend>(
                BitVectorSignExtend(max - bvsize));
            children[i] = nm->mkNode(signExtendOp, children[i]);
          }
        }
      }
      NodeBuilder<> builder(newKind);
      for (unsigned i = 0; i < children.size(); ++i)
      {
        builder << children[i];
      }
      // Mark the substitution and continue
      Node result = builder;

      result = Rewriter::rewrite(result);
      cache[current] = result;
      toVisit.pop_back();
    }
    else
    {
      // Mark that we have added the children if any
      if (current.getNumChildren() > 0)
      {
        stackHead.children_added = true;
        // We need to add the children
        for (TNode::iterator child_it = current.begin();
             child_it != current.end();
             ++child_it)
        {
          TNode childNode = *child_it;
          NodeMap::iterator childFind = cache.find(childNode);
          if (childFind == cache.end())
          {
            toVisit.push_back(childNode);
          }
        }
      }
      else
      {
        // It's a leaf: could be a variable or a numeral
        Node result = current;
        if (current.isVar())
        {
          if (current.getType() == nm->integerType())
          {
            result = nm->mkSkolem("__intToBV_var",
                                  nm->mkBitVectorType(size),
                                  "Variable introduced in intToBV pass");
          }
          else
          {
            AlwaysAssert(current.getType() == nm->booleanType());
          }
        }
        else if (current.isConst())
        {
          switch (current.getKind())
          {
            case kind::CONST_RATIONAL:
            {
              Rational constant = current.getConst<Rational>();
              AlwaysAssert(constant.isIntegral());
              AlwaysAssert(constant >= 0);
              BitVector bv(size, constant.getNumerator());
              if (bv.toSignedInteger() != constant.getNumerator())
              {
                throw TypeCheckingException(
                    current.toExpr(),
                    string("Not enough bits for constant in intToBV: ")
                        + current.toString());
              }
              result = nm->mkConst(bv);
              break;
            }
            case kind::CONST_BOOLEAN: break;
            default:
              throw TypeCheckingException(
                  current.toExpr(),
                  string("Cannot translate const to BV: ")
                      + current.toString());
          }
        }
        else
        {
          throw TypeCheckingException(
              current.toExpr(),
              string("Cannot translate to BV: ") + current.toString());
        }
        cache[current] = result;
        toVisit.pop_back();
      }
    }
  }
  return cache[n_binary];
}
}  // namespace

IntToBV::IntToBV(PreprocessingPassContext* preprocContext)
    : PreprocessingPass(preprocContext, "int-to-bv"){};

PreprocessingPassResult IntToBV::applyInternal(
    AssertionPipeline* assertionsToPreprocess)
{
  unordered_map<Node, Node, NodeHashFunction> cache;
  for (unsigned i = 0; i < assertionsToPreprocess->size(); ++i)
  {
    assertionsToPreprocess->replace(
        i, intToBV((*assertionsToPreprocess)[i], cache));
  }
  return PreprocessingPassResult::NO_CONFLICT;
}

}  // namespace passes
}  // namespace preprocessing
}  // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback