summaryrefslogtreecommitdiff
path: root/src/preprocessing/passes/ackermann.h
blob: 05709b227815675e31c8c36c0f0d25fec9474563 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*********************                                                        */
/*! \file ackermann.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Ying Sheng, Aina Niemetz, Yoni Zohar
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 ** in the top-level source directory and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Ackermannization preprocessing pass.
 **
 ** This implements the Ackermannization preprocessing pass, which enables
 ** very limited theory combination support for eager bit-blasting via
 ** Ackermannization. It reduces constraints over the combination of the
 ** theories of fixed-size bit-vectors and uninterpreted functions as
 ** described in
 **   Liana Hadarean, An Efficient and Trustworthy Theory Solver for
 **   Bit-vectors in Satisfiability Modulo Theories.
 **   https://cs.nyu.edu/media/publications/hadarean_liana.pdf
 **/

#include "cvc4_private.h"

#ifndef CVC5__PREPROCESSING__PASSES__ACKERMANN_H
#define CVC5__PREPROCESSING__PASSES__ACKERMANN_H

#include <unordered_map>

#include "expr/node.h"
#include "preprocessing/preprocessing_pass.h"
#include "theory/logic_info.h"
#include "theory/substitutions.h"

namespace cvc5 {
namespace preprocessing {
namespace passes {

using TNodeSet = std::unordered_set<TNode, TNodeHashFunction>;
using FunctionToArgsMap =
    std::unordered_map<TNode, TNodeSet, TNodeHashFunction>;
using USortToBVSizeMap =
    std::unordered_map<TypeNode, size_t, TypeNode::HashFunction>;

class Ackermann : public PreprocessingPass
{
 public:
  Ackermann(PreprocessingPassContext* preprocContext);

 protected:
  /**
   * Apply Ackermannization as follows:
   *
   * - For each application f(X) where X = (x1, . . . , xn), introduce a fresh
   *   variable f_X and use it to replace all occurrences of f(X).
   *
   * - For each f(X) and f(Y) with X = (x1, . . . , xn) and Y = (y1, . . . , yn)
   *   occurring in the input formula, add the following lemma:
   *     (x_1 = y_1 /\ ... /\ x_n = y_n) => f_X = f_Y
   *
   * - For each uninterpreted sort S, suppose k is the number of variables with
   *   sort S, then for each such variable X, introduce a fresh variable BV_X
   *   with BV with size log_2(k)+1 and use it to replace all occurrences of X.
   */
  PreprocessingPassResult applyInternal(
      AssertionPipeline* assertionsToPreprocess) override;

 private:
  /* Map each function to a set of terms associated with it */
  FunctionToArgsMap d_funcToArgs;
  /* Map each function-application term to the new Skolem variable created by
   * ackermannization */
  theory::SubstitutionMap d_funcToSkolem;
  /* Map each variable with uninterpreted sort to the new Skolem BV variable
   * created by ackermannization */
  theory::SubstitutionMap d_usVarsToBVVars;
  /* Map each uninterpreted sort to the number of variables in this sort. */
  USortToBVSizeMap d_usortCardinality;
  LogicInfo d_logic;
};

}  // namespace passes
}  // namespace preprocessing
}  // namespace cvc5

#endif /* CVC5__PREPROCESSING__PASSES__ACKERMANN_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback