summaryrefslogtreecommitdiff
path: root/src/parser/smt2/smt2.cpp
blob: 88f4b4ef8739e3d4b984f27b453a303f7ab65332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
/******************************************************************************
 * Top contributors (to current version):
 *   Andrew Reynolds, Andres Noetzli, Morgan Deters
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * Definitions of SMT2 constants.
 */
#include "parser/smt2/smt2.h"

#include <algorithm>

#include "base/check.h"
#include "options/options.h"
#include "parser/antlr_input.h"
#include "parser/parser.h"
#include "parser/smt2/smt2_input.h"

// ANTLR defines these, which is really bad!
#undef true
#undef false

namespace cvc5 {
namespace parser {

Smt2::Smt2(api::Solver* solver,
           SymbolManager* sm,
           bool strictMode,
           bool parseOnly)
    : Parser(solver, sm, strictMode, parseOnly),
      d_logicSet(false),
      d_seenSetLogic(false)
{
}

Smt2::~Smt2() {}

void Smt2::addArithmeticOperators() {
  addOperator(api::PLUS, "+");
  addOperator(api::MINUS, "-");
  // api::MINUS is converted to api::UMINUS if there is only a single operand
  Parser::addOperator(api::UMINUS);
  addOperator(api::MULT, "*");
  addOperator(api::LT, "<");
  addOperator(api::LEQ, "<=");
  addOperator(api::GT, ">");
  addOperator(api::GEQ, ">=");

  if (!strictModeEnabled())
  {
    // NOTE: this operator is non-standard
    addOperator(api::POW, "^");
  }
}

void Smt2::addTranscendentalOperators()
{
  addOperator(api::EXPONENTIAL, "exp");
  addOperator(api::SINE, "sin");
  addOperator(api::COSINE, "cos");
  addOperator(api::TANGENT, "tan");
  addOperator(api::COSECANT, "csc");
  addOperator(api::SECANT, "sec");
  addOperator(api::COTANGENT, "cot");
  addOperator(api::ARCSINE, "arcsin");
  addOperator(api::ARCCOSINE, "arccos");
  addOperator(api::ARCTANGENT, "arctan");
  addOperator(api::ARCCOSECANT, "arccsc");
  addOperator(api::ARCSECANT, "arcsec");
  addOperator(api::ARCCOTANGENT, "arccot");
  addOperator(api::SQRT, "sqrt");
}

void Smt2::addQuantifiersOperators()
{
}

void Smt2::addBitvectorOperators() {
  addOperator(api::BITVECTOR_CONCAT, "concat");
  addOperator(api::BITVECTOR_NOT, "bvnot");
  addOperator(api::BITVECTOR_AND, "bvand");
  addOperator(api::BITVECTOR_OR, "bvor");
  addOperator(api::BITVECTOR_NEG, "bvneg");
  addOperator(api::BITVECTOR_ADD, "bvadd");
  addOperator(api::BITVECTOR_MULT, "bvmul");
  addOperator(api::BITVECTOR_UDIV, "bvudiv");
  addOperator(api::BITVECTOR_UREM, "bvurem");
  addOperator(api::BITVECTOR_SHL, "bvshl");
  addOperator(api::BITVECTOR_LSHR, "bvlshr");
  addOperator(api::BITVECTOR_ULT, "bvult");
  addOperator(api::BITVECTOR_NAND, "bvnand");
  addOperator(api::BITVECTOR_NOR, "bvnor");
  addOperator(api::BITVECTOR_XOR, "bvxor");
  addOperator(api::BITVECTOR_XNOR, "bvxnor");
  addOperator(api::BITVECTOR_COMP, "bvcomp");
  addOperator(api::BITVECTOR_SUB, "bvsub");
  addOperator(api::BITVECTOR_SDIV, "bvsdiv");
  addOperator(api::BITVECTOR_SREM, "bvsrem");
  addOperator(api::BITVECTOR_SMOD, "bvsmod");
  addOperator(api::BITVECTOR_ASHR, "bvashr");
  addOperator(api::BITVECTOR_ULE, "bvule");
  addOperator(api::BITVECTOR_UGT, "bvugt");
  addOperator(api::BITVECTOR_UGE, "bvuge");
  addOperator(api::BITVECTOR_SLT, "bvslt");
  addOperator(api::BITVECTOR_SLE, "bvsle");
  addOperator(api::BITVECTOR_SGT, "bvsgt");
  addOperator(api::BITVECTOR_SGE, "bvsge");
  addOperator(api::BITVECTOR_REDOR, "bvredor");
  addOperator(api::BITVECTOR_REDAND, "bvredand");

  addIndexedOperator(api::BITVECTOR_EXTRACT, api::BITVECTOR_EXTRACT, "extract");
  addIndexedOperator(api::BITVECTOR_REPEAT, api::BITVECTOR_REPEAT, "repeat");
  addIndexedOperator(
      api::BITVECTOR_ZERO_EXTEND, api::BITVECTOR_ZERO_EXTEND, "zero_extend");
  addIndexedOperator(
      api::BITVECTOR_SIGN_EXTEND, api::BITVECTOR_SIGN_EXTEND, "sign_extend");
  addIndexedOperator(
      api::BITVECTOR_ROTATE_LEFT, api::BITVECTOR_ROTATE_LEFT, "rotate_left");
  addIndexedOperator(
      api::BITVECTOR_ROTATE_RIGHT, api::BITVECTOR_ROTATE_RIGHT, "rotate_right");
}

void Smt2::addDatatypesOperators()
{
  Parser::addOperator(api::APPLY_CONSTRUCTOR);
  Parser::addOperator(api::APPLY_TESTER);
  Parser::addOperator(api::APPLY_SELECTOR);

  if (!strictModeEnabled())
  {
    Parser::addOperator(api::APPLY_UPDATER);
    addOperator(api::DT_SIZE, "dt.size");
  }
}

void Smt2::addStringOperators() {
  defineVar(
      "re.all",
      getSolver()->mkTerm(api::REGEXP_STAR, getSolver()->mkRegexpSigma()));
  addOperator(api::STRING_CONCAT, "str.++");
  addOperator(api::STRING_LENGTH, "str.len");
  addOperator(api::STRING_SUBSTR, "str.substr");
  addOperator(api::STRING_CONTAINS, "str.contains");
  addOperator(api::STRING_CHARAT, "str.at");
  addOperator(api::STRING_INDEXOF, "str.indexof");
  addOperator(api::STRING_REPLACE, "str.replace");
  addOperator(api::STRING_PREFIX, "str.prefixof");
  addOperator(api::STRING_SUFFIX, "str.suffixof");
  addOperator(api::STRING_FROM_CODE, "str.from_code");
  addOperator(api::STRING_IS_DIGIT, "str.is_digit");
  addOperator(api::STRING_REPLACE_RE, "str.replace_re");
  addOperator(api::STRING_REPLACE_RE_ALL, "str.replace_re_all");
  if (!strictModeEnabled())
  {
    addOperator(api::STRING_UPDATE, "str.update");
    addOperator(api::STRING_TOLOWER, "str.tolower");
    addOperator(api::STRING_TOUPPER, "str.toupper");
    addOperator(api::STRING_REV, "str.rev");
    // sequence versions
    addOperator(api::SEQ_CONCAT, "seq.++");
    addOperator(api::SEQ_LENGTH, "seq.len");
    addOperator(api::SEQ_EXTRACT, "seq.extract");
    addOperator(api::SEQ_UPDATE, "seq.update");
    addOperator(api::SEQ_AT, "seq.at");
    addOperator(api::SEQ_CONTAINS, "seq.contains");
    addOperator(api::SEQ_INDEXOF, "seq.indexof");
    addOperator(api::SEQ_REPLACE, "seq.replace");
    addOperator(api::SEQ_PREFIX, "seq.prefixof");
    addOperator(api::SEQ_SUFFIX, "seq.suffixof");
    addOperator(api::SEQ_REV, "seq.rev");
    addOperator(api::SEQ_REPLACE_ALL, "seq.replace_all");
    addOperator(api::SEQ_UNIT, "seq.unit");
    addOperator(api::SEQ_NTH, "seq.nth");
  }
  addOperator(api::STRING_FROM_INT, "str.from_int");
  addOperator(api::STRING_TO_INT, "str.to_int");
  addOperator(api::STRING_IN_REGEXP, "str.in_re");
  addOperator(api::STRING_TO_REGEXP, "str.to_re");
  addOperator(api::STRING_TO_CODE, "str.to_code");
  addOperator(api::STRING_REPLACE_ALL, "str.replace_all");

  addOperator(api::REGEXP_CONCAT, "re.++");
  addOperator(api::REGEXP_UNION, "re.union");
  addOperator(api::REGEXP_INTER, "re.inter");
  addOperator(api::REGEXP_STAR, "re.*");
  addOperator(api::REGEXP_PLUS, "re.+");
  addOperator(api::REGEXP_OPT, "re.opt");
  addIndexedOperator(api::REGEXP_REPEAT, api::REGEXP_REPEAT, "re.^");
  addIndexedOperator(api::REGEXP_LOOP, api::REGEXP_LOOP, "re.loop");
  addOperator(api::REGEXP_RANGE, "re.range");
  addOperator(api::REGEXP_COMPLEMENT, "re.comp");
  addOperator(api::REGEXP_DIFF, "re.diff");
  addOperator(api::STRING_LT, "str.<");
  addOperator(api::STRING_LEQ, "str.<=");
}

void Smt2::addFloatingPointOperators() {
  addOperator(api::FLOATINGPOINT_FP, "fp");
  addOperator(api::FLOATINGPOINT_EQ, "fp.eq");
  addOperator(api::FLOATINGPOINT_ABS, "fp.abs");
  addOperator(api::FLOATINGPOINT_NEG, "fp.neg");
  addOperator(api::FLOATINGPOINT_ADD, "fp.add");
  addOperator(api::FLOATINGPOINT_SUB, "fp.sub");
  addOperator(api::FLOATINGPOINT_MULT, "fp.mul");
  addOperator(api::FLOATINGPOINT_DIV, "fp.div");
  addOperator(api::FLOATINGPOINT_FMA, "fp.fma");
  addOperator(api::FLOATINGPOINT_SQRT, "fp.sqrt");
  addOperator(api::FLOATINGPOINT_REM, "fp.rem");
  addOperator(api::FLOATINGPOINT_RTI, "fp.roundToIntegral");
  addOperator(api::FLOATINGPOINT_MIN, "fp.min");
  addOperator(api::FLOATINGPOINT_MAX, "fp.max");
  addOperator(api::FLOATINGPOINT_LEQ, "fp.leq");
  addOperator(api::FLOATINGPOINT_LT, "fp.lt");
  addOperator(api::FLOATINGPOINT_GEQ, "fp.geq");
  addOperator(api::FLOATINGPOINT_GT, "fp.gt");
  addOperator(api::FLOATINGPOINT_ISN, "fp.isNormal");
  addOperator(api::FLOATINGPOINT_ISSN, "fp.isSubnormal");
  addOperator(api::FLOATINGPOINT_ISZ, "fp.isZero");
  addOperator(api::FLOATINGPOINT_ISINF, "fp.isInfinite");
  addOperator(api::FLOATINGPOINT_ISNAN, "fp.isNaN");
  addOperator(api::FLOATINGPOINT_ISNEG, "fp.isNegative");
  addOperator(api::FLOATINGPOINT_ISPOS, "fp.isPositive");
  addOperator(api::FLOATINGPOINT_TO_REAL, "fp.to_real");

  addIndexedOperator(api::FLOATINGPOINT_TO_FP_GENERIC,
                     api::FLOATINGPOINT_TO_FP_GENERIC,
                     "to_fp");
  addIndexedOperator(api::FLOATINGPOINT_TO_FP_UNSIGNED_BITVECTOR,
                     api::FLOATINGPOINT_TO_FP_UNSIGNED_BITVECTOR,
                     "to_fp_unsigned");
  addIndexedOperator(
      api::FLOATINGPOINT_TO_UBV, api::FLOATINGPOINT_TO_UBV, "fp.to_ubv");
  addIndexedOperator(
      api::FLOATINGPOINT_TO_SBV, api::FLOATINGPOINT_TO_SBV, "fp.to_sbv");

  if (!strictModeEnabled())
  {
    addIndexedOperator(api::FLOATINGPOINT_TO_FP_IEEE_BITVECTOR,
                       api::FLOATINGPOINT_TO_FP_IEEE_BITVECTOR,
                       "to_fp_bv");
    addIndexedOperator(api::FLOATINGPOINT_TO_FP_FLOATINGPOINT,
                       api::FLOATINGPOINT_TO_FP_FLOATINGPOINT,
                       "to_fp_fp");
    addIndexedOperator(api::FLOATINGPOINT_TO_FP_REAL,
                       api::FLOATINGPOINT_TO_FP_REAL,
                       "to_fp_real");
    addIndexedOperator(api::FLOATINGPOINT_TO_FP_SIGNED_BITVECTOR,
                       api::FLOATINGPOINT_TO_FP_SIGNED_BITVECTOR,
                       "to_fp_signed");
  }
}

void Smt2::addSepOperators() {
  addOperator(api::SEP_STAR, "sep");
  addOperator(api::SEP_PTO, "pto");
  addOperator(api::SEP_WAND, "wand");
  addOperator(api::SEP_EMP, "emp");
  Parser::addOperator(api::SEP_STAR);
  Parser::addOperator(api::SEP_PTO);
  Parser::addOperator(api::SEP_WAND);
  Parser::addOperator(api::SEP_EMP);
}

void Smt2::addCoreSymbols()
{
  defineType("Bool", d_solver->getBooleanSort(), true, true);
  defineVar("true", d_solver->mkTrue(), true, true);
  defineVar("false", d_solver->mkFalse(), true, true);
  addOperator(api::AND, "and");
  addOperator(api::DISTINCT, "distinct");
  addOperator(api::EQUAL, "=");
  addOperator(api::IMPLIES, "=>");
  addOperator(api::ITE, "ite");
  addOperator(api::NOT, "not");
  addOperator(api::OR, "or");
  addOperator(api::XOR, "xor");
}

void Smt2::addOperator(api::Kind kind, const std::string& name)
{
  Debug("parser") << "Smt2::addOperator( " << kind << ", " << name << " )"
                  << std::endl;
  Parser::addOperator(kind);
  operatorKindMap[name] = kind;
}

void Smt2::addIndexedOperator(api::Kind tKind,
                              api::Kind opKind,
                              const std::string& name)
{
  Parser::addOperator(tKind);
  d_indexedOpKindMap[name] = opKind;
}

api::Kind Smt2::getOperatorKind(const std::string& name) const
{
  // precondition: isOperatorEnabled(name)
  return operatorKindMap.find(name)->second;
}

bool Smt2::isOperatorEnabled(const std::string& name) const {
  return operatorKindMap.find(name) != operatorKindMap.end();
}

bool Smt2::isTheoryEnabled(theory::TheoryId theory) const
{
  return d_logic.isTheoryEnabled(theory);
}

bool Smt2::isHoEnabled() const
{
  return getLogic().isHigherOrder() && d_solver->getOptions().getUfHo();
}

bool Smt2::logicIsSet() {
  return d_logicSet;
}

api::Term Smt2::getExpressionForNameAndType(const std::string& name,
                                            api::Sort t)
{
  if (isAbstractValue(name))
  {
    return mkAbstractValue(name);
  }
  return Parser::getExpressionForNameAndType(name, t);
}

bool Smt2::getTesterName(api::Term cons, std::string& name)
{
  if ((v2_6() || sygus_v2()) && strictModeEnabled())
  {
    // 2.6 or above uses indexed tester symbols, if we are in strict mode,
    // we do not automatically define is-cons for constructor cons.
    return false;
  }
  std::stringstream ss;
  ss << "is-" << cons;
  name = ss.str();
  return true;
}

api::Term Smt2::mkIndexedConstant(const std::string& name,
                                  const std::vector<uint64_t>& numerals)
{
  if (d_logic.isTheoryEnabled(theory::THEORY_FP))
  {
    if (name == "+oo")
    {
      return d_solver->mkPosInf(numerals[0], numerals[1]);
    }
    else if (name == "-oo")
    {
      return d_solver->mkNegInf(numerals[0], numerals[1]);
    }
    else if (name == "NaN")
    {
      return d_solver->mkNaN(numerals[0], numerals[1]);
    }
    else if (name == "+zero")
    {
      return d_solver->mkPosZero(numerals[0], numerals[1]);
    }
    else if (name == "-zero")
    {
      return d_solver->mkNegZero(numerals[0], numerals[1]);
    }
  }

  if (d_logic.isTheoryEnabled(theory::THEORY_BV) && name.find("bv") == 0)
  {
    std::string bvStr = name.substr(2);
    return d_solver->mkBitVector(numerals[0], bvStr, 10);
  }

  // NOTE: Theory parametric constants go here

  parseError(std::string("Unknown indexed literal `") + name + "'");
  return api::Term();
}

api::Op Smt2::mkIndexedOp(const std::string& name,
                          const std::vector<uint64_t>& numerals)
{
  const auto& kIt = d_indexedOpKindMap.find(name);
  if (kIt != d_indexedOpKindMap.end())
  {
    api::Kind k = (*kIt).second;
    if (numerals.size() == 1)
    {
      return d_solver->mkOp(k, numerals[0]);
    }
    else if (numerals.size() == 2)
    {
      return d_solver->mkOp(k, numerals[0], numerals[1]);
    }
  }

  parseError(std::string("Unknown indexed function `") + name + "'");
  return api::Op();
}

api::Term Smt2::bindDefineFunRec(
    const std::string& fname,
    const std::vector<std::pair<std::string, api::Sort>>& sortedVarNames,
    api::Sort t,
    std::vector<api::Term>& flattenVars)
{
  std::vector<api::Sort> sorts;
  for (const std::pair<std::string, api::Sort>& svn : sortedVarNames)
  {
    sorts.push_back(svn.second);
  }

  // make the flattened function type, add bound variables
  // to flattenVars if the defined function was given a function return type.
  api::Sort ft = mkFlatFunctionType(sorts, t, flattenVars);

  // allow overloading
  return bindVar(fname, ft, false, true);
}

void Smt2::pushDefineFunRecScope(
    const std::vector<std::pair<std::string, api::Sort>>& sortedVarNames,
    api::Term func,
    const std::vector<api::Term>& flattenVars,
    std::vector<api::Term>& bvs)
{
  pushScope();

  // bound variables are those that are explicitly named in the preamble
  // of the define-fun(s)-rec command, we define them here
  for (const std::pair<std::string, api::Sort>& svn : sortedVarNames)
  {
    api::Term v = bindBoundVar(svn.first, svn.second);
    bvs.push_back(v);
  }

  bvs.insert(bvs.end(), flattenVars.begin(), flattenVars.end());
}

void Smt2::reset() {
  d_logicSet = false;
  d_seenSetLogic = false;
  d_logic = LogicInfo();
  operatorKindMap.clear();
  d_lastNamedTerm = std::pair<api::Term, std::string>();
}

std::unique_ptr<Command> Smt2::invConstraint(
    const std::vector<std::string>& names)
{
  checkThatLogicIsSet();
  Debug("parser-sygus") << "Sygus : define sygus funs..." << std::endl;
  Debug("parser-sygus") << "Sygus : read inv-constraint..." << std::endl;

  if (names.size() != 4)
  {
    parseError(
        "Bad syntax for inv-constraint: expected 4 "
        "arguments.");
  }

  std::vector<api::Term> terms;
  for (const std::string& name : names)
  {
    if (!isDeclared(name))
    {
      std::stringstream ss;
      ss << "Function " << name << " in inv-constraint is not defined.";
      parseError(ss.str());
    }

    terms.push_back(getVariable(name));
  }

  return std::unique_ptr<Command>(new SygusInvConstraintCommand(terms));
}

Command* Smt2::setLogic(std::string name, bool fromCommand)
{
  if (fromCommand)
  {
    if (d_seenSetLogic)
    {
      parseError("Only one set-logic is allowed.");
    }
    d_seenSetLogic = true;

    if (logicIsForced())
    {
      // If the logic is forced, we ignore all set-logic requests from commands.
      return new EmptyCommand();
    }
  }

  d_logicSet = true;
  d_logic = name;

  // if sygus is enabled, we must enable UF, datatypes, integer arithmetic and
  // higher-order
  if(sygus()) {
    if (!d_logic.isQuantified())
    {
      warning("Logics in sygus are assumed to contain quantifiers.");
      warning("Omit QF_ from the logic to avoid this warning.");
    }
  }

  // Core theory belongs to every logic
  addCoreSymbols();

  if(d_logic.isTheoryEnabled(theory::THEORY_UF)) {
    Parser::addOperator(api::APPLY_UF);

    if (!strictModeEnabled() && d_logic.hasCardinalityConstraints())
    {
      addOperator(api::CARDINALITY_CONSTRAINT, "fmf.card");
      addOperator(api::CARDINALITY_VALUE, "fmf.card.val");
    }
  }

  if(d_logic.isTheoryEnabled(theory::THEORY_ARITH)) {
    if(d_logic.areIntegersUsed()) {
      defineType("Int", d_solver->getIntegerSort(), true, true);
      addArithmeticOperators();
      if (!strictModeEnabled() || !d_logic.isLinear())
      {
        addOperator(api::INTS_DIVISION, "div");
        addOperator(api::INTS_MODULUS, "mod");
        addOperator(api::ABS, "abs");
      }
      addIndexedOperator(api::DIVISIBLE, api::DIVISIBLE, "divisible");
    }

    if (d_logic.areRealsUsed())
    {
      defineType("Real", d_solver->getRealSort(), true, true);
      addArithmeticOperators();
      addOperator(api::DIVISION, "/");
      if (!strictModeEnabled())
      {
        addOperator(api::ABS, "abs");
      }
    }

    if (d_logic.areIntegersUsed() && d_logic.areRealsUsed())
    {
      addOperator(api::TO_INTEGER, "to_int");
      addOperator(api::IS_INTEGER, "is_int");
      addOperator(api::TO_REAL, "to_real");
    }

    if (d_logic.areTranscendentalsUsed())
    {
      defineVar("real.pi", d_solver->mkTerm(api::PI));
      addTranscendentalOperators();
    }
    if (!strictModeEnabled())
    {
      // integer version of AND
      addIndexedOperator(api::IAND, api::IAND, "iand");
    }
  }

  if(d_logic.isTheoryEnabled(theory::THEORY_ARRAYS)) {
    addOperator(api::SELECT, "select");
    addOperator(api::STORE, "store");
    addOperator(api::EQ_RANGE, "eqrange");
  }

  if(d_logic.isTheoryEnabled(theory::THEORY_BV)) {
    addBitvectorOperators();

    if (!strictModeEnabled() && d_logic.isTheoryEnabled(theory::THEORY_ARITH)
        && d_logic.areIntegersUsed())
    {
      // Conversions between bit-vectors and integers
      addOperator(api::BITVECTOR_TO_NAT, "bv2nat");
      addIndexedOperator(
          api::INT_TO_BITVECTOR, api::INT_TO_BITVECTOR, "int2bv");
    }
  }

  if(d_logic.isTheoryEnabled(theory::THEORY_DATATYPES)) {
    const std::vector<api::Sort> types;
    defineType("Tuple", d_solver->mkTupleSort(types), true, true);
    addDatatypesOperators();
  }

  if(d_logic.isTheoryEnabled(theory::THEORY_SETS)) {
    defineVar("emptyset", d_solver->mkEmptySet(d_solver->getNullSort()));
    // the Boolean sort is a placeholder here since we don't have type info
    // without type annotation
    defineVar("univset", d_solver->mkUniverseSet(d_solver->getBooleanSort()));

    addOperator(api::UNION, "union");
    addOperator(api::INTERSECTION, "intersection");
    addOperator(api::SETMINUS, "setminus");
    addOperator(api::SUBSET, "subset");
    addOperator(api::MEMBER, "member");
    addOperator(api::SINGLETON, "singleton");
    addOperator(api::INSERT, "insert");
    addOperator(api::CARD, "card");
    addOperator(api::COMPLEMENT, "complement");
    addOperator(api::CHOOSE, "choose");
    addOperator(api::IS_SINGLETON, "is_singleton");
    addOperator(api::JOIN, "join");
    addOperator(api::PRODUCT, "product");
    addOperator(api::TRANSPOSE, "transpose");
    addOperator(api::TCLOSURE, "tclosure");
  }

  if (d_logic.isTheoryEnabled(theory::THEORY_BAGS))
  {
    defineVar("emptybag", d_solver->mkEmptyBag(d_solver->getNullSort()));
    addOperator(api::UNION_MAX, "union_max");
    addOperator(api::UNION_DISJOINT, "union_disjoint");
    addOperator(api::INTERSECTION_MIN, "intersection_min");
    addOperator(api::DIFFERENCE_SUBTRACT, "difference_subtract");
    addOperator(api::DIFFERENCE_REMOVE, "difference_remove");
    addOperator(api::SUBBAG, "subbag");
    addOperator(api::BAG_COUNT, "bag.count");
    addOperator(api::DUPLICATE_REMOVAL, "duplicate_removal");
    addOperator(api::MK_BAG, "bag");
    addOperator(api::BAG_CARD, "bag.card");
    addOperator(api::BAG_CHOOSE, "bag.choose");
    addOperator(api::BAG_IS_SINGLETON, "bag.is_singleton");
    addOperator(api::BAG_FROM_SET, "bag.from_set");
    addOperator(api::BAG_TO_SET, "bag.to_set");
  }
  if(d_logic.isTheoryEnabled(theory::THEORY_STRINGS)) {
    defineType("String", d_solver->getStringSort(), true, true);
    defineType("RegLan", d_solver->getRegExpSort(), true, true);
    defineType("Int", d_solver->getIntegerSort(), true, true);

    defineVar("re.none", d_solver->mkRegexpEmpty());
    defineVar("re.allchar", d_solver->mkRegexpSigma());

    // Boolean is a placeholder
    defineVar("seq.empty",
              d_solver->mkEmptySequence(d_solver->getBooleanSort()));

    addStringOperators();
  }

  if(d_logic.isQuantified()) {
    addQuantifiersOperators();
  }

  if (d_logic.isTheoryEnabled(theory::THEORY_FP)) {
    defineType("RoundingMode", d_solver->getRoundingModeSort(), true, true);
    defineType("Float16", d_solver->mkFloatingPointSort(5, 11), true, true);
    defineType("Float32", d_solver->mkFloatingPointSort(8, 24), true, true);
    defineType("Float64", d_solver->mkFloatingPointSort(11, 53), true, true);
    defineType("Float128", d_solver->mkFloatingPointSort(15, 113), true, true);

    defineVar("RNE", d_solver->mkRoundingMode(api::ROUND_NEAREST_TIES_TO_EVEN));
    defineVar("roundNearestTiesToEven",
              d_solver->mkRoundingMode(api::ROUND_NEAREST_TIES_TO_EVEN));
    defineVar("RNA", d_solver->mkRoundingMode(api::ROUND_NEAREST_TIES_TO_AWAY));
    defineVar("roundNearestTiesToAway",
              d_solver->mkRoundingMode(api::ROUND_NEAREST_TIES_TO_AWAY));
    defineVar("RTP", d_solver->mkRoundingMode(api::ROUND_TOWARD_POSITIVE));
    defineVar("roundTowardPositive",
              d_solver->mkRoundingMode(api::ROUND_TOWARD_POSITIVE));
    defineVar("RTN", d_solver->mkRoundingMode(api::ROUND_TOWARD_NEGATIVE));
    defineVar("roundTowardNegative",
              d_solver->mkRoundingMode(api::ROUND_TOWARD_NEGATIVE));
    defineVar("RTZ", d_solver->mkRoundingMode(api::ROUND_TOWARD_ZERO));
    defineVar("roundTowardZero",
              d_solver->mkRoundingMode(api::ROUND_TOWARD_ZERO));

    addFloatingPointOperators();
  }

  if (d_logic.isTheoryEnabled(theory::THEORY_SEP)) {
    // the Boolean sort is a placeholder here since we don't have type info
    // without type annotation
    defineVar("sep.nil", d_solver->mkSepNil(d_solver->getBooleanSort()));

    addSepOperators();
  }

  Command* cmd =
      new SetBenchmarkLogicCommand(sygus() ? d_logic.getLogicString() : name);
  cmd->setMuted(!fromCommand);
  return cmd;
} /* Smt2::setLogic() */

api::Grammar* Smt2::mkGrammar(const std::vector<api::Term>& boundVars,
                              const std::vector<api::Term>& ntSymbols)
{
  d_allocGrammars.emplace_back(
      new api::Grammar(d_solver->mkSygusGrammar(boundVars, ntSymbols)));
  return d_allocGrammars.back().get();
}

bool Smt2::sygus() const
{
  InputLanguage ilang = getLanguage();
  return ilang == language::input::LANG_SYGUS_V2;
}

bool Smt2::sygus_v2() const
{
  return getLanguage() == language::input::LANG_SYGUS_V2;
}

void Smt2::checkThatLogicIsSet()
{
  if (!logicIsSet())
  {
    if (strictModeEnabled())
    {
      parseError("set-logic must appear before this point.");
    }
    else
    {
      Command* cmd = nullptr;
      if (logicIsForced())
      {
        cmd = setLogic(getForcedLogic(), false);
      }
      else
      {
        warning("No set-logic command was given before this point.");
        warning("cvc5 will make all theories available.");
        warning(
            "Consider setting a stricter logic for (likely) better "
            "performance.");
        warning("To suppress this warning in the future use (set-logic ALL).");

        cmd = setLogic("ALL", false);
      }
      preemptCommand(cmd);
    }
  }
}

void Smt2::checkLogicAllowsFreeSorts()
{
  if (!d_logic.isTheoryEnabled(theory::THEORY_UF)
      && !d_logic.isTheoryEnabled(theory::THEORY_ARRAYS)
      && !d_logic.isTheoryEnabled(theory::THEORY_DATATYPES)
      && !d_logic.isTheoryEnabled(theory::THEORY_SETS)
      && !d_logic.isTheoryEnabled(theory::THEORY_BAGS))
  {
    parseErrorLogic("Free sort symbols not allowed in ");
  }
}

void Smt2::checkLogicAllowsFunctions()
{
  if (!d_logic.isTheoryEnabled(theory::THEORY_UF))
  {
    parseError(
        "Functions (of non-zero arity) cannot "
        "be declared in logic "
        + d_logic.getLogicString() + " unless option --uf-ho is used");
  }
}

/* The include are managed in the lexer but called in the parser */
// Inspired by http://www.antlr3.org/api/C/interop.html

static bool newInputStream(const std::string& filename, pANTLR3_LEXER lexer) {
  Debug("parser") << "Including " << filename << std::endl;
  // Create a new input stream and take advantage of built in stream stacking
  // in C target runtime.
  //
  pANTLR3_INPUT_STREAM    in;
#ifdef CVC5_ANTLR3_OLD_INPUT_STREAM
  in = antlr3AsciiFileStreamNew((pANTLR3_UINT8) filename.c_str());
#else  /* CVC5_ANTLR3_OLD_INPUT_STREAM */
  in = antlr3FileStreamNew((pANTLR3_UINT8) filename.c_str(), ANTLR3_ENC_8BIT);
#endif /* CVC5_ANTLR3_OLD_INPUT_STREAM */
  if( in == NULL ) {
    Debug("parser") << "Can't open " << filename << std::endl;
    return false;
  }
  // Same thing as the predefined PUSHSTREAM(in);
  lexer->pushCharStream(lexer, in);
  // restart it
  //lexer->rec->state->tokenStartCharIndex      = -10;
  //lexer->emit(lexer);

  // Note that the input stream is not closed when it EOFs, I don't bother
  // to do it here, but it is up to you to track streams created like this
  // and destroy them when the whole parse session is complete. Remember that you
  // don't want to do this until all tokens have been manipulated all the way through
  // your tree parsers etc as the token does not store the text it just refers
  // back to the input stream and trying to get the text for it will abort if you
  // close the input stream too early.

  //TODO what said before
  return true;
}

void Smt2::includeFile(const std::string& filename) {
  // security for online version
  if(!canIncludeFile()) {
    parseError("include-file feature was disabled for this run.");
  }

  // Get the lexer
  AntlrInput* ai = static_cast<AntlrInput*>(getInput());
  pANTLR3_LEXER lexer = ai->getAntlr3Lexer();
  // get the name of the current stream "Does it work inside an include?"
  const std::string inputName = ai->getInputStreamName();

  // Find the directory of the current input file
  std::string path;
  size_t pos = inputName.rfind('/');
  if(pos != std::string::npos) {
    path = std::string(inputName, 0, pos + 1);
  }
  path.append(filename);
  if(!newInputStream(path, lexer)) {
    parseError("Couldn't open include file `" + path + "'");
  }
}
bool Smt2::isAbstractValue(const std::string& name)
{
  return name.length() >= 2 && name[0] == '@' && name[1] != '0'
         && name.find_first_not_of("0123456789", 1) == std::string::npos;
}

api::Term Smt2::mkAbstractValue(const std::string& name)
{
  Assert(isAbstractValue(name));
  // remove the '@'
  return d_solver->mkAbstractValue(name.substr(1));
}

InputLanguage Smt2::getLanguage() const
{
  return d_solver->getOptions().getInputLanguage();
}

void Smt2::parseOpApplyTypeAscription(ParseOp& p, api::Sort type)
{
  Debug("parser") << "parseOpApplyTypeAscription : " << p << " " << type
                  << std::endl;
  // (as const (Array T1 T2))
  if (p.d_kind == api::CONST_ARRAY)
  {
    if (!type.isArray())
    {
      std::stringstream ss;
      ss << "expected array constant term, but cast is not of array type"
         << std::endl
         << "cast type: " << type;
      parseError(ss.str());
    }
    p.d_type = type;
    return;
  }
  if (p.d_expr.isNull())
  {
    Trace("parser-overloading")
        << "Getting variable expression with name " << p.d_name << " and type "
        << type << std::endl;
    // get the variable expression for the type
    if (isDeclared(p.d_name, SYM_VARIABLE))
    {
      p.d_expr = getExpressionForNameAndType(p.d_name, type);
      p.d_name = std::string("");
    }
    if (p.d_expr.isNull())
    {
      std::stringstream ss;
      ss << "Could not resolve expression with name " << p.d_name
         << " and type " << type << std::endl;
      parseError(ss.str());
    }
  }
  Trace("parser-qid") << "Resolve ascription " << type << " on " << p.d_expr;
  Trace("parser-qid") << " " << p.d_expr.getKind() << " " << p.d_expr.getSort();
  Trace("parser-qid") << std::endl;
  // otherwise, we process the type ascription
  p.d_expr = applyTypeAscription(p.d_expr, type);
}

api::Term Smt2::parseOpToExpr(ParseOp& p)
{
  Debug("parser") << "parseOpToExpr: " << p << std::endl;
  api::Term expr;
  if (p.d_kind != api::NULL_EXPR || !p.d_type.isNull())
  {
    parseError(
        "Bad syntax for qualified identifier operator in term position.");
  }
  else if (!p.d_expr.isNull())
  {
    expr = p.d_expr;
  }
  else if (!isDeclared(p.d_name, SYM_VARIABLE))
  {
    std::stringstream ss;
    ss << "Symbol " << p.d_name << " is not declared.";
    parseError(ss.str());
  }
  else
  {
    expr = getExpressionForName(p.d_name);
  }
  Assert(!expr.isNull());
  return expr;
}

api::Term Smt2::applyParseOp(ParseOp& p, std::vector<api::Term>& args)
{
  bool isBuiltinOperator = false;
  // the builtin kind of the overall return expression
  api::Kind kind = api::NULL_EXPR;
  // First phase: process the operator
  if (Debug.isOn("parser"))
  {
    Debug("parser") << "applyParseOp: " << p << " to:" << std::endl;
    for (std::vector<api::Term>::iterator i = args.begin(); i != args.end();
         ++i)
    {
      Debug("parser") << "++ " << *i << std::endl;
    }
  }
  api::Op op;
  if (p.d_kind != api::NULL_EXPR)
  {
    // It is a special case, e.g. tupSel or array constant specification.
    // We have to wait until the arguments are parsed to resolve it.
  }
  else if (!p.d_expr.isNull())
  {
    // An explicit operator, e.g. an apply function
    api::Kind fkind = getKindForFunction(p.d_expr);
    if (fkind != api::UNDEFINED_KIND)
    {
      // Some operators may require a specific kind.
      // Testers are handled differently than other indexed operators,
      // since they require a kind.
      kind = fkind;
      Debug("parser") << "Got function kind " << kind << " for expression "
                      << std::endl;
    }
    args.insert(args.begin(), p.d_expr);
  }
  else if (!p.d_op.isNull())
  {
    // it was given an operator
    op = p.d_op;
  }
  else
  {
    isBuiltinOperator = isOperatorEnabled(p.d_name);
    if (isBuiltinOperator)
    {
      // a builtin operator, convert to kind
      kind = getOperatorKind(p.d_name);
    }
    else
    {
      // A non-built-in function application, get the expression
      checkDeclaration(p.d_name, CHECK_DECLARED, SYM_VARIABLE);
      api::Term v = getVariable(p.d_name);
      if (!v.isNull())
      {
        checkFunctionLike(v);
        kind = getKindForFunction(v);
        args.insert(args.begin(), v);
      }
      else
      {
        // Overloaded symbol?
        // Could not find the expression. It may be an overloaded symbol,
        // in which case we may find it after knowing the types of its
        // arguments.
        std::vector<api::Sort> argTypes;
        for (std::vector<api::Term>::iterator i = args.begin(); i != args.end();
             ++i)
        {
          argTypes.push_back((*i).getSort());
        }
        api::Term fop = getOverloadedFunctionForTypes(p.d_name, argTypes);
        if (!fop.isNull())
        {
          checkFunctionLike(fop);
          kind = getKindForFunction(fop);
          args.insert(args.begin(), fop);
        }
        else
        {
          parseError(
              "Cannot find unambiguous overloaded function for argument "
              "types.");
        }
      }
    }
  }
  // Second phase: apply the arguments to the parse op
  const Options& opts = d_solver->getOptions();
  // handle special cases
  if (p.d_kind == api::CONST_ARRAY && !p.d_type.isNull())
  {
    if (args.size() != 1)
    {
      parseError("Too many arguments to array constant.");
    }
    api::Term constVal = args[0];

    // To parse array constants taking reals whose values are specified by
    // rationals, e.g. ((as const (Array Int Real)) (/ 1 3)), we must handle
    // the fact that (/ 1 3) is the division of constants 1 and 3, and not
    // the resulting constant rational value. Thus, we must construct the
    // resulting rational here. This also is applied for integral real values
    // like 5.0 which are converted to (/ 5 1) to distinguish them from
    // integer constants. We must ensure numerator and denominator are
    // constant and the denominator is non-zero.
    if (constVal.getKind() == api::DIVISION)
    {
      std::stringstream sdiv;
      sdiv << constVal[0] << "/" << constVal[1];
      constVal = d_solver->mkReal(sdiv.str());
    }

    if (!p.d_type.getArrayElementSort().isComparableTo(constVal.getSort()))
    {
      std::stringstream ss;
      ss << "type mismatch inside array constant term:" << std::endl
         << "array type:          " << p.d_type << std::endl
         << "expected const type: " << p.d_type.getArrayElementSort()
         << std::endl
         << "computed const type: " << constVal.getSort();
      parseError(ss.str());
    }
    api::Term ret = d_solver->mkConstArray(p.d_type, constVal);
    Debug("parser") << "applyParseOp: return store all " << ret << std::endl;
    return ret;
  }
  else if (p.d_kind == api::APPLY_SELECTOR && !p.d_expr.isNull())
  {
    // tuple selector case
    if (!p.d_expr.isUInt64Value())
    {
      parseError("index of tupSel is larger than size of uint64_t");
    }
    uint64_t n = p.d_expr.getUInt64Value();
    if (args.size() != 1)
    {
      parseError("tupSel should only be applied to one tuple argument");
    }
    api::Sort t = args[0].getSort();
    if (!t.isTuple())
    {
      parseError("tupSel applied to non-tuple");
    }
    size_t length = t.getTupleLength();
    if (n >= length)
    {
      std::stringstream ss;
      ss << "tuple is of length " << length << "; cannot access index " << n;
      parseError(ss.str());
    }
    const api::Datatype& dt = t.getDatatype();
    api::Term ret = d_solver->mkTerm(
        api::APPLY_SELECTOR, dt[0][n].getSelectorTerm(), args[0]);
    Debug("parser") << "applyParseOp: return selector " << ret << std::endl;
    return ret;
  }
  else if (p.d_kind == api::TUPLE_PROJECT)
  {
    api::Term ret = d_solver->mkTerm(p.d_op, args[0]);
    Debug("parser") << "applyParseOp: return projection " << ret << std::endl;
    return ret;
  }
  else if (p.d_kind != api::NULL_EXPR)
  {
    // it should not have an expression or type specified at this point
    if (!p.d_expr.isNull() || !p.d_type.isNull())
    {
      std::stringstream ss;
      ss << "Could not process parsed qualified identifier kind " << p.d_kind;
      parseError(ss.str());
    }
    // otherwise it is a simple application
    kind = p.d_kind;
  }
  else if (isBuiltinOperator)
  {
    if (!opts.getUfHo() && (kind == api::EQUAL || kind == api::DISTINCT))
    {
      // need --uf-ho if these operators are applied over function args
      for (std::vector<api::Term>::iterator i = args.begin(); i != args.end();
           ++i)
      {
        if ((*i).getSort().isFunction())
        {
          parseError(
              "Cannot apply equalty to functions unless --uf-ho is set.");
        }
      }
    }
    if (!strictModeEnabled() && (kind == api::AND || kind == api::OR)
        && args.size() == 1)
    {
      // Unary AND/OR can be replaced with the argument.
      Debug("parser") << "applyParseOp: return unary " << args[0] << std::endl;
      return args[0];
    }
    else if (kind == api::MINUS && args.size() == 1)
    {
      api::Term ret = d_solver->mkTerm(api::UMINUS, args[0]);
      Debug("parser") << "applyParseOp: return uminus " << ret << std::endl;
      return ret;
    }
    if (kind == api::EQ_RANGE && d_solver->getOption("arrays-exp") != "true")
    {
      parseError(
          "eqrange predicate requires option --arrays-exp to be enabled.");
    }
    if (kind == api::SINGLETON && args.size() == 1)
    {
      api::Term ret = d_solver->mkTerm(api::SINGLETON, args[0]);
      Debug("parser") << "applyParseOp: return singleton " << ret << std::endl;
      return ret;
    }
    api::Term ret = d_solver->mkTerm(kind, args);
    Debug("parser") << "applyParseOp: return default builtin " << ret
                    << std::endl;
    return ret;
  }

  if (args.size() >= 2)
  {
    // may be partially applied function, in this case we use HO_APPLY
    api::Sort argt = args[0].getSort();
    if (argt.isFunction())
    {
      unsigned arity = argt.getFunctionArity();
      if (args.size() - 1 < arity)
      {
        if (!opts.getUfHo())
        {
          parseError("Cannot partially apply functions unless --uf-ho is set.");
        }
        Debug("parser") << "Partial application of " << args[0];
        Debug("parser") << " : #argTypes = " << arity;
        Debug("parser") << ", #args = " << args.size() - 1 << std::endl;
        api::Term ret = d_solver->mkTerm(api::HO_APPLY, args);
        Debug("parser") << "applyParseOp: return curry higher order " << ret
                        << std::endl;
        // must curry the partial application
        return ret;
      }
    }
  }
  if (!op.isNull())
  {
    api::Term ret = d_solver->mkTerm(op, args);
    Debug("parser") << "applyParseOp: return op : " << ret << std::endl;
    return ret;
  }
  if (kind == api::NULL_EXPR)
  {
    // should never happen in the new API
    parseError("do not know how to process parse op");
  }
  Debug("parser") << "Try default term construction for kind " << kind
                  << " #args = " << args.size() << "..." << std::endl;
  api::Term ret = d_solver->mkTerm(kind, args);
  Debug("parser") << "applyParseOp: return : " << ret << std::endl;
  return ret;
}

void Smt2::notifyNamedExpression(api::Term& expr, std::string name)
{
  checkUserSymbol(name);
  // remember the expression name in the symbol manager
  if (getSymbolManager()->setExpressionName(expr, name, false)
      == NamingResult::ERROR_IN_BINDER)
  {
    parseError(
        "Cannot name a term in a binder (e.g., quantifiers, definitions)");
  }
  // define the variable
  defineVar(name, expr);
  // set the last named term, which ensures that we catch when assertions are
  // named
  setLastNamedTerm(expr, name);
}

api::Term Smt2::mkAnd(const std::vector<api::Term>& es)
{
  if (es.size() == 0)
  {
    return d_solver->mkTrue();
  }
  else if (es.size() == 1)
  {
    return es[0];
  }
  else
  {
    return d_solver->mkTerm(api::AND, es);
  }
}

}  // namespace parser
}  // namespace cvc5
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback