summaryrefslogtreecommitdiff
path: root/src/parser/parser.h
blob: 826d460b2f13c14d1982ab9b4b4b280e16614a54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
/*********************                                                        */
/*! \file parser.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Morgan Deters, Andrew Reynolds, Christopher L. Conway
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief A collection of state for use by parser implementations.
 **
 ** A collection of state for use by parser implementations.
 **/

#include "cvc4parser_public.h"

#ifndef CVC4__PARSER__PARSER_STATE_H
#define CVC4__PARSER__PARSER_STATE_H

#include <string>
#include <set>
#include <list>
#include <cassert>

#include "expr/expr.h"
#include "expr/expr_stream.h"
#include "expr/kind.h"
#include "expr/symbol_table.h"
#include "parser/input.h"
#include "parser/parser_exception.h"
#include "util/unsafe_interrupt_exception.h"

namespace CVC4 {

// Forward declarations
class BooleanType;
class Command;
class FunctionType;
class Type;
class ResourceManager;
namespace api {
class Solver;
}

//for sygus gterm two-pass parsing
class CVC4_PUBLIC SygusGTerm {
public:
  enum{
    gterm_op,
    gterm_let,
    gterm_constant,
    gterm_variable,
    gterm_input_variable,
    gterm_local_variable,
    gterm_nested_sort,
    gterm_unresolved,
    gterm_ignore,
  };
  Type d_type;
  Expr d_expr;
  std::vector< Expr > d_let_vars;
  unsigned d_gterm_type;
  std::string d_name;
  std::vector< SygusGTerm > d_children;
  
  unsigned getNumChildren() { return d_children.size(); }
  void addChild(){
    d_children.push_back( SygusGTerm() );
  }
};

namespace parser {

class Input;

/** Types of checks for the symbols */
enum DeclarationCheck {
  /** Enforce that the symbol has been declared */
  CHECK_DECLARED,
  /** Enforce that the symbol has not been declared */
  CHECK_UNDECLARED,
  /** Don't check anything */
  CHECK_NONE
};/* enum DeclarationCheck */

/**
 * Returns a string representation of the given object (for
 * debugging).
 */
inline std::ostream& operator<<(std::ostream& out, DeclarationCheck check) CVC4_PUBLIC;
inline std::ostream& operator<<(std::ostream& out, DeclarationCheck check) {
  switch(check) {
  case CHECK_NONE:
    return out << "CHECK_NONE";
  case CHECK_DECLARED:
    return out << "CHECK_DECLARED";
  case CHECK_UNDECLARED:
    return out << "CHECK_UNDECLARED";
  default:
    return out << "DeclarationCheck!UNKNOWN";
  }
}

/**
 * Types of symbols. Used to define namespaces.
 */
enum SymbolType {
  /** Variables */
  SYM_VARIABLE,
  /** Sorts */
  SYM_SORT
};/* enum SymbolType */

/**
 * Returns a string representation of the given object (for
 * debugging).
 */
inline std::ostream& operator<<(std::ostream& out, SymbolType type) CVC4_PUBLIC;
inline std::ostream& operator<<(std::ostream& out, SymbolType type) {
  switch(type) {
  case SYM_VARIABLE:
    return out << "SYM_VARIABLE";
  case SYM_SORT:
    return out << "SYM_SORT";
  default:
    return out << "SymbolType!UNKNOWN";
  }
}

/**
 * This class encapsulates all of the state of a parser, including the
 * name of the file, line number and column information, and in-scope
 * declarations.
 */
class CVC4_PUBLIC Parser {
  friend class ParserBuilder;
private:
 /** The API Solver object. */
 api::Solver* d_solver;

 /** The resource manager associated with this expr manager */
 ResourceManager* d_resourceManager;

 /** The input that we're parsing. */
 Input* d_input;

 /**
  * The declaration scope that is "owned" by this parser.  May or
  * may not be the current declaration scope in use.
  */
 SymbolTable d_symtabAllocated;

 /**
  * This current symbol table used by this parser.  Initially points
  * to d_symtabAllocated, but can be changed (making this parser
  * delegate its definitions and lookups to another parser).
  * See useDeclarationsFrom().
  */
 SymbolTable* d_symtab;

 /**
  * The level of the assertions in the declaration scope.  Things declared
  * after this level are bindings from e.g. a let, a quantifier, or a
  * lambda.
  */
 size_t d_assertionLevel;

 /**
  * Whether we're in global declarations mode (all definitions and
  * declarations are global).
  */
 bool d_globalDeclarations;

 /**
  * Maintains a list of reserved symbols at the assertion level that might
  * not occur in our symbol table.  This is necessary to e.g. support the
  * proper behavior of the :named annotation in SMT-LIBv2 when used under
  * a let or a quantifier, since inside a let/quant body the declaration
  * scope is that of the let/quant body, but the defined name should be
  * reserved at the assertion level.
  */
 std::set<std::string> d_reservedSymbols;

 /** How many anonymous functions we've created. */
 size_t d_anonymousFunctionCount;

 /** Are we done */
 bool d_done;

 /** Are semantic checks enabled during parsing? */
 bool d_checksEnabled;

 /** Are we parsing in strict mode? */
 bool d_strictMode;

 /** Are we only parsing? */
 bool d_parseOnly;

 /**
  * Can we include files?  (Set to false for security purposes in
  * e.g. the online version.)
  */
 bool d_canIncludeFile;

 /**
  * Whether the logic has been forced with --force-logic.
  */
 bool d_logicIsForced;

 /**
  * The logic, if d_logicIsForced == true.
  */
 std::string d_forcedLogic;

 /** The set of operators available in the current logic. */
 std::set<Kind> d_logicOperators;

 /** The set of attributes already warned about. */
 std::set<std::string> d_attributesWarnedAbout;

 /**
  * The current set of unresolved types.  We can get by with this NOT
  * being on the scope, because we can only have one DATATYPE
  * definition going on at one time.  This is a bit hackish; we
  * depend on mkMutualDatatypeTypes() to check everything and clear
  * this out.
  */
 std::set<Type> d_unresolved;

 /**
  * "Preemption commands": extra commands implied by subterms that
  * should be issued before the currently-being-parsed command is
  * issued.  Used to support SMT-LIBv2 ":named" attribute on terms.
  *
  * Owns the memory of the Commands in the queue.
  */
 std::list<Command*> d_commandQueue;

 /** Lookup a symbol in the given namespace (as specified by the type).
  * Only returns a symbol if it is not overloaded, returns null otherwise.
  */
 Expr getSymbol(const std::string& var_name, SymbolType type);

protected:
 /**
  * Create a parser state.
  *
  * @attention The parser takes "ownership" of the given
  * input and will delete it on destruction.
  *
  * @param the solver API object
  * @param input the parser input
  * @param strictMode whether to incorporate strict(er) compliance checks
  * @param parseOnly whether we are parsing only (and therefore certain checks
  * need not be performed, like those about unimplemented features, @see
  * unimplementedFeature())
  */
 Parser(api::Solver* solver,
        Input* input,
        bool strictMode = false,
        bool parseOnly = false);

public:

  virtual ~Parser();

  /** Get the associated <code>ExprManager</code>. */
  ExprManager* getExprManager() const;

  /** Get the associated solver. */
  api::Solver* getSolver() const;

  /** Get the associated input. */
  inline Input* getInput() const {
    return d_input;
  }

  /** Deletes and replaces the current parser input. */
  void setInput(Input* input)  {
    delete d_input;
    d_input = input;
    d_input->setParser(*this);
    d_done = false;
  }

  /**
   * Check if we are done -- either the end of input has been reached, or some
   * error has been encountered.
   * @return true if parser is done
   */
  inline bool done() const {
    return d_done;
  }

  /** Sets the done flag */
  inline void setDone(bool done = true) {
    d_done = done;
  }

  /** Enable semantic checks during parsing. */
  void enableChecks() { d_checksEnabled = true; }

  /** Disable semantic checks during parsing. Disabling checks may lead to crashes on bad inputs. */
  void disableChecks() { d_checksEnabled = false; }

  /** Enable strict parsing, according to the language standards. */
  void enableStrictMode() { d_strictMode = true; }

  /** Disable strict parsing. Allows certain syntactic infelicities to
      pass without comment. */
  void disableStrictMode() { d_strictMode = false; }

  bool strictModeEnabled() { return d_strictMode; }

  void allowIncludeFile() { d_canIncludeFile = true; }
  void disallowIncludeFile() { d_canIncludeFile = false; }
  bool canIncludeFile() const { return d_canIncludeFile; }

  /** Expose the functionality from SMT/SMT2 parsers, while making
      implementation optional by returning false by default. */
  virtual bool logicIsSet() { return false; }

  void forceLogic(const std::string& logic) { assert(!d_logicIsForced); d_logicIsForced = true; d_forcedLogic = logic; }
  const std::string& getForcedLogic() const { return d_forcedLogic; }
  bool logicIsForced() const { return d_logicIsForced; }

  /**
   * Gets the variable currently bound to name.
   *
   * @param name the name of the variable
   * @return the variable expression
   * Only returns a variable if its name is not overloaded, returns null otherwise.
   */
  Expr getVariable(const std::string& name);

  /**
   * Gets the function currently bound to name.
   *
   * @param name the name of the variable
   * @return the variable expression
   * Only returns a function if its name is not overloaded, returns null otherwise.
   */
  Expr getFunction(const std::string& name);

  /**
   * Returns the expression that name should be interpreted as, based on the current binding.
   *
   * The symbol name should be declared.
   * This creates the expression that the string "name" should be interpreted as.
   * Typically this corresponds to a variable, but it may also correspond to
   * a nullary constructor or a defined function.
   * Only returns an expression if its name is not overloaded, returns null otherwise.
   */
  virtual Expr getExpressionForName(const std::string& name);
  
  /**
   * Returns the expression that name should be interpreted as, based on the current binding.
   *
   * This is the same as above but where the name has been type cast to t. 
   */
  virtual Expr getExpressionForNameAndType(const std::string& name, Type t);
  
  /**
   * Returns the kind that should be used for applications of expression fun, where
   * fun has "function-like" type, i.e. where checkFunctionLike(fun) returns true. 
   * Returns a parse error if fun does not have function-like type.
   * 
   * For example, this function returns
   *   APPLY_UF if fun has function type, 
   *   APPLY_CONSTRUCTOR if fun has constructor type.
   */
  Kind getKindForFunction(Expr fun);
  
  /**
   * Returns a sort, given a name.
   * @param sort_name the name to look up
   */
  Type getSort(const std::string& sort_name);

  /**
   * Returns a (parameterized) sort, given a name and args.
   */
  Type getSort(const std::string& sort_name,
               const std::vector<Type>& params);

  /**
   * Returns arity of a (parameterized) sort, given a name and args.
   */
  size_t getArity(const std::string& sort_name);

  /**
   * Checks if a symbol has been declared.
   * @param name the symbol name
   * @param type the symbol type
   * @return true iff the symbol has been declared with the given type
   */
  bool isDeclared(const std::string& name, SymbolType type = SYM_VARIABLE);

  /**
   * Checks if the declaration policy we want to enforce holds
   * for the given symbol.
   * @param name the symbol to check
   * @param check the kind of check to perform
   * @param type the type of the symbol
   * @param notes notes to add to a parse error (if one is generated)
   * @throws ParserException if checks are enabled and the check fails
   */
  void checkDeclaration(const std::string& name,
                        DeclarationCheck check,
                        SymbolType type = SYM_VARIABLE,
                        std::string notes = "");

  /**
   * Reserve a symbol at the assertion level.
   */
  void reserveSymbolAtAssertionLevel(const std::string& name);

  /**
   * Checks whether the given expression is function-like, i.e.
   * it expects arguments. This is checked by looking at the type 
   * of fun. Examples of function types are function, constructor,
   * selector, tester.
   * @param fun the expression to check
   * @throws ParserException if checks are enabled and fun is not
   * a function
   */
  void checkFunctionLike(Expr fun);

  /**
   * Check that <code>kind</code> can accept <code>numArgs</code> arguments.
   * @param kind the built-in operator to check
   * @param numArgs the number of actual arguments
   * @throws ParserException if checks are enabled and the operator
   * <code>kind</code> cannot be applied to <code>numArgs</code>
   * arguments.
   */
  void checkArity(Kind kind, unsigned numArgs);

  /**
   * Check that <code>kind</code> is a legal operator in the current
   * logic and that it can accept <code>numArgs</code> arguments.
   *
   * @param kind the built-in operator to check
   * @param numArgs the number of actual arguments
   * @throws ParserException if the parser mode is strict and the
   * operator <code>kind</code> has not been enabled
   */
  void checkOperator(Kind kind, unsigned numArgs);

  /** Create a new CVC4 variable expression of the given type. 
   *
   * flags specify information about the variable, e.g. whether it is global or defined
   *   (see enum in expr_manager_template.h).
   *
   * If a symbol with name already exists,
   *  then if doOverload is true, we create overloaded operators.
   *  else if doOverload is false, the existing expression is shadowed by the new expression.
   */
  Expr mkVar(const std::string& name, const Type& type,
             uint32_t flags = ExprManager::VAR_FLAG_NONE, 
             bool doOverload = false);

  /**
   * Create a set of new CVC4 variable expressions of the given type.
   *
   * flags specify information about the variable, e.g. whether it is global or defined
   *   (see enum in expr_manager_template.h).
   *
   * For each name, if a symbol with name already exists,
   *  then if doOverload is true, we create overloaded operators.
   *  else if doOverload is false, the existing expression is shadowed by the new expression.
   */
  std::vector<Expr>
    mkVars(const std::vector<std::string> names, const Type& type,
           uint32_t flags = ExprManager::VAR_FLAG_NONE, 
           bool doOverload = false);

  /** Create a new CVC4 bound variable expression of the given type. */
  Expr mkBoundVar(const std::string& name, const Type& type);

  /**
   * Create a set of new CVC4 bound variable expressions of the given type.
   *
   * flags specify information about the variable, e.g. whether it is global or defined
   *   (see enum in expr_manager_template.h).
   *
   * For each name, if a symbol with name already exists,
   *  then if doOverload is true, we create overloaded operators.
   *  else if doOverload is false, the existing expression is shadowed by the new expression.
   */
  std::vector<Expr> mkBoundVars(const std::vector<std::string> names, const Type& type);

  /** Create a new CVC4 function expression of the given type. */
  Expr mkFunction(const std::string& name, const Type& type,
                  uint32_t flags = ExprManager::VAR_FLAG_NONE, 
                  bool doOverload=false);

  /**
   * Create a new CVC4 function expression of the given type,
   * appending a unique index to its name.  (That's the ONLY
   * difference between mkAnonymousFunction() and mkFunction()).
   *
   * flags specify information about the variable, e.g. whether it is global or defined
   *   (see enum in expr_manager_template.h).
   */
  Expr mkAnonymousFunction(const std::string& prefix, const Type& type,
                           uint32_t flags = ExprManager::VAR_FLAG_NONE);

  /** Create a new variable definition (e.g., from a let binding). 
   * levelZero is set if the binding must be done at level 0.
   * If a symbol with name already exists,
   *  then if doOverload is true, we create overloaded operators.
   *  else if doOverload is false, the existing expression is shadowed by the new expression.
   */
  void defineVar(const std::string& name, const Expr& val,
                 bool levelZero = false, bool doOverload = false);

  /** Create a new function definition (e.g., from a define-fun). 
   * levelZero is set if the binding must be done at level 0.
   * If a symbol with name already exists,
   *  then if doOverload is true, we create overloaded operators.
   *  else if doOverload is false, the existing expression is shadowed by the new expression.
   */
  void defineFunction(const std::string& name, const Expr& val,
                      bool levelZero = false, bool doOverload = false);

  /** Create a new type definition. */
  void defineType(const std::string& name, const Type& type);

  /** Create a new (parameterized) type definition. */
  void defineType(const std::string& name,
                  const std::vector<Type>& params, const Type& type);

  /** Create a new type definition (e.g., from an SMT-LIBv2 define-sort). */
  void defineParameterizedType(const std::string& name,
                               const std::vector<Type>& params,
                               const Type& type);

  /**
   * Creates a new sort with the given name.
   */
  SortType mkSort(const std::string& name,
                  uint32_t flags = ExprManager::SORT_FLAG_NONE);

  /**
   * Creates a new sort constructor with the given name and arity.
   */
  SortConstructorType mkSortConstructor(
      const std::string& name,
      size_t arity,
      uint32_t flags = ExprManager::SORT_FLAG_NONE);

  /**
   * Creates a new "unresolved type," used only during parsing.
   */
  SortType mkUnresolvedType(const std::string& name);

  /**
   * Creates a new unresolved (parameterized) type constructor of the given
   * arity.
   */
  SortConstructorType mkUnresolvedTypeConstructor(const std::string& name, 
                                                  size_t arity);
  /**
   * Creates a new unresolved (parameterized) type constructor given the type
   * parameters.
   */
  SortConstructorType mkUnresolvedTypeConstructor(const std::string& name, 
                                                  const std::vector<Type>& params);

  /**
   * Returns true IFF name is an unresolved type.
   */
  bool isUnresolvedType(const std::string& name);

  /**
   * Create sorts of mutually-recursive datatypes.
   * For each symbol defined by the datatype, if a symbol with name already exists,
   *  then if doOverload is true, we create overloaded operators.
   *  else if doOverload is false, the existing expression is shadowed by the new expression.
   */
  std::vector<DatatypeType>
  mkMutualDatatypeTypes(std::vector<Datatype>& datatypes, bool doOverload=false);

  /** make flat function type
   *
   * Returns the "flat" function type corresponding to the function taking
   * argument types "sorts" and range type "range".  A flat function type is
   * one whose range is not a function. Notice that if sorts is empty and range
   * is not a function, then this function returns range itself.
   *
   * If range is a function type, we add its function argument sorts to sorts
   * and consider its function range as the new range. For each sort S added
   * to sorts in this process, we add a new bound variable of sort S to
   * flattenVars.
   *
   * For example:
   * mkFlattenFunctionType( { Int, (-> Real Real) }, (-> Int Bool), {} ):
   * - returns the the function type (-> Int (-> Real Real) Int Bool)
   * - updates sorts to { Int, (-> Real Real), Int },
   * - updates flattenVars to { x }, where x is bound variable of type Int.
   *
   * Notice that this method performs only one level of flattening, for example,
   * mkFlattenFunctionType({ Int, (-> Real Real) }, (-> Int (-> Int Bool)), {}):
   * - returns the the function type (-> Int (-> Real Real) Int (-> Int Bool))
   * - updates sorts to { Int, (-> Real Real), Int },
   * - updates flattenVars to { x }, where x is bound variable of type Int.
   *
   * This method is required so that we do not return functions
   * that have function return type (these give an unhandled exception
   * in the ExprManager). For examples of the equivalence between function
   * definitions in the proposed higher-order extension of the smt2 language,
   * see page 3 of http://matryoshka.gforge.inria.fr/pubs/PxTP2017.pdf.
   *
   * The argument flattenVars is needed in the case of defined functions
   * with function return type. These have implicit arguments, for instance:
   *    (define-fun Q ((x Int)) (-> Int Int) (lambda y (P x)))
   * is equivalent to the command:
   *    (define-fun Q ((x Int) (z Int)) Int (@ (lambda y (P x)) z))
   * where @ is (higher-order) application. In this example, z is added to
   * flattenVars.
   */
  Type mkFlatFunctionType(std::vector<Type>& sorts,
                          Type range,
                          std::vector<Expr>& flattenVars);

  /** make flat function type
   *
   * Same as above, but does not take argument flattenVars.
   * This is used when the arguments of the function are not important (for
   * instance, if we are only using this type in a declare-fun).
   */
  Type mkFlatFunctionType(std::vector<Type>& sorts, Type range);

  /** make higher-order apply
   *
   * This returns the left-associative curried application of (function) expr to
   * the arguments in args.
   *
   * For example, mkHoApply( f, { a, b }, 0 ) returns
   *  (HO_APPLY (HO_APPLY f a) b)
   *
   * If args is non-empty, the expected type of expr is (-> T0 ... Tn T), where
   *    args[i].getType() = Ti
   * for each i where 0 <= i < args.size(). If expr is not of this
   * type, the expression returned by this method will not be well typed.
   */
  Expr mkHoApply(Expr expr, std::vector<Expr>& args);

  /**
   * Add an operator to the current legal set.
   *
   * @param kind the built-in operator to add
   */
  void addOperator(Kind kind);

  /**
   * Preempt the next returned command with other ones; used to
   * support the :named attribute in SMT-LIBv2, which implicitly
   * inserts a new command before the current one. Also used in TPTP
   * because function and predicate symbols are implicitly declared.
   */
  void preemptCommand(Command* cmd);

  /** Is the symbol bound to a boolean variable? */
  bool isBoolean(const std::string& name);

  /** Is fun a function (or function-like thing)? 
  * Currently this means its type is either a function, constructor, tester, or selector.
  */
  bool isFunctionLike(Expr fun);

  /** Is the symbol bound to a defined function? */
  bool isDefinedFunction(const std::string& name);

  /** Is the Expr a defined function? */
  bool isDefinedFunction(Expr func);

  /** Is the symbol bound to a predicate? */
  bool isPredicate(const std::string& name);

  /** Parse and return the next command. */
  Command* nextCommand();

  /** Parse and return the next expression. */
  Expr nextExpression();

  /** Issue a warning to the user. */
  void warning(const std::string& msg) { d_input->warning(msg); }
  /** Issue a warning to the user, but only once per attribute. */
  void attributeNotSupported(const std::string& attr);

  /** Raise a parse error with the given message. */
  inline void parseError(const std::string& msg) { d_input->parseError(msg); }
  /** Unexpectedly encountered an EOF */
  inline void unexpectedEOF(const std::string& msg)
  {
    d_input->parseError(msg, true);
  }

  /**
   * If we are parsing only, don't raise an exception; if we are not,
   * raise a parse error with the given message.  There is no actual
   * parse error, everything is as expected, but we cannot create the
   * Expr, Type, or other requested thing yet due to internal
   * limitations.  Even though it's not a parse error, we throw a
   * parse error so that the input line and column information is
   * available.
   *
   * Think quantifiers.  We don't have a TheoryQuantifiers yet, so we
   * have no kind::FORALL or kind::EXISTS.  But we might want to
   * support parsing quantifiers (just not doing anything with them).
   * So this mechanism gives you a way to do it with --parse-only.
   */
  inline void unimplementedFeature(const std::string& msg)
  {
    if(!d_parseOnly) {
      parseError("Unimplemented feature: " + msg);
    }
  }

  /**
   * Gets the current declaration level.
   */
  inline size_t scopeLevel() const { return d_symtab->getLevel(); }

  inline void pushScope(bool bindingLevel = false) {
    d_symtab->pushScope();
    if(!bindingLevel) {
      d_assertionLevel = scopeLevel();
    }
  }

  inline void popScope() {
    d_symtab->popScope();
    if(scopeLevel() < d_assertionLevel) {
      d_assertionLevel = scopeLevel();
      d_reservedSymbols.clear();
    }
  }

  virtual void reset() {
    d_symtab->reset();
  }

  void setGlobalDeclarations(bool flag) {
    d_globalDeclarations = flag;
  }

  /**
   * Set the current symbol table used by this parser.
   * From now on, this parser will perform its definitions and
   * lookups in the declaration scope of the "parser" argument
   * (but doesn't re-delegate if the other parser's declaration scope
   * changes later).  A NULL argument restores this parser's
   * "primordial" declaration scope assigned at its creation.  Calling
   * p->useDeclarationsFrom(p) is a no-op.
   *
   * This feature is useful when e.g. reading out-of-band expression data:
   * 1. Parsing --replay log files produced with --replay-log.
   * 2. Perhaps a multi-query benchmark file is being single-stepped
   *    with intervening queries on stdin that must reference the same
   *    declaration scope(s).
   *
   * However, the feature must be used carefully.  Pushes and pops
   * should be performed with the correct current declaration scope.
   * Care must be taken to match up declaration scopes, of course;
   * If variables in the deferred-to parser go out of scope, the
   * secondary parser will give errors that they are undeclared.
   * Also, an outer-scope variable shadowed by an inner-scope one of
   * the same name may be temporarily inaccessible.
   *
   * In short, caveat emptor.
   */
  inline void useDeclarationsFrom(Parser* parser) {
    if(parser == NULL) {
      d_symtab = &d_symtabAllocated;
    } else {
      d_symtab = parser->d_symtab;
    }
  }

  inline void useDeclarationsFrom(SymbolTable* symtab) {
    d_symtab = symtab;
  }

  inline SymbolTable* getSymbolTable() const {
    return d_symtab;
  }

  /**
   * An expression stream interface for a parser.  This stream simply
   * pulls expressions from the given Parser object.
   *
   * Here, the ExprStream base class allows a Parser (from the parser
   * library) and core components of CVC4 (in the core library) to
   * communicate without polluting the public interface or having them
   * reach into private (undocumented) interfaces.
   */
  class ExprStream : public CVC4::ExprStream {
    Parser* d_parser;
  public:
    ExprStream(Parser* parser) : d_parser(parser) {}
    ~ExprStream() { delete d_parser; }
    Expr nextExpr() override { return d_parser->nextExpression(); }
  };/* class Parser::ExprStream */
  
  //------------------------ operator overloading
  /** is this function overloaded? */
  bool isOverloadedFunction(Expr fun) {
    return d_symtab->isOverloadedFunction(fun);
  }
  
  /** Get overloaded constant for type.
   * If possible, it returns a defined symbol with name
   * that has type t. Otherwise returns null expression.
  */
  Expr getOverloadedConstantForType(const std::string& name, Type t) {
    return d_symtab->getOverloadedConstantForType(name, t);
  }
  
  /**
   * If possible, returns a defined function for a name
   * and a vector of expected argument types. Otherwise returns
   * null expression.
   */
  Expr getOverloadedFunctionForTypes(const std::string& name, std::vector< Type >& argTypes) {
    return d_symtab->getOverloadedFunctionForTypes(name, argTypes);
  }
  //------------------------ end operator overloading
};/* class Parser */

}/* CVC4::parser namespace */
}/* CVC4 namespace */

#endif /* CVC4__PARSER__PARSER_STATE_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback