summaryrefslogtreecommitdiff
path: root/src/expr/expr_manager_template.h
blob: 5adb30ad666829f496a8d6c40ca3a95f5a4433ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*********************                                                        */
/*! \file expr_manager_template.h
 ** \verbatim
 ** Top contributors (to current version):
 **   Morgan Deters, Dejan Jovanovic, Christopher L. Conway
 ** This file is part of the CVC4 project.
 ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
 ** in the top-level source directory) and their institutional affiliations.
 ** All rights reserved.  See the file COPYING in the top-level source
 ** directory for licensing information.\endverbatim
 **
 ** \brief Public-facing expression manager interface
 **
 ** Public-facing expression manager interface.
 **/

#include "cvc4_public.h"

#ifndef __CVC4__EXPR_MANAGER_H
#define __CVC4__EXPR_MANAGER_H

#include <vector>

#include "expr/expr.h"
#include "expr/kind.h"
#include "expr/type.h"
#include "util/statistics.h"

${includes}

// This is a hack, but an important one: if there's an error, the
// compiler directs the user to the template file instead of the
// generated one.  We don't want the user to modify the generated one,
// since it'll get overwritten on a later build.
#line 36 "${template}"

namespace CVC4 {

class Expr;
class SmtEngine;
class NodeManager;
class Options;
class IntStat;
struct ExprManagerMapCollection;
class ResourceManager;

namespace expr {
  namespace pickle {
    class Pickler;
  }/* CVC4::expr::pickle namespace */
}/* CVC4::expr namespace */

class CVC4_PUBLIC ExprManager {
private:
  /** The internal node manager */
  NodeManager* d_nodeManager;

  /** Counts of expressions and variables created of a given kind */
  IntStat* d_exprStatisticsVars[LAST_TYPE + 1];
  IntStat* d_exprStatistics[kind::LAST_KIND];

  /**
   * Returns the internal node manager.  This should only be used by
   * internal users, i.e. the friend classes.
   */
  NodeManager* getNodeManager() const;

  /**
   * Check some things about a newly-created DatatypeType.
   */
  void checkResolvedDatatype(DatatypeType dtt) const;

  /**
   * SmtEngine will use all the internals, so it will grab the
   * NodeManager.
   */
  friend class SmtEngine;

  /** ExprManagerScope reaches in to get the NodeManager */
  friend class ExprManagerScope;

  /** NodeManager reaches in to get the NodeManager */
  friend class NodeManager;

  // undefined, private copy constructor and assignment op (disallow copy)
  ExprManager(const ExprManager&) CVC4_UNDEFINED;
  ExprManager& operator=(const ExprManager&) CVC4_UNDEFINED;

  std::vector<DatatypeType> d_keep_dtt;
  std::vector<Datatype> d_keep_dt;

public:

  /**
   * Creates an expression manager with default options.
   */
  ExprManager();

  /**
   * Creates an expression manager.
   *
   * @param options the earlyTypeChecking field is used to configure
   * whether to do at Expr creation time.
   */
  explicit ExprManager(const Options& options);

  /**
   * Destroys the expression manager. No will be deallocated at this point, so
   * any expression references that used to be managed by this expression
   * manager and are left-over are bad.
   */
  ~ExprManager();

  /** Get this expr manager's options */
  const Options& getOptions() const;

  /** Get this expr manager's resource manager */
  ResourceManager* getResourceManager();

  /** Get the type for booleans */
  BooleanType booleanType() const;

  /** Get the type for strings. */
  StringType stringType() const;

  /** Get the type for regular expressions. */
  RegExpType regExpType() const;

  /** Get the type for reals. */
  RealType realType() const;

  /** Get the type for integers */
  IntegerType integerType() const;

  /** Get the type for rounding modes */
  RoundingModeType roundingModeType() const;

  /**
   * Make a unary expression of a given kind (NOT, BVNOT, ...).
   * @param kind the kind of expression
   * @param child1 kind the kind of expression
   * @return the expression
   */
  Expr mkExpr(Kind kind, Expr child1);

  /**
   * Make a binary expression of a given kind (AND, PLUS, ...).
   * @param kind the kind of expression
   * @param child1 the first child of the new expression
   * @param child2 the second child of the new expression
   * @return the expression
   */
  Expr mkExpr(Kind kind, Expr child1, Expr child2);

  /**
   * Make a 3-ary expression of a given kind (AND, PLUS, ...).
   * @param kind the kind of expression
   * @param child1 the first child of the new expression
   * @param child2 the second child of the new expression
   * @param child3 the third child of the new expression
   * @return the expression
   */
  Expr mkExpr(Kind kind, Expr child1, Expr child2, Expr child3);

  /**
   * Make a 4-ary expression of a given kind (AND, PLUS, ...).
   * @param kind the kind of expression
   * @param child1 the first child of the new expression
   * @param child2 the second child of the new expression
   * @param child3 the third child of the new expression
   * @param child4 the fourth child of the new expression
   * @return the expression
   */
  Expr mkExpr(Kind kind, Expr child1, Expr child2, Expr child3, Expr child4);

  /**
   * Make a 5-ary expression of a given kind (AND, PLUS, ...).
   * @param kind the kind of expression
   * @param child1 the first child of the new expression
   * @param child2 the second child of the new expression
   * @param child3 the third child of the new expression
   * @param child4 the fourth child of the new expression
   * @param child5 the fifth child of the new expression
   * @return the expression
   */
  Expr mkExpr(Kind kind, Expr child1, Expr child2, Expr child3, Expr child4,
              Expr child5);

  /**
   * Make an n-ary expression of given kind given a vector of its
   * children
   *
   * @param kind the kind of expression to build
   * @param children the subexpressions
   * @return the n-ary expression
   */
  Expr mkExpr(Kind kind, const std::vector<Expr>& children);

  /**
   * Make an n-ary expression of given kind given a first arg and
   * a vector of its remaining children (this can be useful where the
   * kind is parameterized operator, so the first arg is really an
   * arg to the kind to construct an operator)
   *
   * @param kind the kind of expression to build
   * @param child1 the first subexpression
   * @param otherChildren the remaining subexpressions
   * @return the n-ary expression
   */
  Expr mkExpr(Kind kind, Expr child1, const std::vector<Expr>& otherChildren);

  /**
   * Make a nullary parameterized expression with the given operator.
   *
   * @param opExpr the operator expression
   * @return the nullary expression
   */
  Expr mkExpr(Expr opExpr);

  /**
   * Make a unary parameterized expression with the given operator.
   *
   * @param opExpr the operator expression
   * @param child1 the subexpression
   * @return the unary expression
   */
  Expr mkExpr(Expr opExpr, Expr child1);

  /**
   * Make a binary parameterized expression with the given operator.
   *
   * @param opExpr the operator expression
   * @param child1 the first subexpression
   * @param child2 the second subexpression
   * @return the binary expression
   */
  Expr mkExpr(Expr opExpr, Expr child1, Expr child2);

  /**
   * Make a ternary parameterized expression with the given operator.
   *
   * @param opExpr the operator expression
   * @param child1 the first subexpression
   * @param child2 the second subexpression
   * @param child3 the third subexpression
   * @return the ternary expression
   */
  Expr mkExpr(Expr opExpr, Expr child1, Expr child2, Expr child3);

  /**
   * Make a quaternary parameterized expression with the given operator.
   *
   * @param opExpr the operator expression
   * @param child1 the first subexpression
   * @param child2 the second subexpression
   * @param child3 the third subexpression
   * @param child4 the fourth subexpression
   * @return the quaternary expression
   */
  Expr mkExpr(Expr opExpr, Expr child1, Expr child2, Expr child3, Expr child4);

  /**
   * Make a quinary parameterized expression with the given operator.
   *
   * @param opExpr the operator expression
   * @param child1 the first subexpression
   * @param child2 the second subexpression
   * @param child3 the third subexpression
   * @param child4 the fourth subexpression
   * @param child5 the fifth subexpression
   * @return the quinary expression
   */
  Expr mkExpr(Expr opExpr, Expr child1, Expr child2, Expr child3, Expr child4,
              Expr child5);

  /**
   * Make an n-ary expression of given operator to apply and a vector
   * of its children
   *
   * @param opExpr the operator expression
   * @param children the subexpressions
   * @return the n-ary expression
   */
  Expr mkExpr(Expr opExpr, const std::vector<Expr>& children);

  /** Create a constant of type T */
  template <class T>
  Expr mkConst(const T&);

  /**
   * Create an Expr by applying an associative operator to the children.
   * If <code>children.size()</code> is greater than the max arity for
   * <code>kind</code>, then the expression will be broken up into
   * suitably-sized chunks, taking advantage of the associativity of
   * <code>kind</code>. For example, if kind <code>FOO</code> has max arity
   * 2, then calling <code>mkAssociative(FOO,a,b,c)</code> will return
   * <code>(FOO (FOO a b) c)</code> or <code>(FOO a (FOO b c))</code>.
   * The order of the arguments will be preserved in a left-to-right
   * traversal of the resulting tree.
   */
  Expr mkAssociative(Kind kind, const std::vector<Expr>& children);

  /**
   * Determine whether Exprs of a particular Kind have operators.
   * @returns true if Exprs of Kind k have operators.
   */
  static bool hasOperator(Kind k);

  /**
   * Get the (singleton) operator of an OPERATOR-kinded kind.  The
   * returned Expr e will have kind BUILTIN, and calling
   * e.getConst<CVC4::Kind>() will yield k.
   */
  Expr operatorOf(Kind k);
  
  /** Get a Kind from an operator expression */
  Kind operatorToKind(Expr e);
  
  /** Make a function type from domain to range. */
  FunctionType mkFunctionType(Type domain, Type range);

  /**
   * Make a function type with input types from argTypes.
   * <code>argTypes</code> must have at least one element.
   */
  FunctionType mkFunctionType(const std::vector<Type>& argTypes, Type range);

  /**
   * Make a function type with input types from
   * <code>sorts[0..sorts.size()-2]</code> and result type
   * <code>sorts[sorts.size()-1]</code>. <code>sorts</code> must have
   * at least 2 elements.
   */
  FunctionType mkFunctionType(const std::vector<Type>& sorts);

  /**
   * Make a predicate type with input types from
   * <code>sorts</code>. The result with be a function type with range
   * <code>BOOLEAN</code>. <code>sorts</code> must have at least one
   * element.
   */
  FunctionType mkPredicateType(const std::vector<Type>& sorts);

  /**
   * Make a tuple type with types from
   * <code>types[0..types.size()-1]</code>.  <code>types</code> must
   * have at least one element.
   */
  DatatypeType mkTupleType(const std::vector<Type>& types);

  /**
   * Make a record type with types from the rec parameter.
   */
  DatatypeType mkRecordType(const Record& rec);

  /**
   * Make a symbolic expressiontype with types from
   * <code>types[0..types.size()-1]</code>.  <code>types</code> may
   * have any number of elements.
   */
  SExprType mkSExprType(const std::vector<Type>& types);

  /** Make a type representing a floating-point type with the given parameters. */
  FloatingPointType mkFloatingPointType(unsigned exp, unsigned sig) const;

  /** Make a type representing a bit-vector of the given size. */
  BitVectorType mkBitVectorType(unsigned size) const;

  /** Make the type of arrays with the given parameterization. */
  ArrayType mkArrayType(Type indexType, Type constituentType) const;

  /** Make the type of set with the given parameterization. */
  SetType mkSetType(Type elementType) const;

  /** Make a type representing the given datatype. */
  DatatypeType mkDatatypeType(Datatype& datatype);

  /**
   * Make a set of types representing the given datatypes, which may be
   * mutually recursive.
   */
  std::vector<DatatypeType> mkMutualDatatypeTypes(std::vector<Datatype>& datatypes);

  /**
   * Make a set of types representing the given datatypes, which may
   * be mutually recursive.  unresolvedTypes is a set of SortTypes
   * that were used as placeholders in the Datatypes for the Datatypes
   * of the same name.  This is just a more complicated version of the
   * above mkMutualDatatypeTypes() function, but is required to handle
   * complex types.
   *
   * For example, unresolvedTypes might contain the single sort "list"
   * (with that name reported from SortType::getName()).  The
   * datatypes list might have the single datatype
   *
   *   DATATYPE
   *     list = cons(car:ARRAY INT OF list, cdr:list) | nil;
   *   END;
   *
   * To represent the Type of the array, the user had to create a
   * placeholder type (an uninterpreted sort) to stand for "list" in
   * the type of "car".  It is this placeholder sort that should be
   * passed in unresolvedTypes.  If the datatype was of the simpler
   * form:
   *
   *   DATATYPE
   *     list = cons(car:list, cdr:list) | nil;
   *   END;
   *
   * then no complicated Type needs to be created, and the above,
   * simpler form of mkMutualDatatypeTypes() is enough.
   */
  std::vector<DatatypeType> mkMutualDatatypeTypes(std::vector<Datatype>& datatypes, std::set<Type>& unresolvedTypes);

  /**
   * Make a type representing a constructor with the given parameterization.
   */
  ConstructorType mkConstructorType(const DatatypeConstructor& constructor, Type range) const;

  /** Make a type representing a selector with the given parameterization. */
  SelectorType mkSelectorType(Type domain, Type range) const;

  /** Make a type representing a tester with the given parameterization. */
  TesterType mkTesterType(Type domain) const;

  /** Bits for use in mkSort() flags. */
  enum {
    SORT_FLAG_NONE = 0,
    SORT_FLAG_PLACEHOLDER = 1
  };/* enum */

  /** Make a new sort with the given name. */
  SortType mkSort(const std::string& name, uint32_t flags = SORT_FLAG_NONE) const;

  /** Make a sort constructor from a name and arity. */
  SortConstructorType mkSortConstructor(const std::string& name,
                                        size_t arity) const;

  /**
   * Get the type of an expression.
   *
   * Throws a TypeCheckingException on failures or if a Type cannot be
   * computed.
   */
  Type getType(Expr e, bool check = false);

  /** Bits for use in mkVar() flags. */
  enum {
    VAR_FLAG_NONE = 0,
    VAR_FLAG_GLOBAL = 1,
    VAR_FLAG_DEFINED = 2
  };/* enum */

  /**
   * Create a new, fresh variable.  This variable is guaranteed to be
   * distinct from every variable thus far in the ExprManager, even
   * if it shares a name with another; this is to support any kind of
   * scoping policy on top of ExprManager.  The SymbolTable class
   * can be used to store and lookup symbols by name, if desired.
   *
   * @param name a name to associate to the fresh new variable
   * @param type the type for the new variable
   * @param flags - VAR_FLAG_NONE - no flags;
   * VAR_FLAG_GLOBAL - whether this variable is to be
   * considered "global" or not.  Note that this information isn't
   * used by the ExprManager, but is passed on to the ExprManager's
   * event subscribers like the model-building service; if isGlobal
   * is true, this newly-created variable will still available in
   * models generated after an intervening pop.
   * VAR_FLAG_DEFINED - if this is to be a "defined" symbol, e.g., for
   * use with SmtEngine::defineFunction().  This keeps a declaration
   * from being emitted in API dumps (since a subsequent definition is
   * expected to be dumped instead).
   */
  Expr mkVar(const std::string& name, Type type, uint32_t flags = VAR_FLAG_NONE);

  /**
   * Create a (nameless) new, fresh variable.  This variable is guaranteed
   * to be distinct from every variable thus far in the ExprManager.
   *
   * @param type the type for the new variable
   * @param flags - VAR_FLAG_GLOBAL - whether this variable is to be considered "global"
   * or not.  Note that this information isn't used by the ExprManager,
   * but is passed on to the ExprManager's event subscribers like the
   * model-building service; if isGlobal is true, this newly-created
   * variable will still available in models generated after an
   * intervening pop.
   */
  Expr mkVar(Type type, uint32_t flags = VAR_FLAG_NONE);

  /**
   * Create a new, fresh variable for use in a binder expression
   * (the BOUND_VAR_LIST of a FORALL, EXISTS, or LAMBDA).  It is
   * an error for this bound variable to exist outside of a binder,
   * and it should also only be used in a single binder expression.
   * That is, two distinct FORALL expressions should use entirely
   * disjoint sets of bound variables (however, a single FORALL
   * expression can be used in multiple places in a formula without
   * a problem).  This newly-created bound variable is guaranteed to
   * be distinct from every variable thus far in the ExprManager, even
   * if it shares a name with another; this is to support any kind of
   * scoping policy on top of ExprManager.  The SymbolTable class
   * can be used to store and lookup symbols by name, if desired.
   *
   * @param name a name to associate to the fresh new bound variable
   * @param type the type for the new bound variable
   */
  Expr mkBoundVar(const std::string& name, Type type);

  /**
   * Create a (nameless) new, fresh variable for use in a binder
   * expression (the BOUND_VAR_LIST of a FORALL, EXISTS, or LAMBDA).
   * It is an error for this bound variable to exist outside of a
   * binder, and it should also only be used in a single binder
   * expression.  That is, two distinct FORALL expressions should use
   * entirely disjoint sets of bound variables (however, a single FORALL
   * expression can be used in multiple places in a formula without
   * a problem).  This newly-created bound variable is guaranteed to
   * be distinct from every variable thus far in the ExprManager.
   *
   * @param type the type for the new bound variable
   */
  Expr mkBoundVar(Type type);

  /**
   * Create unique variable of type 
   */
  Expr mkNullaryOperator( Type type, Kind k);

  /** Get a reference to the statistics registry for this ExprManager */
  Statistics getStatistics() const;

  /** Get a reference to the statistics registry for this ExprManager */
  SExpr getStatistic(const std::string& name) const;

  /**
   * Flushes statistics for this ExprManager to a file descriptor. Safe to use
   * in a signal handler.
   */
  void safeFlushStatistics(int fd) const;

  /** Export an expr to a different ExprManager */
  //static Expr exportExpr(const Expr& e, ExprManager* em);
  /** Export a type to a different ExprManager */
  static Type exportType(const Type& t, ExprManager* em, ExprManagerMapCollection& vmap);

  /** Returns the minimum arity of the given kind. */
  static unsigned minArity(Kind kind);

  /** Returns the maximum arity of the given kind. */
  static unsigned maxArity(Kind kind);

};/* class ExprManager */

${mkConst_instantiations}

}/* CVC4 namespace */

#endif /* __CVC4__EXPR_MANAGER_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback