summaryrefslogtreecommitdiff
path: root/src/expr/expr_manager_template.cpp
blob: 5cf3373c2f56905550fd4c768d64df1ca0cd5e19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*********************                                                        */
/*! \file expr_manager_template.cpp
 ** \verbatim
 ** Original author: dejan
 ** Major contributors: mdeters, cconway
 ** Minor contributors (to current version): none
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.\endverbatim
 **
 ** \brief Public-facing expression manager interface, implementation.
 **
 ** Public-facing expression manager interface, implementation.
 **/

#include "expr/node_manager.h"
#include "expr/expr_manager.h"
#include "context/context.h"

${includes}

// This is a hack, but an important one: if there's an error, the
// compiler directs the user to the template file instead of the
// generated one.  We don't want the user to modify the generated one,
// since it'll get overwritten on a later build.
#line 30 "${template}"

using namespace std;
using namespace CVC4::context;
using namespace CVC4::kind;

namespace CVC4 {

ExprManager::ExprManager(bool earlyTypeChecking) :
  d_ctxt(new Context),
  d_nodeManager(new NodeManager(d_ctxt, earlyTypeChecking)) {
}

ExprManager::~ExprManager() {
  delete d_nodeManager;
  delete d_ctxt;
}

BooleanType ExprManager::booleanType() const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->booleanType()));
}

KindType ExprManager::kindType() const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->kindType()));
}

RealType ExprManager::realType() const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->realType()));
}

IntegerType ExprManager::integerType() const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->integerType()));
}

Expr ExprManager::mkExpr(Kind kind, const Expr& child1) {
  const unsigned n = 1;
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);
  NodeManagerScope nms(d_nodeManager);
  try {
    return Expr(this, d_nodeManager->mkNodePtr(kind, child1.getNode()));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

Expr ExprManager::mkExpr(Kind kind, const Expr& child1, const Expr& child2) {
  const unsigned n = 2;
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);
  NodeManagerScope nms(d_nodeManager);
  try {
    return Expr(this, d_nodeManager->mkNodePtr(kind,
                                               child1.getNode(),
                                               child2.getNode()));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

Expr ExprManager::mkExpr(Kind kind, const Expr& child1, const Expr& child2,
                         const Expr& child3) {
  const unsigned n = 3;
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);
  NodeManagerScope nms(d_nodeManager);
  try {
    return Expr(this, d_nodeManager->mkNodePtr(kind,
                                               child1.getNode(),
                                               child2.getNode(),
                                               child3.getNode()));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

Expr ExprManager::mkExpr(Kind kind, const Expr& child1, const Expr& child2,
                         const Expr& child3, const Expr& child4) {
  const unsigned n = 4;
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);
  NodeManagerScope nms(d_nodeManager);
  try {
    return Expr(this, d_nodeManager->mkNodePtr(kind,
                                               child1.getNode(),
                                               child2.getNode(),
                                               child3.getNode(),
                                               child4.getNode()));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

Expr ExprManager::mkExpr(Kind kind, const Expr& child1, const Expr& child2,
                         const Expr& child3, const Expr& child4,
                         const Expr& child5) {
  const unsigned n = 5;
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);
  NodeManagerScope nms(d_nodeManager);
  try {
    return Expr(this, d_nodeManager->mkNodePtr(kind,
                                               child1.getNode(),
                                               child2.getNode(),
                                               child3.getNode(),
                                               child4.getNode(),
                                               child5.getNode()));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

Expr ExprManager::mkExpr(Kind kind, const std::vector<Expr>& children) {
  const unsigned n = children.size();
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);

  NodeManagerScope nms(d_nodeManager);

  vector<Node> nodes;
  vector<Expr>::const_iterator it = children.begin();
  vector<Expr>::const_iterator it_end = children.end();
  while(it != it_end) {
    nodes.push_back(it->getNode());
    ++it;
  }
  try {
    return Expr(this, d_nodeManager->mkNodePtr(kind, nodes));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

Expr ExprManager::mkExpr(Expr opExpr, const std::vector<Expr>& children) {
  const unsigned n = children.size();
  Kind kind = kind::operatorKindToKind(opExpr.getKind());
  CheckArgument(n >= minArity(kind) && n <= maxArity(kind), kind,
                "Exprs with kind %s must have at least %u children and "
                "at most %u children (the one under construction has %u)",
                kind::kindToString(kind).c_str(),
                minArity(kind), maxArity(kind), n);

  NodeManagerScope nms(d_nodeManager);

  vector<Node> nodes;
  vector<Expr>::const_iterator it = children.begin();
  vector<Expr>::const_iterator it_end = children.end();
  while(it != it_end) {
    nodes.push_back(it->getNode());
    ++it;
  }
  try {
    return Expr(this,d_nodeManager->mkNodePtr(opExpr.getNode(), nodes));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
}

/** Make a function type from domain to range. */
FunctionType ExprManager::mkFunctionType(const Type& domain, const Type& range) {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkFunctionType(*domain.d_typeNode, *range.d_typeNode)));
}

/** Make a function type with input types from argTypes. */
FunctionType ExprManager::mkFunctionType(const std::vector<Type>& argTypes, const Type& range) {
  NodeManagerScope nms(d_nodeManager);
  Assert( argTypes.size() >= 1 );
  std::vector<TypeNode> argTypeNodes;
  for (unsigned i = 0, i_end = argTypes.size(); i < i_end; ++ i) {
    argTypeNodes.push_back(*argTypes[i].d_typeNode);
  }
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkFunctionType(argTypeNodes, *range.d_typeNode)));
}

FunctionType ExprManager::mkFunctionType(const std::vector<Type>& sorts) {
  NodeManagerScope nms(d_nodeManager);
  Assert( sorts.size() >= 2 );
  std::vector<TypeNode> sortNodes;
  for (unsigned i = 0, i_end = sorts.size(); i < i_end; ++ i) {
     sortNodes.push_back(*sorts[i].d_typeNode);
  }
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkFunctionType(sortNodes)));
}

FunctionType ExprManager::mkPredicateType(const std::vector<Type>& sorts) {
  NodeManagerScope nms(d_nodeManager);
  Assert( sorts.size() >= 1 );
  std::vector<TypeNode> sortNodes;
  for (unsigned i = 0, i_end = sorts.size(); i < i_end; ++ i) {
     sortNodes.push_back(*sorts[i].d_typeNode);
  }
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkPredicateType(sortNodes)));
}

TupleType ExprManager::mkTupleType(const std::vector<Type>& types) {
  NodeManagerScope nms(d_nodeManager);
  Assert( types.size() >= 2 );
  std::vector<TypeNode> typeNodes;
  for (unsigned i = 0, i_end = types.size(); i < i_end; ++ i) {
     typeNodes.push_back(*types[i].d_typeNode);
  }
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkTupleType(typeNodes)));
}

BitVectorType ExprManager::mkBitVectorType(unsigned size) const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkBitVectorType(size)));
}

ArrayType ExprManager::mkArrayType(Type indexType, Type constituentType) const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkArrayType(*indexType.d_typeNode, *constituentType.d_typeNode)));
}

SortType ExprManager::mkSort(const std::string& name) const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager, new TypeNode(d_nodeManager->mkSort(name)));
}

SortConstructorType ExprManager::mkSortConstructor(const std::string& name,
                                                   size_t arity) const {
  NodeManagerScope nms(d_nodeManager);
  return Type(d_nodeManager,
              new TypeNode(d_nodeManager->mkSortConstructor(name, arity)));
}

/**
 * Get the type for the given Expr and optionally do type checking.
 *
 * Initial type computation will be near-constant time if
 * type checking is not requested. Results are memoized, so that
 * subsequent calls to getType() without type checking will be
 * constant time.
 *
 * Initial type checking is linear in the size of the expression.
 * Again, the results are memoized, so that subsequent calls to
 * getType(), with or without type checking, will be constant
 * time.
 *
 * NOTE: A TypeCheckingException can be thrown even when type
 * checking is not requested. getType() will always return a
 * valid and correct type and, thus, an exception will be thrown
 * when no valid or correct type can be computed (e.g., if the
 * arguments to a bit-vector operation aren't bit-vectors). When
 * type checking is not requested, getType() will do the minimum
 * amount of checking required to return a valid result.
 *
 * @param n the Expr for which we want a type
 * @param check whether we should check the type as we compute it
 * (default: false)
 */
Type ExprManager::getType(const Expr& e, bool check) throw (TypeCheckingException) {
  NodeManagerScope nms(d_nodeManager);
  Type t;
  try {
    t = Type(d_nodeManager,
             new TypeNode(d_nodeManager->getType(e.getNode(), check)));
  } catch (const TypeCheckingExceptionPrivate& e) {
    throw TypeCheckingException(this, &e);
  }
  return t;
}

Expr ExprManager::mkVar(const std::string& name, const Type& type) {
  NodeManagerScope nms(d_nodeManager);
  Node* n = d_nodeManager->mkVarPtr(name, *type.d_typeNode);
  Debug("nm") << "set " << name << " on " << *n << std::endl;
  return Expr(this, n);
}

Expr ExprManager::mkVar(const Type& type) {
  NodeManagerScope nms(d_nodeManager);
  return Expr(this, d_nodeManager->mkVarPtr(*type.d_typeNode));
}

Expr ExprManager::mkAssociative(Kind kind,
                                const std::vector<Expr>& children) {
  CheckArgument( kind::isAssociative(kind), kind,
                 "Illegal kind in mkAssociative: %s",
                 kind::kindToString(kind).c_str());

  NodeManagerScope nms(d_nodeManager);
  const unsigned int max = maxArity(kind);
  const unsigned int min = minArity(kind);
  unsigned int numChildren = children.size();

  /* If the number of children is within bounds, then there's nothing to do. */
  if( numChildren <= max ) {
    return mkExpr(kind,children);
  }

  std::vector<Expr>::const_iterator it = children.begin() ;
  std::vector<Expr>::const_iterator end = children.end() ;

  /* The new top-level children and the children of each sub node */
  std::vector<Node> newChildren;
  std::vector<Node> subChildren;

  while( it != end && numChildren > max ) {
    /* Grab the next max children and make a node for them. */
    for( std::vector<Expr>::const_iterator next = it + max;
         it != next;
         ++it, --numChildren ) {
      subChildren.push_back(it->getNode());
    }
    Node subNode = d_nodeManager->mkNode(kind,subChildren);
    newChildren.push_back(subNode);

    subChildren.clear();
  }

  /* If there's children left, "top off" the Expr. */
  if(numChildren > 0) {
    /* If the leftovers are too few, just copy them into newChildren;
     * otherwise make a new sub-node  */
    if(numChildren < min) {
      for(; it != end; ++it) {
        newChildren.push_back(it->getNode());
      }
    } else {
      for(; it != end; ++it) {
        subChildren.push_back(it->getNode());
      }
      Node subNode = d_nodeManager->mkNode(kind, subChildren);
      newChildren.push_back(subNode);
    }
  }

  /* It's inconceivable we could have enough children for this to fail
   * (more than 2^32, in most cases?). */
  AlwaysAssert( newChildren.size() <= max,
                "Too many new children in mkAssociative" );

  /* It would be really weird if this happened (it would require
   * min > 2, for one thing), but let's make sure. */
  AlwaysAssert( newChildren.size() >= min,
                "Too few new children in mkAssociative" );

  return Expr(this, d_nodeManager->mkNodePtr(kind,newChildren) );
}

unsigned ExprManager::minArity(Kind kind) {
  return metakind::getLowerBoundForKind(kind);
}

unsigned ExprManager::maxArity(Kind kind) {
  return metakind::getUpperBoundForKind(kind);
}

NodeManager* ExprManager::getNodeManager() const {
  return d_nodeManager;
}

Context* ExprManager::getContext() const {
  return d_ctxt;
}

${mkConst_implementations}

}/* CVC4 namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback