summaryrefslogtreecommitdiff
path: root/src/context/context.h
blob: 4e10347d740c9c40d37b3c0b2f4487cb2f77dbf9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
/*********************                                                        */
/** context.h
 ** Original author: mdeters
 ** Major contributors: barrett
 ** Minor contributors (to current version): taking, dejan
 ** This file is part of the CVC4 prototype.
 ** Copyright (c) 2009, 2010  The Analysis of Computer Systems Group (ACSys)
 ** Courant Institute of Mathematical Sciences
 ** New York University
 ** See the file COPYING in the top-level source directory for licensing
 ** information.
 **
 ** Context class and context manager.
 **/

#include "cvc4_private.h"

#ifndef __CVC4__CONTEXT__CONTEXT_H
#define __CVC4__CONTEXT__CONTEXT_H

#include "context/context_mm.h"
#include "util/Assert.h"

#include <cstdlib>
#include <cstring>
#include <new>

namespace CVC4 {
namespace context {

class Context;
class Scope;
class ContextObj;
class ContextNotifyObj;

/**
 * A Context encapsulates all of the dynamic state of the system.  Its main
 * methods are push() and pop().  A call to push() saves the current state,
 * and a call to pop() restores the state saved by the most recent call to
 * push().
 *
 * Objects which want to participate in this global save and restore
 * mechanism must inherit from ContextObj (see below).
 *
 * For more flexible context-dependent behavior, objects may implement the
 * ContextNotifyObj interface and simply get a notification when a pop has
 * occurred.
 *
 * Context also uses a helper class called Scope which stores information
 * specific to the portion of the Context since the last call to push() (see
 * below).
 *
 * Memory allocation in Contexts is done with the help of the
 * ContextMemoryManager.  A copy is stored in each Scope object for quick
 * access.
 */
class Context {

  /**
   * Pointer to the ContextMemoryManager for this Context.
   */
  ContextMemoryManager* d_pCMM;

  /**
   * List of all scopes for this context.
   */
  std::vector<Scope*> d_scopeList;

  /**
   * Doubly-linked list of objects to notify before every pop.  See
   * ContextNotifyObj for structure of linked list.
   */
  ContextNotifyObj* d_pCNOpre;

  /**
   * Doubly-linked list of objects to notify after every pop.  See
   * ContextNotifyObj for structure of linked list.
   */
  ContextNotifyObj* d_pCNOpost;

public:
  /**
   * Constructor: create ContextMemoryManager and initial Scope
   */
  Context();

  /**
   * Destructor: pop all scopes, delete ContextMemoryManager
   */
  ~Context() throw(AssertionException);

  /**
   * Return the current (top) scope
   */
  Scope* getTopScope() const { return d_scopeList.back(); }

  /**
   * Return the initial (bottom) scope
   */
  Scope* getBottomScope() const { return d_scopeList[0]; }

  /**
   * Return the current Scope level.
   */
  int getLevel() const { return ((int)d_scopeList.size()) - 1; }

  /**
   * Return the ContextMemoryManager associated with the context.
   */
  ContextMemoryManager* getCMM() { return d_pCMM; }

  /**
   * Save the current state, create a new Scope
   */
  void push();

  /**
   * Restore the previous state, delete the top Scope
   */
  void pop();

  /**
   * Pop all the way back to given level
   */
  void popto(int toLevel);

  /**
   * Add pCNO to the list of objects notified before every pop
   */
  void addNotifyObjPre(ContextNotifyObj* pCNO);

  /**
   * Add pCNO to the list of objects notified after every pop
   */
  void addNotifyObjPost(ContextNotifyObj* pCNO);

}; /* class Context */

  /**
   * Conceptually, a Scope encapsulates that portion of the context that
   * changes after a call to push() and must be undone on a subsequent call to
   * pop().  In particular, each call to push() creates a new Scope object .
   * This new Scope object becomes the top scope and it points (via the
   * d_pScopePrev member) to the previous top Scope.  Each call to pop()
   * deletes the current top scope and restores the previous one.  The main
   * purpose of a Scope is to maintain a linked list of ContexObj objects which
   * change while the Scope is the top scope and which must be restored when
   * the Scope is deleted.
   *
   * A Scope is also associated with a ContextMemoryManager.  All memory
   * allocated by the Scope is allocated in a single region using the
   * ContextMemoryManager and released all at once when the Scope is popped.
   */
class Scope {

  /**
   * Context that created this Scope
   */
  Context* d_pContext;

  /**
   * Memory manager for this Scope.  Same as in Context, but stored here too
   * for faster access by ContextObj objects.
   */
  ContextMemoryManager* d_pCMM;

  /**
   * Scope level (total number of outstanding push() calls when this Scope was
   * created).
   */
  int d_level;

  /**
   * Linked list of objects which changed in this scope,
   * and thus need to be restored when the scope is deleted.
   */
  ContextObj* d_pContextObjList;

public:

  /**
   * Constructor: Create a new Scope; set the level and the previous Scope
   * if any.
   */
  Scope(Context* pContext, ContextMemoryManager* pCMM, int level) :
    d_pContext(pContext),
    d_pCMM(pCMM),
    d_level(level),
    d_pContextObjList(NULL) {
  }

  /**
   * Destructor: Restore all of the objects in ContextObjList.  Defined inline
   * below.
   */
  ~Scope() throw();

  /**
   * Get the Context for this Scope
   */
  Context* getContext() const { return d_pContext; }

  /**
   * Get the ContextMemoryManager for this Scope
   */
  ContextMemoryManager* getCMM() const { return d_pCMM; }

  /**
   * Get the level of the current Scope
   */
  int getLevel(void) const { return d_level; }

  /**
   * Return true iff this Scope is the current top Scope
   */
  bool isCurrent(void) const { return this == d_pContext->getTopScope(); }

  /**
   * When a ContextObj object is modified for the first time in this Scope, it
   * should call this method to add itself to the list of objects that will
   * need to be restored.  Defined inline below.
   */
  void addToChain(ContextObj* pContextObj);

  /**
   * Overload operator new for use with ContextMemoryManager to allow creation
   * of new Scope objects in the current memory region.
   */
  static void* operator new(size_t size, ContextMemoryManager* pCMM) {
    return pCMM->newData(size);
  }

  /**
   * Overload operator delete for Scope objects allocated using
   * ContextMemoryManager.  No need to do anything because memory is freed
   * automatically when the ContextMemoryManager pop() method is called.
   * Include both placement and standard delete for completeness.
   */
  static void operator delete(void* pMem, ContextMemoryManager* pCMM) {}
  static void operator delete(void* pMem) {}

  //FIXME:  //! Check for memory leaks
  //  void check(void);

};/* class Scope */

/**
 * This is an abstract base class from which all objects that are context-dependent
 * should inherit.  For any data structure that you want to have be
 * automatically backtracked, do the following:
 * 1. Create a class for the data structure that inherits from ContextObj
 * 2. Implement save()
 *    The role of save() is to create a new ContexObj object that contains
 *    enough information to restore the object to its current state, even if
 *    it gets changed later.  Note that save should call the (default)
 *    ContextObj Copy Constructor to copy the information in the base class.
 *    It is recommended that any memory allocated by save() should be done
 *    through the ContextMemoryManager.  This way, it does not need to be
 *    explicitly freed when restore is called.  However, it is only required
 *    that the ContextObj itself be allocated using the
 *    ContextMemoryManager.  If other memory is allocated not using the
 *    ContextMemoryManager, it should be freed when restore() is called.  In
 *    fact, any clean-up work on a saved object must be done by restore().
 *    This is because the destructor is never called explicitly on saved
 *    objects.
 * 3. Implement restore()
 *    The role of restore() is, given the ContextObj returned by a previous
 *    call to save(), to restore the current object to the state it was in
 *    when save() was called.  Note that the implementation of restore does
 *    *not* need to worry about restoring the base class data.  This is done
 *    automatically.  Ideally, restore() should not have to free any memory
 *    as any memory allocated by save() should have been done using the
 *    ContextMemoryManager (see item 2 above).
 * 4. In the subclass implementation, any time the state is about to be
 *    changed, first call makeCurrent().
 */
class ContextObj {
  /**
   * Pointer to Scope in which this object was last modified.
   */
  Scope* d_pScope; 

  /**
   * Pointer to most recent version of same ContextObj in a previous Scope
   */
  ContextObj* d_pContextObjRestore;

  /**
   * Next link in ContextObjList list maintained by Scope class.
   */
  ContextObj* d_pContextObjNext;

  /**
   * Previous link in ContextObjList list maintained by Scope class.  We use
   * double-indirection here to make element deletion easy.
   */
  ContextObj** d_ppContextObjPrev;

  /**
   * Helper method for makeCurrent (see below).  Separated out to allow common
   * case to be inlined without making a function call.  It calls save() and
   * does the necessary bookkeeping to ensure that object can be restored to
   * its current state when restore is called.
   */
  void update();

  // The rest of the private methods are for the benefit of the Scope.  We make
  // Scope our friend so it is the only one that can use them.

  friend class Scope;

  /**
   * Return reference to next link in ContextObjList.  Used by
   * Scope::addToChain method.
   */
  ContextObj*& next() { return d_pContextObjNext; }

  /**
   * Return reference to prev link in ContextObjList.  Used by
   * Scope::addToChain method.
   */
  ContextObj**& prev() { return d_ppContextObjPrev; }

  /**
   * This method is called by Scope during a pop: it does the necessary work to
   * restore the object from its saved copy and then returns the next object in
   * the list that needs to be restored.
   */
  ContextObj* restoreAndContinue();

protected:

  /**
   * This is a method that must be implemented by all classes inheriting from
   * ContextObj.  See the comment before the class declaration.
   */
  virtual ContextObj* save(ContextMemoryManager* pCMM) = 0;

  /**
   * This is a method that must be implemented by all classes inheriting from
   * ContextObj.  See the comment before the class declaration.
   */
  virtual void restore(ContextObj* pContextObjRestore) = 0;

  /**
   * This method checks if the object has been modified in this Scope yet.  If
   * not, it calls update().
   */
  void makeCurrent() {
    if(!(d_pScope->isCurrent())) {
      update();
    }
  }

  /**
   * operator new using ContextMemoryManager (common case used by
   * subclasses during save() ).  No delete is required for memory
   * allocated this way, since it is automatically released when the
   * context is popped.  Also note that allocations using this
   * operator never have their destructor called, so any clean-up has
   * to be done using the restore method.
   */
  static void* operator new(size_t size, ContextMemoryManager* pCMM) {
    return pCMM->newData(size);
  }

  /**
   * Corresponding placement delete.  Note that this is provided just
   * to satisfy the requirement that a placement delete should be
   * provided for every placement new.  It would only be called if a
   * ContextObj constructor throws an exception after a successful
   * call to the above new operator.
   */
  static void operator delete(void* pMem, ContextMemoryManager* pCMM) {}

public:

  /**
   * Create a new ContextObj.  The initial scope is set to the bottom
   * scope of the Context.  Note that in the common case, the copy
   * constructor is called to create new ContextObj objects.  The
   * default copy constructor does the right thing, so we do not
   * explicitly define it.
   */
  ContextObj(Context* context);

  /**
   * Destructor: Calls restore until restored to initial version.
   * Also removes object from all Scope lists.  Note that this doesn't
   * actually free the memory allocated by the ContextMemoryManager
   * for this object.  This isn't done until the corresponding Scope
   * is popped.
   */
  virtual ~ContextObj() throw(AssertionException);

  /**
   * If you want to allocate a ContextObj object on the heap, use this
   * special new operator.  To free this memory, instead of
   * "delete p", use "p->deleteSelf()".
   */
  static void* operator new(size_t size, bool) {
    return ::operator new(size);
  }

  /**
   * Corresponding placement delete.  Note that this is provided for
   * the compiler in case the ContextObj constructor throws an
   * exception.  The client can't call it.
   */
  static void operator delete(void* pMem, bool) {
    ::operator delete(pMem);
  }

  /**
   * Use this instead of delete to delete memory allocated using the special
   * new function provided above that takes a bool argument.  Do not call this
   * function on memory allocated using the new that takes a
   * ContextMemoryManager as an argument.
   */
  void deleteSelf() {
    ::operator delete(this);
  }

  /**
   * Disable delete: objects allocated with new(ContextMemorymanager) should
   * never be deleted.  Objects allocated with new(bool) should be deleted by
   * calling deleteSelf().
   */
  static void operator delete(void* pMem) {
    AlwaysAssert(false, "It is not allowed to delete a ContextObj this way!");
  }

};/* class ContextObj */

  /**
   * For more flexible context-dependent behavior than that provided
   * by ContextObj, objects may implement the ContextNotifyObj
   * interface and simply get a notification when a pop has occurred.
   * See Context class for how to register a ContextNotifyObj with the
   * Context (you can choose to have notification come before or after
   * the ContextObj objects have been restored).
   */
class ContextNotifyObj {
  /**
   * Context is our friend so that when the Context is deleted, any
   * remaining ContextNotifyObj can be removed from the Context list.
   */
  friend class Context;

  /**
   * Pointer to next ContextNotifyObject in this List
   */
  ContextNotifyObj* d_pCNOnext;

  /**
   * Pointer to previous ContextNotifyObject in this list
   */
  ContextNotifyObj** d_ppCNOprev;

  /**
   * Return reference to next link in ContextNotifyObj list.  Used by
   * Context::addNotifyObj methods.
   */
  ContextNotifyObj*& next() { return d_pCNOnext; }

  /**
   * Return reference to prev link in ContextNotifyObj list.  Used by
   * Context::addNotifyObj methods.
   */
  ContextNotifyObj**& prev() { return d_ppCNOprev; }

public:
  /**
   * Constructor for ContextNotifyObj.  Parameters are the context to
   * which this notify object will be added, and a flag which, if
   * true, tells the context to notify this object *before* the
   * ContextObj objects are restored.  Otherwise, the context notifies
   * the object after the ContextObj objects are restored.  The
   * default is for notification after.
   */
  ContextNotifyObj(Context* pContext, bool preNotify = false);

  /**
   * Destructor: removes object from list
   */
  virtual ~ContextNotifyObj() throw(AssertionException);

  /**
   * This is the method called to notify the object of a pop.  It must be
   * implemented by the subclass.
   */
  virtual void notify() = 0;
}; /* class ContextNotifyObj */

// Inline functions whose definitions had to be delayed:

inline Scope::~Scope() throw() {
  // Call restore() method on each ContextObj object in the list.
  // Note that it is the responsibility of restore() to return the
  // next item in the list.
  while(d_pContextObjList != NULL) {
    d_pContextObjList = d_pContextObjList->restoreAndContinue();
  }
}

inline void Scope::addToChain(ContextObj* pContextObj) {
  if(d_pContextObjList != NULL)
    d_pContextObjList->prev() = &(pContextObj->next());
  pContextObj->next() = d_pContextObjList;
  pContextObj->prev() = &d_pContextObjList;
  d_pContextObjList = pContextObj;
}

}/* CVC4::context namespace */
}/* CVC4 namespace */

#endif /* __CVC4__CONTEXT__CONTEXT_H */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback