summaryrefslogtreecommitdiff
path: root/src/api/python/cvc5.pxi
blob: 258005207338da24a56c4881513aab540d3f357a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
from collections import defaultdict, Set
from fractions import Fraction
import sys

from libc.stdint cimport int32_t, int64_t, uint32_t, uint64_t
from libc.stddef cimport wchar_t

from libcpp.pair cimport pair
from libcpp.set cimport set as c_set
from libcpp.string cimport string
from libcpp.vector cimport vector

from cvc5 cimport cout
from cvc5 cimport Datatype as c_Datatype
from cvc5 cimport DatatypeConstructor as c_DatatypeConstructor
from cvc5 cimport DatatypeConstructorDecl as c_DatatypeConstructorDecl
from cvc5 cimport DatatypeDecl as c_DatatypeDecl
from cvc5 cimport DatatypeSelector as c_DatatypeSelector
from cvc5 cimport Result as c_Result
from cvc5 cimport RoundingMode as c_RoundingMode
from cvc5 cimport Op as c_Op
from cvc5 cimport Solver as c_Solver
from cvc5 cimport Grammar as c_Grammar
from cvc5 cimport Sort as c_Sort
from cvc5 cimport ROUND_NEAREST_TIES_TO_EVEN, ROUND_TOWARD_POSITIVE
from cvc5 cimport ROUND_TOWARD_NEGATIVE, ROUND_TOWARD_ZERO
from cvc5 cimport ROUND_NEAREST_TIES_TO_AWAY
from cvc5 cimport Term as c_Term
from cvc5 cimport hash as c_hash
from cvc5 cimport wstring as c_wstring
from cvc5 cimport tuple as c_tuple
from cvc5 cimport get0, get1, get2
from cvc5kinds cimport Kind as c_Kind

cdef extern from "Python.h":
    wchar_t* PyUnicode_AsWideCharString(object, Py_ssize_t *)
    object PyUnicode_FromWideChar(const wchar_t*, Py_ssize_t)
    void PyMem_Free(void*)

################################## DECORATORS #################################
def expand_list_arg(num_req_args=0):
    '''
    Creates a decorator that looks at index num_req_args of the args,
    if it's a list, it expands it before calling the function.
    '''
    def decorator(func):
        def wrapper(owner, *args):
            if len(args) == num_req_args + 1 and \
               isinstance(args[num_req_args], list):
                args = list(args[:num_req_args]) + args[num_req_args]
            return func(owner, *args)
        return wrapper
    return decorator
###############################################################################

# Style Guidelines
### Using PEP-8 spacing recommendations
### Limit linewidth to 79 characters
### Break before binary operators
### surround top level functions and classes with two spaces
### separate methods by one space
### use spaces in functions sparingly to separate logical blocks
### can omit spaces between unrelated oneliners
### always use c++ default arguments
#### only use default args of None at python level

# References and pointers
# The Solver object holds a pointer to a c_Solver.
# This is because the assignment operator is deleted in the C++ API for solvers.
# Cython has a limitation where you can't stack allocate objects
# that have constructors with arguments:
# https://groups.google.com/forum/#!topic/cython-users/fuKd-nQLpBs.
# To get around that you can either have a nullary constructor and assignment
# or, use a pointer (which is what we chose).
# An additional complication of this is that to free up resources, you must
# know when to delete the object.
# Python will not follow the same scoping rules as in C++, so it must be
# able to reference count. To do this correctly, the solver must be a
# reference in the Python class for any class that keeps a pointer to
# the solver in C++ (to ensure the solver is not deleted before something
# that depends on it).


## Objects for hashing
cdef c_hash[c_Op] cophash = c_hash[c_Op]()
cdef c_hash[c_Sort] csorthash = c_hash[c_Sort]()
cdef c_hash[c_Term] ctermhash = c_hash[c_Term]()


cdef class Datatype:
    """Wrapper class for :cpp:class:`cvc5::api::Datatype`."""
    cdef c_Datatype cd
    cdef Solver solver
    def __cinit__(self, Solver solver):
        self.solver = solver

    def __getitem__(self, index):
        """Return a constructor by index or by name."""
        cdef DatatypeConstructor dc = DatatypeConstructor(self.solver)
        if isinstance(index, int) and index >= 0:
            dc.cdc = self.cd[(<int?> index)]
        elif isinstance(index, str):
            dc.cdc = self.cd[(<const string &> index.encode())]
        else:
            raise ValueError("Expecting a non-negative integer or string")
        return dc

    def getConstructor(self, str name):
        """Return a constructor by name."""
        cdef DatatypeConstructor dc = DatatypeConstructor(self.solver)
        dc.cdc = self.cd.getConstructor(name.encode())
        return dc

    def getConstructorTerm(self, str name):
        """:return: the term representing the datatype constructor with the given name (see :cpp:func:`Datatype::getConstructorTerm() <cvc5::api::Datatype::getConstructorTerm>`)."""
        cdef Term term = Term(self.solver)
        term.cterm = self.cd.getConstructorTerm(name.encode())
        return term

    def getSelector(self, str name):
        """Return a selector by name."""
        cdef DatatypeSelector ds = DatatypeSelector(self.solver)
        ds.cds = self.cd.getSelector(name.encode())
        return ds

    def getName(self):
        return self.cd.getName().decode()

    def getNumConstructors(self):
        """:return: number of constructors."""
        return self.cd.getNumConstructors()

    def isParametric(self):
        """:return: whether this datatype is parametric."""
        return self.cd.isParametric()

    def isCodatatype(self):
        """:return: whether this datatype corresponds to a co-datatype."""
        return self.cd.isCodatatype()

    def isTuple(self):
        """:return: whether this datatype corresponds to a tuple."""
        return self.cd.isTuple()

    def isRecord(self):
        """:return: whether this datatype corresponds to a record."""
        return self.cd.isRecord()

    def isFinite(self):
        """:return: whether this datatype is finite."""
        return self.cd.isFinite()

    def isWellFounded(self):
        """:return: whether this datatype is well-founded (see :cpp:func:`Datatype::isWellFounded() <cvc5::api::Datatype::isWellFounded>`)."""
        return self.cd.isWellFounded()

    def hasNestedRecursion(self):
        """:return: whether this datatype has nested recursion (see :cpp:func:`Datatype::hasNestedRecursion() <cvc5::api::Datatype::hasNestedRecursion>`)."""
        return self.cd.hasNestedRecursion()

    def __str__(self):
        return self.cd.toString().decode()

    def __repr__(self):
        return self.cd.toString().decode()

    def __iter__(self):
        for ci in self.cd:
            dc = DatatypeConstructor(self.solver)
            dc.cdc = ci
            yield dc


cdef class DatatypeConstructor:
    cdef c_DatatypeConstructor cdc
    cdef Solver solver
    def __cinit__(self, Solver solver):
        self.cdc = c_DatatypeConstructor()
        self.solver = solver

    def __getitem__(self, index):
        cdef DatatypeSelector ds = DatatypeSelector(self.solver)
        if isinstance(index, int) and index >= 0:
            ds.cds = self.cdc[(<int?> index)]
        elif isinstance(index, str):
            ds.cds = self.cdc[(<const string &> index.encode())]
        else:
            raise ValueError("Expecting a non-negative integer or string")
        return ds

    def getName(self):
        return self.cdc.getName().decode()

    def getConstructorTerm(self):
        cdef Term term = Term(self.solver)
        term.cterm = self.cdc.getConstructorTerm()
        return term

    def getSpecializedConstructorTerm(self, Sort retSort):
        cdef Term term = Term(self.solver)
        term.cterm = self.cdc.getSpecializedConstructorTerm(retSort.csort)
        return term

    def getTesterTerm(self):
        cdef Term term = Term(self.solver)
        term.cterm = self.cdc.getTesterTerm()
        return term

    def getNumSelectors(self):
        return self.cdc.getNumSelectors()

    def getSelector(self, str name):
        cdef DatatypeSelector ds = DatatypeSelector(self.solver)
        ds.cds = self.cdc.getSelector(name.encode())
        return ds

    def getSelectorTerm(self, str name):
        cdef Term term = Term(self.solver)
        term.cterm = self.cdc.getSelectorTerm(name.encode())
        return term

    def __str__(self):
        return self.cdc.toString().decode()

    def __repr__(self):
        return self.cdc.toString().decode()

    def __iter__(self):
        for ci in self.cdc:
            ds = DatatypeSelector(self.solver)
            ds.cds = ci
            yield ds


cdef class DatatypeConstructorDecl:
    cdef c_DatatypeConstructorDecl cddc
    cdef Solver solver

    def __cinit__(self, Solver solver):
        self.solver = solver

    def addSelector(self, str name, Sort sort):
        self.cddc.addSelector(name.encode(), sort.csort)

    def addSelectorSelf(self, str name):
        self.cddc.addSelectorSelf(name.encode())

    def __str__(self):
        return self.cddc.toString().decode()

    def __repr__(self):
        return self.cddc.toString().decode()


cdef class DatatypeDecl:
    cdef c_DatatypeDecl cdd
    cdef Solver solver
    def __cinit__(self, Solver solver):
        self.solver = solver

    def addConstructor(self, DatatypeConstructorDecl ctor):
        self.cdd.addConstructor(ctor.cddc)

    def getNumConstructors(self):
        return self.cdd.getNumConstructors()

    def isParametric(self):
        return self.cdd.isParametric()

    def getName(self):
        return self.cdd.getName().decode()

    def __str__(self):
        return self.cdd.toString().decode()

    def __repr__(self):
        return self.cdd.toString().decode()


cdef class DatatypeSelector:
    cdef c_DatatypeSelector cds
    cdef Solver solver
    def __cinit__(self, Solver solver):
        self.cds = c_DatatypeSelector()
        self.solver = solver

    def getName(self):
        return self.cds.getName().decode()

    def getSelectorTerm(self):
        cdef Term term = Term(self.solver)
        term.cterm = self.cds.getSelectorTerm()
        return term

    def getUpdaterTerm(self):
        cdef Term term = Term(self.solver)
        term.cterm = self.cds.getUpdaterTerm()
        return term

    def getRangeSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.cds.getRangeSort()
        return sort

    def __str__(self):
        return self.cds.toString().decode()

    def __repr__(self):
        return self.cds.toString().decode()


cdef class Op:
    cdef c_Op cop
    cdef Solver solver
    def __cinit__(self, Solver solver):
        self.cop = c_Op()
        self.solver = solver

    def __eq__(self, Op other):
        return self.cop == other.cop

    def __ne__(self, Op other):
        return self.cop != other.cop

    def __str__(self):
        return self.cop.toString().decode()

    def __repr__(self):
        return self.cop.toString().decode()

    def __hash__(self):
        return cophash(self.cop)

    def getKind(self):
        return kind(<int> self.cop.getKind())
    
    def isIndexed(self):
        return self.cop.isIndexed()

    def isNull(self):
        return self.cop.isNull()

    def getIndices(self):
        indices = None
        try:
            indices = self.cop.getIndices[string]()
        except:
            pass

        try:
            indices = self.cop.getIndices[uint32_t]()
        except:
            pass

        try:
            indices = self.cop.getIndices[pair[uint32_t, uint32_t]]()
        except:
            pass

        if indices is None:
            raise RuntimeError("Unable to retrieve indices from {}".format(self))

        return indices

cdef class Grammar:
    cdef c_Grammar  cgrammar
    cdef Solver solver
    def __cinit__(self, Solver solver):
        self.solver = solver
        self.cgrammar = c_Grammar()

    def addRule(self, Term ntSymbol, Term rule):
        self.cgrammar.addRule(ntSymbol.cterm, rule.cterm)

    def addAnyConstant(self, Term ntSymbol):
        self.cgrammar.addAnyConstant(ntSymbol.cterm)

    def addAnyVariable(self, Term ntSymbol):
        self.cgrammar.addAnyVariable(ntSymbol.cterm)

    def addRules(self, Term ntSymbol, rules):
        cdef vector[c_Term] crules
        for r in rules:
            crules.push_back((<Term?> r).cterm)
        self.cgrammar.addRules(ntSymbol.cterm, crules)

cdef class Result:
    cdef c_Result cr
    def __cinit__(self):
        # gets populated by solver
        self.cr = c_Result()

    def isNull(self):
        return self.cr.isNull()

    def isSat(self):
        return self.cr.isSat()

    def isUnsat(self):
        return self.cr.isUnsat()

    def isSatUnknown(self):
        return self.cr.isSatUnknown()

    def isEntailed(self):
        return self.cr.isEntailed()

    def isNotEntailed(self):
        return self.cr.isNotEntailed()

    def isEntailmentUnknown(self):
        return self.cr.isEntailmentUnknown()

    def __eq__(self, Result other):
        return self.cr == other.cr

    def __ne__(self, Result other):
        return self.cr != other.cr

    def getUnknownExplanation(self):
        return self.cr.getUnknownExplanation().decode()

    def __str__(self):
        return self.cr.toString().decode()

    def __repr__(self):
        return self.cr.toString().decode()


cdef class RoundingMode:
    cdef c_RoundingMode crm
    cdef str name
    def __cinit__(self, int rm):
        # crm always assigned externally
        self.crm = <c_RoundingMode> rm
        self.name = __rounding_modes[rm]

    def __eq__(self, RoundingMode other):
        return (<int> self.crm) == (<int> other.crm)

    def __ne__(self, RoundingMode other):
        return not self.__eq__(other)

    def __hash__(self):
        return hash((<int> self.crm, self.name))

    def __str__(self):
        return self.name

    def __repr__(self):
        return self.name


cdef class Solver:
    cdef c_Solver* csolver

    def __cinit__(self):
        self.csolver = new c_Solver(NULL)

    def __dealloc__(self):
        del self.csolver

    def supportsFloatingPoint(self):
        return self.csolver.supportsFloatingPoint()

    def getBooleanSort(self):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.getBooleanSort()
        return sort

    def getIntegerSort(self):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.getIntegerSort()
        return sort

    def getRealSort(self):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.getRealSort()
        return sort

    def getRegExpSort(self):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.getRegExpSort()
        return sort

    def getRoundingModeSort(self):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.getRoundingModeSort()
        return sort

    def getStringSort(self):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.getStringSort()
        return sort

    def mkArraySort(self, Sort indexSort, Sort elemSort):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkArraySort(indexSort.csort, elemSort.csort)
        return sort

    def mkBitVectorSort(self, uint32_t size):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkBitVectorSort(size)
        return sort

    def mkFloatingPointSort(self, uint32_t exp, uint32_t sig):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkFloatingPointSort(exp, sig)
        return sort

    def mkDatatypeSort(self, DatatypeDecl dtypedecl):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkDatatypeSort(dtypedecl.cdd)
        return sort

    def mkDatatypeSorts(self, list dtypedecls, unresolvedSorts = None):
        """:return: A list of datatype sorts that correspond to dtypedecls and unresolvedSorts"""
        if unresolvedSorts == None:
            unresolvedSorts = set([])
        else:
            assert isinstance(unresolvedSorts, Set)

        sorts = []
        cdef vector[c_DatatypeDecl] decls
        for decl in dtypedecls:
            decls.push_back((<DatatypeDecl?> decl).cdd)

        cdef c_set[c_Sort] usorts
        for usort in unresolvedSorts:
            usorts.insert((<Sort?> usort).csort)

        csorts = self.csolver.mkDatatypeSorts(
            <const vector[c_DatatypeDecl]&> decls, <const c_set[c_Sort]&> usorts)
        for csort in csorts:
          sort = Sort(self)
          sort.csort = csort
          sorts.append(sort)

        return sorts

    def mkFunctionSort(self, sorts, Sort codomain):

        cdef Sort sort = Sort(self)
        # populate a vector with dereferenced c_Sorts
        cdef vector[c_Sort] v

        if isinstance(sorts, Sort):
            sort.csort = self.csolver.mkFunctionSort((<Sort?> sorts).csort,
                                                     codomain.csort)
        elif isinstance(sorts, list):
            for s in sorts:
                v.push_back((<Sort?>s).csort)

            sort.csort = self.csolver.mkFunctionSort(<const vector[c_Sort]&> v,
                                                      codomain.csort)
        return sort

    def mkParamSort(self, symbolname):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkParamSort(symbolname.encode())
        return sort

    @expand_list_arg(num_req_args=0)
    def mkPredicateSort(self, *sorts):
        '''
        Supports the following arguments:
                 Sort mkPredicateSort(List[Sort] sorts)

                 where sorts can also be comma-separated arguments of
                  type Sort
        '''
        cdef Sort sort = Sort(self)
        cdef vector[c_Sort] v
        for s in sorts:
            v.push_back((<Sort?> s).csort)
        sort.csort = self.csolver.mkPredicateSort(<const vector[c_Sort]&> v)
        return sort

    @expand_list_arg(num_req_args=0)
    def mkRecordSort(self, *fields):
        '''
        Supports the following arguments:
                Sort mkRecordSort(List[Tuple[str, Sort]] fields)

                  where fields can also be comma-separated arguments of
          type Tuple[str, Sort]
        '''
        cdef Sort sort = Sort(self)
        cdef vector[pair[string, c_Sort]] v
        cdef pair[string, c_Sort] p
        for f in fields:
            name, sortarg = f
            name = name.encode()
            p = pair[string, c_Sort](<string?> name, (<Sort?> sortarg).csort)
            v.push_back(p)
        sort.csort = self.csolver.mkRecordSort(
            <const vector[pair[string, c_Sort]] &> v)
        return sort

    def mkSetSort(self, Sort elemSort):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkSetSort(elemSort.csort)
        return sort

    def mkBagSort(self, Sort elemSort):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkBagSort(elemSort.csort)
        return sort

    def mkSequenceSort(self, Sort elemSort):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkSequenceSort(elemSort.csort)
        return sort

    def mkUninterpretedSort(self, str name):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.mkUninterpretedSort(name.encode())
        return sort

    def mkSortConstructorSort(self, str symbol, size_t arity):
        cdef Sort sort = Sort(self)
        sort.csort =self.csolver.mkSortConstructorSort(symbol.encode(), arity)
        return sort

    @expand_list_arg(num_req_args=0)
    def mkTupleSort(self, *sorts):
        '''
           Supports the following arguments:
                Sort mkTupleSort(List[Sort] sorts)

                 where sorts can also be comma-separated arguments of
                 type Sort
        '''
        cdef Sort sort = Sort(self)
        cdef vector[c_Sort] v
        for s in sorts:
            v.push_back((<Sort?> s).csort)
        sort.csort = self.csolver.mkTupleSort(v)
        return sort

    @expand_list_arg(num_req_args=1)
    def mkTerm(self, kind_or_op, *args):
        '''
            Supports the following arguments:
                    Term mkTerm(Kind kind)
                    Term mkTerm(Kind kind, Op child1, List[Term] children)
                    Term mkTerm(Kind kind, List[Term] children)

                where List[Term] can also be comma-separated arguments
        '''
        cdef Term term = Term(self)
        cdef vector[c_Term] v

        op = kind_or_op
        if isinstance(kind_or_op, kind):
            op = self.mkOp(kind_or_op)

        if len(args) == 0:
            term.cterm = self.csolver.mkTerm((<Op?> op).cop)
        else:
            for a in args:
                v.push_back((<Term?> a).cterm)
            term.cterm = self.csolver.mkTerm((<Op?> op).cop, v)
        return term

    def mkTuple(self, sorts, terms):
        cdef vector[c_Sort] csorts
        cdef vector[c_Term] cterms

        for s in sorts:
            csorts.push_back((<Sort?> s).csort)
        for s in terms:
            cterms.push_back((<Term?> s).cterm)
        cdef Term result = Term(self)
        result.cterm = self.csolver.mkTuple(csorts, cterms)
        return result


    def mkOp(self, kind k, arg0=None, arg1 = None):
        '''
        Supports the following uses:
                Op mkOp(Kind kind)
                Op mkOp(Kind kind, Kind k)
                Op mkOp(Kind kind, const string& arg)
                Op mkOp(Kind kind, uint32_t arg)
                Op mkOp(Kind kind, uint32_t arg0, uint32_t arg1)
        '''
        cdef Op op = Op(self)

        if arg0 is None:
            op.cop = self.csolver.mkOp(k.k)
        elif arg1 is None:
            if isinstance(arg0, kind):
                op.cop = self.csolver.mkOp(k.k, (<kind?> arg0).k)
            elif isinstance(arg0, str):
                op.cop = self.csolver.mkOp(k.k,
                                           <const string &>
                                           arg0.encode())
            elif isinstance(arg0, int):
                op.cop = self.csolver.mkOp(k.k, <int?> arg0)
            else:
                raise ValueError("Unsupported signature"
                                 " mkOp: {}".format(" X ".join([str(k), str(arg0)])))
        else:
            if isinstance(arg0, int) and isinstance(arg1, int):
                op.cop = self.csolver.mkOp(k.k, <int> arg0,
                                                       <int> arg1)
            else:
                raise ValueError("Unsupported signature"
                                 " mkOp: {}".format(" X ".join([k, arg0, arg1])))
        return op

    def mkTrue(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkTrue()
        return term

    def mkFalse(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkFalse()
        return term

    def mkBoolean(self, bint val):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkBoolean(val)
        return term

    def mkPi(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkPi()
        return term

    def mkInteger(self, val):
        cdef Term term = Term(self)
        if isinstance(val, str):
            term.cterm = self.csolver.mkInteger(<const string &> str(val).encode())
        else:
            assert(isinstance(val, int))
            term.cterm = self.csolver.mkInteger((<int?> val))
        return term

    def mkReal(self, val, den=None):
        '''
        Make a real number term.

        Really, makes a rational term.

        Can be used in various forms.
        * Given a string "N/D" constructs the corresponding rational.
        * Given a string "W.D" constructs the reduction of (W * P + D)/P, where
          P is the appropriate power of 10.
        * Given a float f, constructs the rational matching f's string
          representation. This means that mkReal(0.3) gives 3/10 and not the
          IEEE-754 approximation of 3/10.
        * Given a string "W" or an integer, constructs that integer.
        * Given two strings and/or integers N and D, constructs N/D.
        '''
        cdef Term term = Term(self)
        if den is None:
            term.cterm = self.csolver.mkReal(str(val).encode())
        else:
            if not isinstance(val, int) or not isinstance(den, int):
                raise ValueError("Expecting integers when"
                                 " constructing a rational"
                                 " but got: {}".format((val, den)))
            term.cterm = self.csolver.mkReal("{}/{}".format(val, den).encode())
        return term

    def mkRegexpEmpty(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkRegexpEmpty()
        return term

    def mkRegexpSigma(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkRegexpSigma()
        return term

    def mkEmptySet(self, Sort s):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkEmptySet(s.csort)
        return term


    def mkSepNil(self, Sort sort):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkSepNil(sort.csort)
        return term

    def mkString(self, str s):
        cdef Term term = Term(self)
        cdef Py_ssize_t size
        cdef wchar_t* tmp = PyUnicode_AsWideCharString(s, &size)
        term.cterm = self.csolver.mkString(c_wstring(tmp, size))
        PyMem_Free(tmp)
        return term

    def mkEmptySequence(self, Sort sort):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkEmptySequence(sort.csort)
        return term

    def mkUniverseSet(self, Sort sort):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkUniverseSet(sort.csort)
        return term

    @expand_list_arg(num_req_args=0)
    def mkBitVector(self, *args):
        '''
            Supports the following arguments:
            Term mkBitVector(int size, int val=0)
            Term mkBitVector(string val, int base = 2)
            Term mkBitVector(int size, string val, int base)
         '''
        cdef Term term = Term(self)
        if len(args) == 1:
            size_or_val = args[0]
            if isinstance(args[0], int):
                size = args[0]
                term.cterm = self.csolver.mkBitVector(<uint32_t> size)
            else:
                assert isinstance(args[0], str)
                val = args[0]
                term.cterm = self.csolver.mkBitVector(<const string&> str(val).encode())
        elif len(args) == 2:
            if isinstance(args[0], int):
                size = args[0]
                assert isinstance(args[1], int)
                val = args[1]
                term.cterm = self.csolver.mkBitVector(<uint32_t> size, <uint32_t> val)
            else:
                assert isinstance(args[0], str)
                assert isinstance(args[1], int)
                val = args[0]
                base = args[1]
                term.cterm = self.csolver.mkBitVector(<const string&> str(val).encode(), <uint32_t> base)
        elif len(args) == 3:
                assert isinstance(args[0], int)
                assert isinstance(args[1], str)
                assert isinstance(args[2], int)
                size = args[0]
                val = args[1]
                base = args[2]
                term.cterm = self.csolver.mkBitVector(<uint32_t> size, <const string&> str(val).encode(), <uint32_t> base)
        return term


    def mkBitVector(self, size_or_str, val = None):
        cdef Term term = Term(self)
        if isinstance(size_or_str, int):
            if val is None:
                term.cterm = self.csolver.mkBitVector(<uint32_t> size_or_str)
            else:
                term.cterm = self.csolver.mkBitVector(<uint32_t> size_or_str,
                                                      <const string &> str(val).encode(),
                                                      10)
        elif isinstance(size_or_str, str):
            # handle default value
            if val is None:
                term.cterm = self.csolver.mkBitVector(
                    <const string &> size_or_str.encode())
            else:
                term.cterm = self.csolver.mkBitVector(
                    <const string &> size_or_str.encode(), <uint32_t> val)
        else:
            raise ValueError("Unexpected inputs {} to"
                             " mkBitVector".format((size_or_str, val)))
        return term

    def mkConstArray(self, Sort sort, Term val):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkConstArray(sort.csort, val.cterm)
        return term

    def mkPosInf(self, int exp, int sig):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkPosInf(exp, sig)
        return term

    def mkNegInf(self, int exp, int sig):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkNegInf(exp, sig)
        return term

    def mkNaN(self, int exp, int sig):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkNaN(exp, sig)
        return term

    def mkPosZero(self, int exp, int sig):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkPosZero(exp, sig)
        return term

    def mkNegZero(self, int exp, int sig):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkNegZero(exp, sig)
        return term

    def mkRoundingMode(self, RoundingMode rm):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkRoundingMode(<c_RoundingMode> rm.crm)
        return term

    def mkUninterpretedConst(self, Sort sort, int index):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkUninterpretedConst(sort.csort, index)
        return term

    def mkAbstractValue(self, index):
        cdef Term term = Term(self)
        try:
            term.cterm = self.csolver.mkAbstractValue(str(index).encode())
        except:
            raise ValueError("mkAbstractValue expects a str representing a number"
                             " or an int, but got{}".format(index))
        return term

    def mkFloatingPoint(self, int exp, int sig, Term val):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkFloatingPoint(exp, sig, val.cterm)
        return term

    def mkConst(self, Sort sort, symbol=None):
        cdef Term term = Term(self)
        if symbol is None:
            term.cterm = self.csolver.mkConst(sort.csort)
        else:
            term.cterm = self.csolver.mkConst(sort.csort,
                                            (<str?> symbol).encode())
        return term

    def mkVar(self, Sort sort, symbol=None):
        cdef Term term = Term(self)
        if symbol is None:
            term.cterm = self.csolver.mkVar(sort.csort)
        else:
            term.cterm = self.csolver.mkVar(sort.csort,
                                            (<str?> symbol).encode())
        return term

    def mkDatatypeConstructorDecl(self, str name):
        cdef DatatypeConstructorDecl ddc = DatatypeConstructorDecl(self)
        ddc.cddc = self.csolver.mkDatatypeConstructorDecl(name.encode())
        return ddc

    def mkDatatypeDecl(self, str name, sorts_or_bool=None, isCoDatatype=None):
        cdef DatatypeDecl dd = DatatypeDecl(self)
        cdef vector[c_Sort] v

        # argument cases
        if sorts_or_bool is None and isCoDatatype is None:
            dd.cdd = self.csolver.mkDatatypeDecl(name.encode())
        elif sorts_or_bool is not None and isCoDatatype is None:
            if isinstance(sorts_or_bool, bool):
                dd.cdd = self.csolver.mkDatatypeDecl(<const string &> name.encode(),
                                                     <bint> sorts_or_bool)
            elif isinstance(sorts_or_bool, Sort):
                dd.cdd = self.csolver.mkDatatypeDecl(<const string &> name.encode(),
                                                     (<Sort> sorts_or_bool).csort)
            elif isinstance(sorts_or_bool, list):
                for s in sorts_or_bool:
                    v.push_back((<Sort?> s).csort)
                dd.cdd = self.csolver.mkDatatypeDecl(<const string &> name.encode(),
                                                     <const vector[c_Sort]&> v)
            else:
                raise ValueError("Unhandled second argument type {}"
                                 .format(type(sorts_or_bool)))
        elif sorts_or_bool is not None and isCoDatatype is not None:
            if isinstance(sorts_or_bool, Sort):
                dd.cdd = self.csolver.mkDatatypeDecl(<const string &> name.encode(),
                                                     (<Sort> sorts_or_bool).csort,
                                                     <bint> isCoDatatype)
            elif isinstance(sorts_or_bool, list):
                for s in sorts_or_bool:
                    v.push_back((<Sort?> s).csort)
                dd.cdd = self.csolver.mkDatatypeDecl(<const string &> name.encode(),
                                                     <const vector[c_Sort]&> v,
                                                     <bint> isCoDatatype)
            else:
                raise ValueError("Unhandled second argument type {}"
                                 .format(type(sorts_or_bool)))
        else:
            raise ValueError("Can't create DatatypeDecl with {}".format([type(a)
                                                                         for a in [name,
                                                                                   sorts_or_bool,
                                                                                   isCoDatatype]]))

        return dd

    def simplify(self, Term t):
        cdef Term term = Term(self)
        term.cterm = self.csolver.simplify(t.cterm)
        return term

    def assertFormula(self, Term term):
        self.csolver.assertFormula(term.cterm)

    def checkSat(self):
        cdef Result r = Result()
        r.cr = self.csolver.checkSat()
        return r

    def mkSygusGrammar(self, boundVars, ntSymbols):
        cdef Grammar grammar = Grammar(self)
        cdef vector[c_Term] bvc
        cdef vector[c_Term] ntc
        for bv in boundVars:
            bvc.push_back((<Term?> bv).cterm)
        for nt in ntSymbols:
            ntc.push_back((<Term?> nt).cterm)
        grammar.cgrammar = self.csolver.mkSygusGrammar(<const vector[c_Term]&> bvc, <const vector[c_Term]&> ntc)
        return grammar

    def mkSygusVar(self, Sort sort, str symbol=""):
        cdef Term term = Term(self)
        term.cterm = self.csolver.mkSygusVar(sort.csort, symbol.encode())
        return term

    def addSygusConstraint(self, Term t):
        self.csolver.addSygusConstraint(t.cterm)

    def addSygusInvConstraint(self, Term inv_f, Term pre_f, Term trans_f, Term post_f):
        self.csolver.addSygusInvConstraint(inv_f.cterm, pre_f.cterm, trans_f.cterm, post_f.cterm)

    def synthFun(self, str symbol, bound_vars, Sort sort, Grammar grammar=None):
        cdef Term term = Term(self)
        cdef vector[c_Term] v
        for bv in bound_vars:
            v.push_back((<Term?> bv).cterm)
        if grammar is None:
          term.cterm = self.csolver.synthFun(symbol.encode(), <const vector[c_Term]&> v, sort.csort)
        else:
          term.cterm = self.csolver.synthFun(symbol.encode(), <const vector[c_Term]&> v, sort.csort, grammar.cgrammar)
        return term

    def checkSynth(self):
        cdef Result r = Result()
        r.cr = self.csolver.checkSynth()
        return r

    def getSynthSolution(self, Term term):
        cdef Term t = Term(self)
        t.cterm = self.csolver.getSynthSolution(term.cterm)
        return t

    def getSynthSolutions(self, list terms):
        result = []
        cdef vector[c_Term] vec
        for t in terms:
            vec.push_back((<Term?> t).cterm)
        cresult = self.csolver.getSynthSolutions(vec)
        for s in cresult:
            term = Term(self)
            term.cterm = s
            result.append(term)
        return result


    def synthInv(self, symbol, bound_vars, Grammar grammar=None):
        cdef Term term = Term(self)
        cdef vector[c_Term] v
        for bv in bound_vars:
            v.push_back((<Term?> bv).cterm)
        if grammar is None:
            term.cterm = self.csolver.synthInv(symbol.encode(), <const vector[c_Term]&> v)
        else:
            term.cterm = self.csolver.synthInv(symbol.encode(), <const vector[c_Term]&> v, grammar.cgrammar)
        return term

    @expand_list_arg(num_req_args=0)
    def checkSatAssuming(self, *assumptions):
        '''
            Supports the following arguments:
                 Result checkSatAssuming(List[Term] assumptions)

                 where assumptions can also be comma-separated arguments of
                 type (boolean) Term
        '''
        cdef Result r = Result()
        # used if assumptions is a list of terms
        cdef vector[c_Term] v
        for a in assumptions:
            v.push_back((<Term?> a).cterm)
        r.cr = self.csolver.checkSatAssuming(<const vector[c_Term]&> v)
        return r

    @expand_list_arg(num_req_args=0)
    def checkEntailed(self, *assumptions):
        '''
            Supports the following arguments:
                 Result checkEntailed(List[Term] assumptions)

                 where assumptions can also be comma-separated arguments of
                 type (boolean) Term
        '''
        cdef Result r = Result()
        # used if assumptions is a list of terms
        cdef vector[c_Term] v
        for a in assumptions:
            v.push_back((<Term?> a).cterm)
        r.cr = self.csolver.checkEntailed(<const vector[c_Term]&> v)
        return r

    @expand_list_arg(num_req_args=1)
    def declareDatatype(self, str symbol, *ctors):
        '''
            Supports the following arguments:
                 Sort declareDatatype(str symbol, List[Term] ctors)

                 where ctors can also be comma-separated arguments of
                  type DatatypeConstructorDecl
        '''
        cdef Sort sort = Sort(self)
        cdef vector[c_DatatypeConstructorDecl] v

        for c in ctors:
            v.push_back((<DatatypeConstructorDecl?> c).cddc)
        sort.csort = self.csolver.declareDatatype(symbol.encode(), v)
        return sort

    def declareFun(self, str symbol, list sorts, Sort sort):
        cdef Term term = Term(self)
        cdef vector[c_Sort] v
        for s in sorts:
            v.push_back((<Sort?> s).csort)
        term.cterm = self.csolver.declareFun(symbol.encode(),
                                             <const vector[c_Sort]&> v,
                                             sort.csort)
        return term

    def declareSort(self, str symbol, int arity):
        cdef Sort sort = Sort(self)
        sort.csort = self.csolver.declareSort(symbol.encode(), arity)
        return sort

    def defineFun(self, sym_or_fun, bound_vars, sort_or_term, t=None, glbl=False):
        '''
        Supports two uses:
                Term defineFun(str symbol, List[Term] bound_vars,
                               Sort sort, Term term, bool glbl)
                Term defineFun(Term fun, List[Term] bound_vars,
                               Term term, bool glbl)
        '''
        cdef Term term = Term(self)
        cdef vector[c_Term] v
        for bv in bound_vars:
            v.push_back((<Term?> bv).cterm)

        if t is not None:
            term.cterm = self.csolver.defineFun((<str?> sym_or_fun).encode(),
                                                <const vector[c_Term] &> v,
                                                (<Sort?> sort_or_term).csort,
                                                (<Term?> t).cterm,
                                                <bint> glbl)
        else:
            term.cterm = self.csolver.defineFun((<Term?> sym_or_fun).cterm,
                                                <const vector[c_Term]&> v,
                                                (<Term?> sort_or_term).cterm,
                                                <bint> glbl)

        return term

    def defineFunRec(self, sym_or_fun, bound_vars, sort_or_term, t=None, glbl=False):
        '''
        Supports two uses:
                Term defineFunRec(str symbol, List[Term] bound_vars,
                               Sort sort, Term term, bool glbl)
                Term defineFunRec(Term fun, List[Term] bound_vars,
                               Term term, bool glbl)
        '''
        cdef Term term = Term(self)
        cdef vector[c_Term] v
        for bv in bound_vars:
            v.push_back((<Term?> bv).cterm)

        if t is not None:
            term.cterm = self.csolver.defineFunRec((<str?> sym_or_fun).encode(),
                                                <const vector[c_Term] &> v,
                                                (<Sort?> sort_or_term).csort,
                                                (<Term?> t).cterm,
                                                <bint> glbl)
        else:
            term.cterm = self.csolver.defineFunRec((<Term?> sym_or_fun).cterm,
                                                   <const vector[c_Term]&> v,
                                                   (<Term?> sort_or_term).cterm,
                                                   <bint> glbl)

        return term

    def defineFunsRec(self, funs, bound_vars, terms):
        cdef vector[c_Term] vf
        cdef vector[vector[c_Term]] vbv
        cdef vector[c_Term] vt

        for f in funs:
            vf.push_back((<Term?> f).cterm)

        cdef vector[c_Term] temp
        for v in bound_vars:
            for t in v:
                temp.push_back((<Term?> t).cterm)
            vbv.push_back(temp)
            temp.clear()

        for t in terms:
            vf.push_back((<Term?> t).cterm)

    def getAssertions(self):
        assertions = []
        for a in self.csolver.getAssertions():
            term = Term(self)
            term.cterm = a
            assertions.append(term)
        return assertions

    def getInfo(self, str flag):
        return self.csolver.getInfo(flag.encode())

    def getOption(self, str option):
        return self.csolver.getOption(option.encode())

    def getUnsatAssumptions(self):
        assumptions = []
        for a in self.csolver.getUnsatAssumptions():
            term = Term(self)
            term.cterm = a
            assumptions.append(term)
        return assumptions

    def getUnsatCore(self):
        core = []
        for a in self.csolver.getUnsatCore():
            term = Term(self)
            term.cterm = a
            core.append(term)
        return core

    def getValue(self, Term t):
        cdef Term term = Term(self)
        term.cterm = self.csolver.getValue(t.cterm)
        return term

    def getSeparationHeap(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.getSeparationHeap()
        return term

    def declareSeparationHeap(self, Sort locType, Sort dataType):
        self.csolver.declareSeparationHeap(locType.csort, dataType.csort)

    def getSeparationNilTerm(self):
        cdef Term term = Term(self)
        term.cterm = self.csolver.getSeparationNilTerm()
        return term

    def declarePool(self, str symbol, Sort sort, initValue):
        cdef Term term = Term(self)
        cdef vector[c_Term] niv
        for v in initValue:
            niv.push_back((<Term?> v).cterm)
        term.cterm = self.csolver.declarePool(symbol.encode(), sort.csort, niv)
        return term

    def pop(self, nscopes=1):
        self.csolver.pop(nscopes)

    def push(self, nscopes=1):
        self.csolver.push(nscopes)

    def resetAssertions(self):
        self.csolver.resetAssertions()

    def setInfo(self, str keyword, str value):
        self.csolver.setInfo(keyword.encode(), value.encode())

    def setLogic(self, str logic):
        self.csolver.setLogic(logic.encode())

    def setOption(self, str option, str value):
        self.csolver.setOption(option.encode(), value.encode())


cdef class Sort:
    cdef c_Sort csort
    cdef Solver solver
    def __cinit__(self, Solver solver):
        # csort always set by Solver
        self.solver = solver

    def __eq__(self, Sort other):
        return self.csort == other.csort

    def __ne__(self, Sort other):
        return self.csort != other.csort

    def __lt__(self, Sort other):
        return self.csort < other.csort

    def __gt__(self, Sort other):
        return self.csort > other.csort

    def __le__(self, Sort other):
        return self.csort <= other.csort

    def __ge__(self, Sort other):
        return self.csort >= other.csort

    def __str__(self):
        return self.csort.toString().decode()

    def __repr__(self):
        return self.csort.toString().decode()

    def __hash__(self):
        return csorthash(self.csort)

    def isBoolean(self):
        return self.csort.isBoolean()

    def isInteger(self):
        return self.csort.isInteger()

    def isReal(self):
        return self.csort.isReal()

    def isString(self):
        return self.csort.isString()

    def isRegExp(self):
        return self.csort.isRegExp()

    def isRoundingMode(self):
        return self.csort.isRoundingMode()

    def isBitVector(self):
        return self.csort.isBitVector()

    def isFloatingPoint(self):
        return self.csort.isFloatingPoint()

    def isDatatype(self):
        return self.csort.isDatatype()

    def isParametricDatatype(self):
        return self.csort.isParametricDatatype()

    def isConstructor(self):
        return self.csort.isConstructor()

    def isSelector(self):
        return self.csort.isSelector()

    def isTester(self):
        return self.csort.isTester()

    def isFunction(self):
        return self.csort.isFunction()

    def isPredicate(self):
        return self.csort.isPredicate()

    def isTuple(self):
        return self.csort.isTuple()

    def isRecord(self):
        return self.csort.isRecord()

    def isArray(self):
        return self.csort.isArray()

    def isSet(self):
        return self.csort.isSet()

    def isBag(self):
        return self.csort.isBag()
    
    def isSequence(self):
        return self.csort.isSequence()

    def isUninterpretedSort(self):
        return self.csort.isUninterpretedSort()

    def isSortConstructor(self):
        return self.csort.isSortConstructor()

    def isFirstClass(self):
        return self.csort.isFirstClass()

    def isFunctionLike(self):
        return self.csort.isFunctionLike()

    def isSubsortOf(self, Sort sort):
        return self.csort.isSubsortOf(sort.csort)

    def isComparableTo(self, Sort sort):
        return self.csort.isComparableTo(sort.csort)

    def getDatatype(self):
        cdef Datatype d = Datatype(self.solver)
        d.cd = self.csort.getDatatype()
        return d

    def instantiate(self, params):
        cdef Sort sort = Sort(self.solver)
        cdef vector[c_Sort] v
        for s in params:
            v.push_back((<Sort?> s).csort)
        sort.csort = self.csort.instantiate(v)
        return sort

    def getConstructorArity(self):
        return self.csort.getConstructorArity()

    def getConstructorDomainSorts(self):
        domain_sorts = []
        for s in self.csort.getConstructorDomainSorts():
            sort = Sort(self.solver)
            sort.csort = s
            domain_sorts.append(sort)
        return domain_sorts

    def getConstructorCodomainSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getConstructorCodomainSort()
        return sort

    def getSelectorDomainSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getSelectorDomainSort()
        return sort

    def getSelectorCodomainSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getSelectorCodomainSort()
        return sort

    def getTesterDomainSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getTesterDomainSort()
        return sort

    def getTesterCodomainSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getTesterCodomainSort()
        return sort
    
    def getFunctionArity(self):
        return self.csort.getFunctionArity()

    def getFunctionDomainSorts(self):
        domain_sorts = []
        for s in self.csort.getFunctionDomainSorts():
            sort = Sort(self.solver)
            sort.csort = s
            domain_sorts.append(sort)
        return domain_sorts

    def getFunctionCodomainSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getFunctionCodomainSort()
        return sort

    def getArrayIndexSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getArrayIndexSort()
        return sort

    def getArrayElementSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getArrayElementSort()
        return sort

    def getSetElementSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getSetElementSort()
        return sort

    def getBagElementSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getBagElementSort()
        return sort

    def getSequenceElementSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.csort.getSequenceElementSort()
        return sort

    def getUninterpretedSortName(self):
        return self.csort.getUninterpretedSortName().decode()

    def isUninterpretedSortParameterized(self):
        return self.csort.isUninterpretedSortParameterized()

    def getUninterpretedSortParamSorts(self):
        param_sorts = []
        for s in self.csort.getUninterpretedSortParamSorts():
            sort = Sort(self.solver)
            sort.csort = s
            param_sorts.append(sort)
        return param_sorts

    def getSortConstructorName(self):
        return self.csort.getSortConstructorName().decode()

    def getSortConstructorArity(self):
        return self.csort.getSortConstructorArity()

    def getBVSize(self):
        return self.csort.getBVSize()

    def getFPExponentSize(self):
        return self.csort.getFPExponentSize()

    def getFPSignificandSize(self):
        return self.csort.getFPSignificandSize()

    def getDatatypeParamSorts(self):
        param_sorts = []
        for s in self.csort.getDatatypeParamSorts():
            sort = Sort(self.solver)
            sort.csort = s
            param_sorts.append(sort)
        return param_sorts

    def getDatatypeArity(self):
        return self.csort.getDatatypeArity()

    def getTupleLength(self):
        return self.csort.getTupleLength()

    def getTupleSorts(self):
        tuple_sorts = []
        for s in self.csort.getTupleSorts():
            sort = Sort(self.solver)
            sort.csort = s
            tuple_sorts.append(sort)
        return tuple_sorts


cdef class Term:
    cdef c_Term cterm
    cdef Solver solver
    def __cinit__(self, Solver solver):
        # cterm always set in the Solver object
        self.solver = solver

    def __eq__(self, Term other):
        return self.cterm == other.cterm

    def __ne__(self, Term other):
        return self.cterm != other.cterm

    def __lt__(self, Term other):
        return self.cterm < other.cterm

    def __gt__(self, Term other):
        return self.cterm > other.cterm

    def __le__(self, Term other):
        return self.cterm <= other.cterm

    def __ge__(self, Term other):
        return self.cterm >= other.cterm

    def __getitem__(self, int index):
        cdef Term term = Term(self.solver)
        if index >= 0:
            term.cterm = self.cterm[index]
        else:
            raise ValueError("Expecting a non-negative integer or string")
        return term

    def __str__(self):
        return self.cterm.toString().decode()

    def __repr__(self):
        return self.cterm.toString().decode()

    def __iter__(self):
        for ci in self.cterm:
            term = Term(self.solver)
            term.cterm = ci
            yield term

    def __hash__(self):
        return ctermhash(self.cterm)

    def getNumChildren(self):
        return self.cterm.getNumChildren()

    def getId(self):
        return self.cterm.getId()

    def getKind(self):
        return kind(<int> self.cterm.getKind())

    def getSort(self):
        cdef Sort sort = Sort(self.solver)
        sort.csort = self.cterm.getSort()
        return sort

    def substitute(self, term_or_list_1, term_or_list_2):
        # The resulting term after substitution
        cdef Term term = Term(self.solver)
        # lists for substitutions
        cdef vector[c_Term] ces
        cdef vector[c_Term] creplacements
        
        # normalize the input parameters to be lists
        if isinstance(term_or_list_1, list):
            assert isinstance(term_or_list_2, list)
            es = term_or_list_1
            replacements = term_or_list_2
            if len(es) != len(replacements):
                raise RuntimeError("Expecting list inputs to substitute to "
                                   "have the same length but got: "
                                   "{} and {}".format(len(es), len(replacements)))

            for e, r in zip(es, replacements):
                ces.push_back((<Term?> e).cterm)
                creplacements.push_back((<Term?> r).cterm)

        else:
            # add the single elements to the vectors
            ces.push_back((<Term?> term_or_list_1).cterm)
            creplacements.push_back((<Term?> term_or_list_2).cterm)
        
        # call the API substitute method with lists
        term.cterm = self.cterm.substitute(ces, creplacements)
        return term

    def hasOp(self):
        return self.cterm.hasOp()

    def getOp(self):
        cdef Op op = Op(self.solver)
        op.cop = self.cterm.getOp()
        return op

    def isNull(self):
        return self.cterm.isNull()

    def notTerm(self):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.notTerm()
        return term

    def andTerm(self, Term t):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.andTerm((<Term> t).cterm)
        return term

    def orTerm(self, Term t):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.orTerm(t.cterm)
        return term

    def xorTerm(self, Term t):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.xorTerm(t.cterm)
        return term

    def eqTerm(self, Term t):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.eqTerm(t.cterm)
        return term

    def impTerm(self, Term t):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.impTerm(t.cterm)
        return term

    def iteTerm(self, Term then_t, Term else_t):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.iteTerm(then_t.cterm, else_t.cterm)
        return term

    def isConstArray(self):
        return self.cterm.isConstArray()

    def getConstArrayBase(self):
        cdef Term term = Term(self.solver)
        term.cterm = self.cterm.getConstArrayBase()
        return term

    def isBooleanValue(self):
        return self.cterm.isBooleanValue()

    def getBooleanValue(self):
        return self.cterm.getBooleanValue()

    def isStringValue(self):
        return self.cterm.isStringValue()

    def getStringValue(self):
        cdef Py_ssize_t size
        cdef c_wstring s = self.cterm.getStringValue()
        return PyUnicode_FromWideChar(s.data(), s.size())

    def isIntegerValue(self):
        return self.cterm.isIntegerValue()
    def isAbstractValue(self):
        return self.cterm.isAbstractValue()

    def getAbstractValue(self):
        return self.cterm.getAbstractValue().decode()

    def isFloatingPointPosZero(self):
        return self.cterm.isFloatingPointPosZero()
    
    def isFloatingPointNegZero(self):
        return self.cterm.isFloatingPointNegZero()
    
    def isFloatingPointPosInf(self):
        return self.cterm.isFloatingPointPosInf()
    
    def isFloatingPointNegInf(self):
        return self.cterm.isFloatingPointNegInf()
    
    def isFloatingPointNaN(self):
        return self.cterm.isFloatingPointNaN()
    
    def isFloatingPointValue(self):
        return self.cterm.isFloatingPointValue()

    def getFloatingPointValue(self):
        cdef c_tuple[uint32_t, uint32_t, c_Term] t = self.cterm.getFloatingPointValue()
        cdef Term term = Term(self.solver)
        term.cterm = get2(t)
        return (get0(t), get1(t), term)

    def isSetValue(self):
        return self.cterm.isSetValue()

    def getSetValue(self):
        elems = set()
        for e in self.cterm.getSetValue():
            term = Term(self.solver)
            term.cterm = e
            elems.add(term)
        return elems

    def isSequenceValue(self):
        return self.cterm.isSequenceValue()

    def getSequenceValue(self):
        elems = []
        for e in self.cterm.getSequenceValue():
            term = Term(self.solver)
            term.cterm = e
            elems.append(term)
        return elems

    def isUninterpretedValue(self):
        return self.cterm.isUninterpretedValue()
 
    def getUninterpretedValue(self):
        cdef pair[c_Sort, int32_t] p = self.cterm.getUninterpretedValue()
        cdef Sort sort = Sort(self.solver)
        sort.csort = p.first
        i = p.second
        return (sort, i)

    def isTupleValue(self):
        return self.cterm.isTupleValue()

    def getTupleValue(self):
        elems = []
        for e in self.cterm.getTupleValue():
            term = Term(self.solver)
            term.cterm = e
            elems.append(term)
        return elems

    def getIntegerValue(self):
        return int(self.cterm.getIntegerValue().decode())

    def isRealValue(self):
        return self.cterm.isRealValue()

    def getRealValue(self):
        '''Returns the value of a real term as a Fraction'''
        return Fraction(self.cterm.getRealValue().decode())

    def isBitVectorValue(self):
        return self.cterm.isBitVectorValue()

    def getBitVectorValue(self, base = 2):
        '''Returns the value of a bit-vector term as a 0/1 string'''
        return self.cterm.getBitVectorValue(base).decode()

    def toPythonObj(self):
        '''
        Converts a constant value Term to a Python object.

        Currently supports:
          Boolean -- returns a Python bool
          Int     -- returns a Python int
          Real    -- returns a Python Fraction
          BV      -- returns a Python int (treats BV as unsigned)
          String  -- returns a Python Unicode string
          Array   -- returns a Python dict mapping indices to values
                  -- the constant base is returned as the default value
        '''

        if self.isBooleanValue():
            return self.getBooleanValue()
        elif self.isIntegerValue():
            return self.getIntegerValue()
        elif self.isRealValue():
            return self.getRealValue()
        elif self.isBitVectorValue():
            return int(self.getBitVectorValue(), 2)
        elif self.isStringValue():
            return self.getStringValue()
        elif self.getSort().isArray():
            res = None
            keys = []
            values = []
            base_value = None
            to_visit = [self]
            # Array models are represented as a series of store operations
            # on a constant array
            while to_visit:
                t = to_visit.pop()
                if t.getKind() == kinds.Store:
                    # save the mappings
                    keys.append(t[1].toPythonObj())
                    values.append(t[2].toPythonObj())
                    to_visit.append(t[0])
                else:
                    assert t.getKind() == kinds.ConstArray
                    base_value = t.getConstArrayBase().toPythonObj()

            assert len(keys) == len(values)
            assert base_value is not None

            # put everything in a dictionary with the constant
            # base as the result for any index not included in the stores
            res = defaultdict(lambda : base_value)
            for k, v in zip(keys, values):
                res[k] = v

            return res


# Generate rounding modes
cdef __rounding_modes = {
    <int> ROUND_NEAREST_TIES_TO_EVEN: "RoundNearestTiesToEven",
    <int> ROUND_TOWARD_POSITIVE: "RoundTowardPositive",
    <int> ROUND_TOWARD_NEGATIVE: "RoundTowardNegative",
    <int> ROUND_TOWARD_ZERO: "RoundTowardZero",
    <int> ROUND_NEAREST_TIES_TO_AWAY: "RoundNearestTiesToAway"
}

mod_ref = sys.modules[__name__]
for rm_int, name in __rounding_modes.items():
    r = RoundingMode(rm_int)

    if name in dir(mod_ref):
        raise RuntimeError("Redefinition of Python RoundingMode %s."%name)

    setattr(mod_ref, name, r)

del r
del rm_int
del name
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback