summaryrefslogtreecommitdiff
path: root/proofs/signatures/th_lra.plf
blob: 76e5127c2d5099e1441bed3f8945b33b1cb0ed5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
; Depends on th_real.plf, smt.plf, sat.plf

; LRA proofs have the following interface:
;    * Given predicates between real terms
;    * Prove bottom
;
; However, even though the type of the interface does not express this,
; the predicates are **linear bounds**, not arbitrary real bounds. Thus
; LRA proofs have the following structure:
;
;    1. Prove that the input predicates are equivalent to a set of linear
;       bounds.
;    2. Use the linear bounds to prove bottom using farkas coefficients.
;
; Notice that the distinction between linear bounds (associated in the signature
; with the string "poly") and real predicates (which relate "term Real"s to one
; another) matters quite a bit. We have certain kinds of axioms for one, and
; other axioms for the other.

(program mpq_ifpos ((x mpq)) bool
  (mp_ifneg x ff (mp_ifzero x ff tt)))

; a real variable
(declare var_real type)
; a real variable term
(declare a_var_real (! v var_real (term Real)))

;; linear polynomials in the form a_1*x_1 + a_2*x_2 .... + a_n*x_n

(declare lmon type)
(declare lmonn lmon)
(declare lmonc (! c mpq (! v var_real (! l lmon lmon))))

(program lmon_neg ((l lmon)) lmon
  (match l
    (lmonn l)
    ((lmonc c' v' l') (lmonc (mp_neg c') v' (lmon_neg l')))))

(program lmon_add ((l1 lmon) (l2 lmon)) lmon
  (match l1
    (lmonn l2)
    ((lmonc c' v' l')
      (match l2
        (lmonn l1)
        ((lmonc c'' v'' l'')
          (compare v' v''
            (lmonc c' v' (lmon_add l' l2))
            (lmonc c'' v'' (lmon_add l1 l''))))))))

(program lmon_mul_c ((l lmon) (c mpq)) lmon
  (match l
    (lmonn l)
    ((lmonc c' v' l') (lmonc (mp_mul c c') v' (lmon_mul_c l' c)))))

;; linear polynomials in the form (a_1*x_1 + a_2*x_2 .... + a_n*x_n) + c

(declare poly type)
(declare polyc (! c mpq (! l lmon poly)))

(program poly_neg ((p poly)) poly
  (match p
    ((polyc m' p') (polyc (mp_neg m') (lmon_neg p')))))

(program poly_add ((p1 poly) (p2 poly)) poly
  (match p1
    ((polyc c1 l1)
      (match p2
        ((polyc c2 l2) (polyc (mp_add c1 c2) (lmon_add l1 l2)))))))

(program poly_sub ((p1 poly) (p2 poly)) poly
  (poly_add p1 (poly_neg p2)))

(program poly_mul_c ((p poly) (c mpq)) poly
  (match p
    ((polyc c' l') (polyc (mp_mul c' c) (lmon_mul_c l' c)))))

;; code to isolate a variable from a term
;; if (isolate v l) returns (c,l'), this means l = c*v + l', where v is not in FV(t').

(declare isol type)
(declare isolc (! r mpq (! l lmon isol)))

(program isolate_h ((v var_real) (l lmon) (e bool)) isol
  (match l
    (lmonn (isolc 0/1 l))
    ((lmonc c' v' l')
      (ifmarked v'
        (match (isolate_h v l' tt)
          ((isolc ci li) (isolc (mp_add c' ci) li)))
        (match e
          (tt (isolc 0/1 l))
          (ff (match (isolate_h v l' ff)
                ((isolc ci li) (isolc ci (lmonc c' v' li))))))))))

(program isolate ((v var_real) (l lmon)) isol
  (do (markvar v)
  (let i (isolate_h v l ff)
  (do (markvar v) i))))

;; determine if a monomial list is constant

(program is_lmon_zero ((l lmon)) bool
  (match l
    (lmonn tt)
    ((lmonc c v l')
      (match (isolate v l)
        ((isolc ci li)
          (mp_ifzero ci (is_lmon_zero li) ff))))))

;; return the constant that p is equal to.  If p is not constant, fail.

(program is_poly_const ((p poly)) mpq
  (match p
    ((polyc c' l')
      (match (is_lmon_zero l')
        (tt c')
        (ff (fail mpq))))))

;; conversion to use polynomials in term formulas


(declare >=0_poly (! x poly formula))
(declare =0_poly (! x poly formula))
(declare >0_poly (! x poly formula))
(declare distinct0_poly (! x poly formula))

;; create new equality out of inequality

(declare lra_>=_>=_to_=
  (! p1 poly
  (! p2 poly
  (! f1 (th_holds (>=0_poly p1))
  (! f2 (th_holds (>=0_poly p2))
  (! i2 (^ (mp_ifzero (is_poly_const (poly_add p1 p2)) tt ff) tt)
    (th_holds (=0_poly p2))))))))

;; axioms

(declare lra_axiom_=
   (th_holds (=0_poly (polyc 0/1 lmonn))))

(declare lra_axiom_>
  (! c mpq
  (! i (^ (mpq_ifpos c) tt)
    (th_holds (>0_poly (polyc c lmonn))))))

(declare lra_axiom_>=
  (! c mpq
  (! i (^ (mp_ifneg c tt ff) ff)
    (th_holds (>=0_poly (polyc c lmonn))))))

(declare lra_axiom_distinct
  (! c mpq
  (! i (^ (mp_ifzero c tt ff) ff)
    (th_holds (distinct0_poly (polyc c lmonn))))))

;; contradiction rules

(declare lra_contra_=
  (! p poly
  (! f (th_holds (=0_poly p))
  (! i (^ (mp_ifzero (is_poly_const p) tt ff) ff)
    (holds cln)))))

(declare lra_contra_>
  (! p poly
  (! f (th_holds (>0_poly p))
  (! i2 (^ (mpq_ifpos (is_poly_const p)) ff)
    (holds cln)))))

(declare lra_contra_>=
  (! p poly
  (! f (th_holds (>=0_poly p))
  (! i2 (^ (mp_ifneg (is_poly_const p) tt ff) tt)
    (holds cln)))))

(declare lra_contra_distinct
  (! p poly
  (! f (th_holds (distinct0_poly p))
  (! i2 (^ (mp_ifzero (is_poly_const p) tt ff) tt)
    (holds cln)))))

;; muliplication by a constant

(declare lra_mul_c_=
  (! p poly
  (! p' poly
  (! c mpq
  (! f (th_holds (=0_poly p))
  (! i (^ (poly_mul_c p c) p')
    (th_holds (=0_poly p'))))))))

(declare lra_mul_c_>
  (! p poly
  (! p' poly
  (! c mpq
  (! f (th_holds (>0_poly p))
  (! i (^ (mp_ifneg c (fail poly) (mp_ifzero c (fail poly) (poly_mul_c p c))) p')
    (th_holds (>0_poly p'))))))));

(declare lra_mul_c_>=
  (! p poly
  (! p' poly
  (! c mpq
  (! f (th_holds (>=0_poly p))
  (! i (^ (mp_ifneg c (fail poly) (poly_mul_c p c)) p')
    (th_holds (>=0_poly p'))))))))

(declare lra_mul_c_distinct
  (! p poly
  (! p' poly
  (! c mpq
  (! f (th_holds (distinct0_poly p))
  (! i (^ (mp_ifzero c (fail poly) (poly_mul_c p c)) p')
    (th_holds (distinct0_poly p'))))))))

;; adding equations

(declare lra_add_=_=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (=0_poly p1))
  (! f2 (th_holds (=0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (=0_poly p3)))))))))

(declare lra_add_>_>
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (>0_poly p1))
  (! f2 (th_holds (>0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (>0_poly p3)))))))))

(declare lra_add_>=_>=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (>=0_poly p1))
  (! f2 (th_holds (>=0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (>=0_poly p3)))))))))

(declare lra_add_=_>
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (=0_poly p1))
  (! f2 (th_holds (>0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (>0_poly p3)))))))))

(declare lra_add_=_>=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (=0_poly p1))
  (! f2 (th_holds (>=0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (>=0_poly p3)))))))))

(declare lra_add_>_>=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (>0_poly p1))
  (! f2 (th_holds (>=0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (>0_poly p3)))))))))

(declare lra_add_>=_>
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (>=0_poly p1))
  (! f2 (th_holds (>0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (>0_poly p3)))))))))

(declare lra_add_=_distinct
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (=0_poly p1))
  (! f2 (th_holds (distinct0_poly p2))
  (! i (^ (poly_add p1 p2) p3)
    (th_holds (distinct0_poly p3)))))))))

;; substracting equations

(declare lra_sub_=_=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (=0_poly p1))
  (! f2 (th_holds (=0_poly p2))
  (! i (^ (poly_sub p1 p2) p3)
    (th_holds (=0_poly p3)))))))))

(declare lra_sub_>_=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (>0_poly p1))
  (! f2 (th_holds (=0_poly p2))
  (! i (^ (poly_sub p1 p2) p3)
    (th_holds (>0_poly p3)))))))))

(declare lra_sub_>=_=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (>=0_poly p1))
  (! f2 (th_holds (=0_poly p2))
  (! i (^ (poly_sub p1 p2) p3)
    (th_holds (>=0_poly p3)))))))))

(declare lra_sub_distinct_=
  (! p1 poly
  (! p2 poly
  (! p3 poly
  (! f1 (th_holds (distinct0_poly p1))
  (! f2 (th_holds (=0_poly p2))
  (! i (^ (poly_sub p1 p2) p3)
    (th_holds (distinct0_poly p3)))))))))

 ;; converting between terms and polynomials

(declare poly_norm (! t (term Real) (! p poly type)))

(declare pn_let
  (! t (term Real)
  (! p poly
  (! pn (poly_norm t p)

  (! u (! pnt (poly_norm t p)
         (holds cln))
    (holds cln))))))

(declare pn_const
  (! x mpq
    (poly_norm (a_real x) (polyc x lmonn))))

(declare pn_var
  (! v var_real
    (poly_norm (a_var_real v) (polyc 0/1 (lmonc 1/1 v lmonn)))))


(declare pn_+
  (! x (term Real)
  (! px poly
  (! y (term Real)
  (! py poly
  (! pz poly
  (! pnx (poly_norm x px)
  (! pny (poly_norm y py)
  (! a (^ (poly_add px py) pz)
    (poly_norm (+_Real x y) pz))))))))))

(declare pn_-
  (! x (term Real)
  (! px poly
  (! y (term Real)
  (! py poly
  (! pz poly
  (! pnx (poly_norm x px)
  (! pny (poly_norm y py)
  (! a (^ (poly_sub px py) pz)
    (poly_norm (-_Real x y) pz))))))))))

(declare pn_mul_c_L
  (! y (term Real)
  (! py poly
  (! pz poly
  (! x mpq
  (! pny (poly_norm y py)
  (! a (^ (poly_mul_c py x) pz)
    (poly_norm (*_Real (a_real x) y) pz))))))))

(declare pn_mul_c_R
  (! y (term Real)
  (! py poly
  (! pz poly
  (! x mpq
  (! pny (poly_norm y py)
  (! a (^ (poly_mul_c py x) pz)
    (poly_norm (*_Real y (a_real x)) pz))))))))

(declare poly_flip_not_>=
  (! p poly
  (! p_negged poly
  (! pf_formula (th_holds (not (>=0_poly p)))
  (! sc (^ (poly_neg p) p_negged)
     (th_holds (>0_poly p_negged)))))))


;; for polynomializing other terms, in particular ite's

(declare term_atom (! v var_real (! t (term Real) type)))

(declare decl_term_atom
  (! t (term Real)
  (! u (! v var_real
       (! a (term_atom v t)
         (holds cln)))
    (holds cln))))

(declare pn_var_atom
  (! v var_real
  (! t (term Real)
  (! a (term_atom v t)
    (poly_norm t (polyc 0/1 (lmonc 1/1 v lmonn)))))))


;; conversion between term formulas and polynomial formulas

(declare poly_formula_norm (! ft formula (! fp formula type)))

; convert between term formulas and polynomial formulas

(declare poly_form
  (! ft formula
  (! fp formula
  (! p (poly_formula_norm ft fp)
  (! u (th_holds ft)
    (th_holds fp))))))

(declare poly_form_not
  (! ft formula
  (! fp formula
  (! p (poly_formula_norm ft fp)
  (! u (th_holds (not ft))
    (th_holds (not fp)))))))

(declare poly_formula_norm_>=
  (! x (term Real)
  (! y (term Real)
  (! p poly
  (! n (poly_norm (-_Real y x) p)
     (poly_formula_norm (>=_Real y x) (>=0_poly p)))))))

generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback