summaryrefslogtreecommitdiff
path: root/docs/api/python/regular/quickstart.rst
blob: 783bcfd1f5e3663129aa50281aba1d404db921a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
Quickstart Guide
================

First, create a cvc5 solver instance:

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 22

We will ask the solver to produce models and unsat cores in the following,
and for this we have to enable the following options.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 26-27

Next we set the logic.
The simplest way to set a logic for the solver is to choose ``"ALL"``.
This enables all logics in the solver.
Alternatively, ``"QF_ALL"`` enables all logics without quantifiers.
To optimize the solver's behavior for a more specific logic,
use the logic name, e.g. ``"QF_BV"`` or ``"QF_AUFBV"``.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 36

In the following, we will define constraints of reals and integers.
For this, we first query the solver for the corresponding sorts.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 40-41

Now, we create two constants ``x`` and ``y`` of sort ``Real``,
and two constants ``a`` and ``b`` of sort ``Integer``.
Notice that these are *symbolic* constants, but not actual values.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 46-49

We define the following constraints regarding ``x`` and ``y``:

.. math::

  (0 < x) \wedge (0 < y) \wedge (x + y < 1) \wedge (x \leq y)

We construct the required terms and assert them as follows:

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 59-81

Now we check if the asserted formula is satisfiable, that is, we check if
there exist values of sort ``Real`` for ``x`` and ``y`` that satisfy all
the constraints.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 85

The result we get from this satisfiability check is either ``sat``, ``unsat``
or ``unknown``.
It's status can be queried via `isSat`, `isUnsat` and `isSatUnknown` functions.
Alternatively, it can also be printed.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 89-90

This will print:

.. code:: text

  expected: sat
  result: sat

Now, we query the solver for the values for ``x`` and ``y`` that satisfy
the constraints.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 93-94

It is also possible to get values for terms that do not appear in the original
formula.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 98-99

We can retrieve the Python representation of these values as follows.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 102-108

This will print the following:

.. code:: text

  value for x: 1/6
  value for y: 1/6
  value for x - y: 0

Another way to independently compute the value of ``x - y`` would be to
use the Python minus operator instead of asking the solver.
However, for more complex terms, it is easier to let the solver do the
evaluation.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 114-118

This will print:

.. code:: text

  computed correctly

Next, we will check satisfiability of the same formula,
only this time over integer variables ``a`` and ``b``.
For this, we first reset the assertions added to the solver.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 130

Next, we assert the same assertions as above, but with integers.
This time, we inline the construction of terms
to the assertion command.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 135-139

Now, we check whether the revised assertion is satisfiable.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 142, 145-146

This time the asserted formula is unsatisfiable:

.. code:: text

  expected: unsat
  result: unsat

We can query the solver for an unsatisfiable core, that is, a subset
of the assertions that is already unsatisfiable.

.. literalinclude:: ../../../../examples/api/python/quickstart.py
     :language: python
     :lines: 150-152

This will print:

.. code:: text

  unsat core size: 3
  unsat core: [(< 0 a), (< 0 b), (< (+ a b) 1)]

Example
-------

| The SMT-LIB input for this example can be found at `examples/api/smtlib/quickstart.smt2 <https://github.com/cvc5/cvc5/blob/master/examples/api/smtlib/quickstart.smt2>`_.
| The source code for this example can be found at `examples/api/python/quickstart.py <https://github.com/cvc5/cvc5/blob/master/examples/api/python/quickstart.cpp>`_.

.. api-examples::
    <examples>/api/cpp/quickstart.cpp
    <examples>/api/java/QuickStart.java
    <examples>/api/python/quickstart.py
    <examples>/api/smtlib/quickstart.smt2
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback