/****************************************************************************** * Top contributors (to current version): * Gereon Kremer * * This file is part of the cvc5 project. * * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS * in the top-level source directory and their institutional affiliations. * All rights reserved. See the file COPYING in the top-level source * directory for licensing information. * **************************************************************************** * * Utilities for working with LibPoly. */ #include "poly_util.h" #ifdef CVC5_POLY_IMP #include #include #include #include "base/check.h" #include "maybe.h" #include "util/integer.h" #include "util/rational.h" #include "util/real_algebraic_number.h" namespace cvc5 { namespace poly_utils { namespace { /** * Convert arbitrary data using a string as intermediary. * Assumes the existence of operator<<(std::ostream&, const From&) and To(const * std::string&); should be the last resort for type conversions: it may not * only yield bad performance, but is also dependent on compatible string * representations. Use with care! */ template To cast_by_string(const From& f) { std::stringstream s; s << f; return To(s.str()); } } // namespace Integer toInteger(const poly::Integer& i) { const mpz_class& gi = *poly::detail::cast_to_gmp(&i); #ifdef CVC5_GMP_IMP return Integer(gi); #endif #ifdef CVC5_CLN_IMP if (std::numeric_limits::min() <= gi && gi <= std::numeric_limits::max()) { return Integer(gi.get_si()); } else { return cast_by_string(i); } #endif } Rational toRational(const poly::Integer& i) { return Rational(toInteger(i)); } Rational toRational(const poly::Rational& r) { #ifdef CVC5_GMP_IMP return Rational(*poly::detail::cast_to_gmp(&r)); #endif #ifdef CVC5_CLN_IMP return Rational(toInteger(numerator(r)), toInteger(denominator(r))); #endif } Rational toRational(const poly::DyadicRational& dr) { return Rational(toInteger(numerator(dr)), toInteger(denominator(dr))); } Rational toRationalAbove(const poly::Value& v) { if (is_algebraic_number(v)) { return toRational(get_upper_bound(as_algebraic_number(v))); } else if (is_dyadic_rational(v)) { return toRational(as_dyadic_rational(v)); } else if (is_integer(v)) { return toRational(as_integer(v)); } else if (is_rational(v)) { return toRational(as_rational(v)); } Assert(false) << "Can not convert " << v << " to rational."; return Rational(); } Rational toRationalBelow(const poly::Value& v) { if (is_algebraic_number(v)) { return toRational(get_lower_bound(as_algebraic_number(v))); } else if (is_dyadic_rational(v)) { return toRational(as_dyadic_rational(v)); } else if (is_integer(v)) { return toRational(as_integer(v)); } else if (is_rational(v)) { return toRational(as_rational(v)); } Assert(false) << "Can not convert " << v << " to rational."; return Rational(); } poly::Integer toInteger(const Integer& i) { #ifdef CVC5_GMP_IMP return poly::Integer(i.getValue()); #endif #ifdef CVC5_CLN_IMP if (std::numeric_limits::min() <= i.getValue() && i.getValue() <= std::numeric_limits::max()) { return poly::Integer(cln::cl_I_to_long(i.getValue())); } else { return poly::Integer(cast_by_string(i)); } #endif } std::vector toInteger(const std::vector& vi) { std::vector res; for (const auto& i : vi) res.emplace_back(toInteger(i)); return res; } poly::Rational toRational(const Rational& r) { #ifdef CVC5_GMP_IMP return poly::Rational(r.getValue()); #endif #ifdef CVC5_CLN_IMP return poly::Rational(toInteger(r.getNumerator()), toInteger(r.getDenominator())); #endif } Maybe toDyadicRational(const Rational& r) { Integer den = r.getDenominator(); if (den.isOne()) { // It's an integer anyway. return poly::DyadicRational(toInteger(r.getNumerator())); } unsigned long exp = den.isPow2(); if (exp > 0) { // It's a dyadic rational. return div_2exp(poly::DyadicRational(toInteger(r.getNumerator())), exp - 1); } return Maybe(); } Maybe toDyadicRational(const poly::Rational& r) { poly::Integer den = denominator(r); if (den == poly::Integer(1)) { // It's an integer anyway. return poly::DyadicRational(numerator(r)); } // Use bit_size as an estimate for the dyadic exponent. unsigned long size = bit_size(den) - 1; if (mul_pow2(poly::Integer(1), size) == den) { // It's a dyadic rational. return div_2exp(poly::DyadicRational(numerator(r)), size); } return Maybe(); } poly::Rational approximateToDyadic(const poly::Rational& r, const poly::Rational& original) { // Multiply both numerator and denominator by two. // Increase or decrease the numerator, depending on whether r is too small or // too large. poly::Integer n = mul_pow2(numerator(r), 1); if (r < original) { ++n; } else if (r > original) { --n; } return poly::Rational(n, mul_pow2(denominator(r), 1)); } poly::AlgebraicNumber toPolyRanWithRefinement(poly::UPolynomial&& p, const Rational& lower, const Rational& upper) { Maybe ml = toDyadicRational(lower); Maybe mu = toDyadicRational(upper); if (ml && mu) { return poly::AlgebraicNumber(std::move(p), poly::DyadicInterval(ml.value(), mu.value())); } // The encoded real algebraic number did not have dyadic rational endpoints. poly::Rational origl = toRational(lower); poly::Rational origu = toRational(upper); poly::Rational l(floor(origl)); poly::Rational u(ceil(origu)); poly::RationalInterval ri(l, u); while (count_real_roots(p, ri) != 1) { l = approximateToDyadic(l, origl); u = approximateToDyadic(u, origu); ri = poly::RationalInterval(l, u); } Assert(count_real_roots(p, poly::RationalInterval(l, u)) == 1); ml = toDyadicRational(l); mu = toDyadicRational(u); Assert(ml && mu) << "Both bounds should be dyadic by now."; return poly::AlgebraicNumber(std::move(p), poly::DyadicInterval(ml.value(), mu.value())); } RealAlgebraicNumber toRanWithRefinement(poly::UPolynomial&& p, const Rational& lower, const Rational& upper) { return RealAlgebraicNumber( toPolyRanWithRefinement(std::move(p), lower, upper)); } std::size_t totalDegree(const poly::Polynomial& p) { std::size_t tdeg = 0; lp_polynomial_traverse_f f = [](const lp_polynomial_context_t* ctx, lp_monomial_t* m, void* data) { std::size_t sum = 0; for (std::size_t i = 0; i < m->n; ++i) { sum += m->p[i].d; } std::size_t* td = static_cast(data); *td = std::max(*td, sum); }; lp_polynomial_traverse(p.get_internal(), f, &tdeg); return tdeg; } std::ostream& operator<<(std::ostream& os, const VariableInformation& vi) { if (vi.var == poly::Variable()) { os << "Totals: "; os << "max deg " << vi.max_degree; os << ", sum term deg " << vi.sum_term_degree; os << ", sum poly deg " << vi.sum_poly_degree; os << ", num polys " << vi.num_polynomials; os << ", num terms " << vi.num_terms; } else { os << "Info for " << vi.var << ": "; os << "max deg " << vi.max_degree; os << ", max lc deg: " << vi.max_lc_degree; os << ", max term tdeg: " << vi.max_terms_tdegree; os << ", sum term deg " << vi.sum_term_degree; os << ", sum poly deg " << vi.sum_poly_degree; os << ", num polys " << vi.num_polynomials; os << ", num terms " << vi.num_terms; } return os; } struct GetVarInfo { VariableInformation* info; std::size_t cur_var_degree = 0; std::size_t cur_lc_degree = 0; }; void getVariableInformation(VariableInformation& vi, const poly::Polynomial& poly) { GetVarInfo varinfo; varinfo.info = &vi; lp_polynomial_traverse_f f = [](const lp_polynomial_context_t* ctx, lp_monomial_t* m, void* data) { GetVarInfo* gvi = static_cast(data); VariableInformation* info = gvi->info; // Total degree of this term std::size_t tdeg = 0; // Degree of this variable within this term std::size_t vardeg = 0; for (std::size_t i = 0; i < m->n; ++i) { tdeg += m->p[i].d; if (m->p[i].x == info->var) { info->max_degree = std::max(info->max_degree, m->p[i].d); info->sum_term_degree += m->p[i].d; vardeg = m->p[i].d; } } if (info->var == poly::Variable()) { ++info->num_terms; info->max_degree = std::max(info->max_degree, tdeg); info->sum_term_degree += tdeg; } else if (vardeg > 0) { ++info->num_terms; if (gvi->cur_var_degree < vardeg) { gvi->cur_lc_degree = tdeg - vardeg; } info->max_terms_tdegree = std::max(info->max_terms_tdegree, tdeg); } }; std::size_t tmp_max_degree = vi.max_degree; std::size_t tmp_num_terms = vi.num_terms; vi.max_degree = 0; vi.num_terms = 0; lp_polynomial_traverse(poly.get_internal(), f, &varinfo); vi.max_lc_degree = std::max(vi.max_lc_degree, varinfo.cur_lc_degree); if (vi.num_terms > 0) { ++vi.num_polynomials; } vi.sum_poly_degree += vi.max_degree; vi.max_degree = std::max(vi.max_degree, tmp_max_degree); vi.num_terms += tmp_num_terms; } } // namespace poly_utils } // namespace cvc5 #endif