/********************* */ /*! \file theory_uf.cpp ** \verbatim ** Top contributors (to current version): ** Dejan Jovanovic, Morgan Deters, Andrew Reynolds ** This file is part of the CVC4 project. ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** \brief This is the interface to TheoryUF implementations ** ** This is the interface to TheoryUF implementations. All ** implementations of TheoryUF should inherit from this class. **/ #include "theory/uf/theory_uf.h" #include "options/quantifiers_options.h" #include "options/smt_options.h" #include "options/uf_options.h" #include "proof/proof_manager.h" #include "proof/theory_proof.h" #include "proof/uf_proof.h" #include "theory/theory_model.h" #include "theory/type_enumerator.h" #include "theory/uf/theory_uf_strong_solver.h" #include "theory/quantifiers/term_database.h" #include "options/theory_options.h" using namespace std; namespace CVC4 { namespace theory { namespace uf { /** Constructs a new instance of TheoryUF w.r.t. the provided context.*/ TheoryUF::TheoryUF(context::Context* c, context::UserContext* u, OutputChannel& out, Valuation valuation, const LogicInfo& logicInfo, std::string instanceName) : Theory(THEORY_UF, c, u, out, valuation, logicInfo, instanceName), d_notify(*this), /* The strong theory solver can be notified by EqualityEngine::init(), * so make sure it's initialized first. */ d_thss(NULL), d_equalityEngine(d_notify, c, instanceName + "theory::uf::TheoryUF", true), d_conflict(c, false), d_literalsToPropagate(c), d_literalsToPropagateIndex(c, 0), d_functionsTerms(c), d_symb(u, instanceName) { // The kinds we are treating as function application in congruence d_equalityEngine.addFunctionKind(kind::APPLY_UF); } TheoryUF::~TheoryUF() { delete d_thss; } void TheoryUF::setMasterEqualityEngine(eq::EqualityEngine* eq) { d_equalityEngine.setMasterEqualityEngine(eq); } void TheoryUF::finishInit() { // initialize the strong solver if (options::finiteModelFind() && options::ufssMode()!=UF_SS_NONE) { d_thss = new StrongSolverTheoryUF(getSatContext(), getUserContext(), *d_out, this); } } static Node mkAnd(const std::vector& conjunctions) { Assert(conjunctions.size() > 0); std::set all; all.insert(conjunctions.begin(), conjunctions.end()); if (all.size() == 1) { // All the same, or just one return conjunctions[0]; } NodeBuilder<> conjunction(kind::AND); std::set::const_iterator it = all.begin(); std::set::const_iterator it_end = all.end(); while (it != it_end) { conjunction << *it; ++ it; } return conjunction; }/* mkAnd() */ void TheoryUF::check(Effort level) { if (done() && !fullEffort(level)) { return; } getOutputChannel().spendResource(options::theoryCheckStep()); TimerStat::CodeTimer checkTimer(d_checkTime); while (!done() && !d_conflict) { // Get all the assertions Assertion assertion = get(); TNode fact = assertion.assertion; Debug("uf") << "TheoryUF::check(): processing " << fact << std::endl; Debug("uf") << "Term's theory: " << theory::Theory::theoryOf(fact.toExpr()) << std::endl; if (d_thss != NULL) { bool isDecision = d_valuation.isSatLiteral(fact) && d_valuation.isDecision(fact); d_thss->assertNode(fact, isDecision); if( d_thss->isConflict() ){ d_conflict = true; return; } } // Do the work bool polarity = fact.getKind() != kind::NOT; TNode atom = polarity ? fact : fact[0]; if (atom.getKind() == kind::EQUAL) { d_equalityEngine.assertEquality(atom, polarity, fact); } else if (atom.getKind() == kind::CARDINALITY_CONSTRAINT || atom.getKind() == kind::COMBINED_CARDINALITY_CONSTRAINT) { if( d_thss == NULL ){ std::stringstream ss; ss << "Cardinality constraint " << atom << " was asserted, but the logic does not allow it." << std::endl; ss << "Try using a logic containing \"UFC\"." << std::endl; throw Exception( ss.str() ); } //needed for models if( options::produceModels() && ( atom.getKind() == kind::COMBINED_CARDINALITY_CONSTRAINT || options::ufssMode()!=UF_SS_FULL ) ){ d_equalityEngine.assertPredicate(atom, polarity, fact); } } else { d_equalityEngine.assertPredicate(atom, polarity, fact); } } if (d_thss != NULL && ! d_conflict) { d_thss->check(level); if( d_thss->isConflict() ){ d_conflict = true; } } }/* TheoryUF::check() */ void TheoryUF::preRegisterTerm(TNode node) { Debug("uf") << "TheoryUF::preRegisterTerm(" << node << ")" << std::endl; if (d_thss != NULL) { d_thss->preRegisterTerm(node); } switch (node.getKind()) { case kind::EQUAL: // Add the trigger for equality d_equalityEngine.addTriggerEquality(node); break; case kind::APPLY_UF: // Maybe it's a predicate if (node.getType().isBoolean()) { // Get triggered for both equal and dis-equal d_equalityEngine.addTriggerPredicate(node); } else { // Function applications/predicates d_equalityEngine.addTerm(node); } // Remember the function and predicate terms d_functionsTerms.push_back(node); break; case kind::CARDINALITY_CONSTRAINT: case kind::COMBINED_CARDINALITY_CONSTRAINT: //do nothing break; default: // Variables etc d_equalityEngine.addTerm(node); break; } }/* TheoryUF::preRegisterTerm() */ bool TheoryUF::propagate(TNode literal) { Debug("uf::propagate") << "TheoryUF::propagate(" << literal << ")" << std::endl; // If already in conflict, no more propagation if (d_conflict) { Debug("uf::propagate") << "TheoryUF::propagate(" << literal << "): already in conflict" << std::endl; return false; } // Propagate out bool ok = d_out->propagate(literal); if (!ok) { d_conflict = true; } return ok; }/* TheoryUF::propagate(TNode) */ void TheoryUF::propagate(Effort effort) { //if (d_thss != NULL) { // return d_thss->propagate(effort); //} } Node TheoryUF::getNextDecisionRequest(){ if (d_thss != NULL && !d_conflict) { return d_thss->getNextDecisionRequest(); }else{ return Node::null(); } } void TheoryUF::explain(TNode literal, std::vector& assumptions, eq::EqProof* pf) { // Do the work bool polarity = literal.getKind() != kind::NOT; TNode atom = polarity ? literal : literal[0]; if (atom.getKind() == kind::EQUAL || atom.getKind() == kind::IFF) { d_equalityEngine.explainEquality(atom[0], atom[1], polarity, assumptions, pf); } else { d_equalityEngine.explainPredicate(atom, polarity, assumptions, pf); } if( pf ){ Debug("pf::uf") << std::endl; pf->debug_print("pf::uf"); } Debug("pf::uf") << "UF: explain( " << literal << " ):" << std::endl << "\t"; for (unsigned i = 0; i < assumptions.size(); ++i) { Debug("pf::uf") << assumptions[i] << " "; } Debug("pf::uf") << std::endl; } Node TheoryUF::explain(TNode literal) { return explain(literal, NULL); } Node TheoryUF::explain(TNode literal, eq::EqProof* pf) { Debug("uf") << "TheoryUF::explain(" << literal << ")" << std::endl; std::vector assumptions; explain(literal, assumptions, pf); return mkAnd(assumptions); } void TheoryUF::collectModelInfo( TheoryModel* m, bool fullModel ){ m->assertEqualityEngine( &d_equalityEngine ); // if( fullModel ){ // std::map< TypeNode, TypeEnumerator* > type_enums; // //must choose proper representatives // // for each equivalence class, specify fresh constant as representative // eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( &d_equalityEngine ); // while( !eqcs_i.isFinished() ){ // Node eqc = (*eqcs_i); // TypeNode tn = eqc.getType(); // if( tn.isSort() ){ // if( type_enums.find( tn )==type_enums.end() ){ // type_enums[tn] = new TypeEnumerator( tn ); // } // Node rep = *(*type_enums[tn]); // ++(*type_enums[tn]); // //specify the constant as the representative // m->assertEquality( eqc, rep, true ); // m->assertRepresentative( rep ); // } // ++eqcs_i; // } // } } void TheoryUF::presolve() { // TimerStat::CodeTimer codeTimer(d_presolveTimer); Debug("uf") << "uf: begin presolve()" << endl; if(options::ufSymmetryBreaker()) { vector newClauses; d_symb.apply(newClauses); for(vector::const_iterator i = newClauses.begin(); i != newClauses.end(); ++i) { Debug("uf") << "uf: generating a lemma: " << *i << std::endl; d_out->lemma(*i); } } if( d_thss ){ d_thss->presolve(); } Debug("uf") << "uf: end presolve()" << endl; } void TheoryUF::ppStaticLearn(TNode n, NodeBuilder<>& learned) { //TimerStat::CodeTimer codeTimer(d_staticLearningTimer); vector workList; workList.push_back(n); __gnu_cxx::hash_set processed; while(!workList.empty()) { n = workList.back(); if(n.getKind() == kind::FORALL || n.getKind() == kind::EXISTS) { // unsafe to go under quantifiers; we might pull bound vars out of scope! processed.insert(n); workList.pop_back(); continue; } bool unprocessedChildren = false; for(TNode::iterator i = n.begin(), iend = n.end(); i != iend; ++i) { if(processed.find(*i) == processed.end()) { // unprocessed child workList.push_back(*i); unprocessedChildren = true; } } if(unprocessedChildren) { continue; } workList.pop_back(); // has node n been processed in the meantime ? if(processed.find(n) != processed.end()) { continue; } processed.insert(n); // == DIAMONDS == Debug("diamonds") << "===================== looking at" << endl << n << endl; // binary OR of binary ANDs of EQUALities if(n.getKind() == kind::OR && n.getNumChildren() == 2 && n[0].getKind() == kind::AND && n[0].getNumChildren() == 2 && n[1].getKind() == kind::AND && n[1].getNumChildren() == 2 && (n[0][0].getKind() == kind::EQUAL || n[0][0].getKind() == kind::IFF) && (n[0][1].getKind() == kind::EQUAL || n[0][1].getKind() == kind::IFF) && (n[1][0].getKind() == kind::EQUAL || n[1][0].getKind() == kind::IFF) && (n[1][1].getKind() == kind::EQUAL || n[1][1].getKind() == kind::IFF)) { // now we have (a = b && c = d) || (e = f && g = h) Debug("diamonds") << "has form of a diamond!" << endl; TNode a = n[0][0][0], b = n[0][0][1], c = n[0][1][0], d = n[0][1][1], e = n[1][0][0], f = n[1][0][1], g = n[1][1][0], h = n[1][1][1]; // test that one of {a, b} = one of {c, d}, and make "b" the // shared node (i.e. put in the form (a = b && b = d)) // note we don't actually care about the shared ones, so the // "swaps" below are one-sided, ignoring b and c if(a == c) { a = b; } else if(a == d) { a = b; d = c; } else if(b == c) { // nothing to do } else if(b == d) { d = c; } else { // condition not satisfied Debug("diamonds") << "+ A fails" << endl; continue; } Debug("diamonds") << "+ A holds" << endl; // same: one of {e, f} = one of {g, h}, and make "f" the // shared node (i.e. put in the form (e = f && f = h)) if(e == g) { e = f; } else if(e == h) { e = f; h = g; } else if(f == g) { // nothing to do } else if(f == h) { h = g; } else { // condition not satisfied Debug("diamonds") << "+ B fails" << endl; continue; } Debug("diamonds") << "+ B holds" << endl; // now we have (a = b && b = d) || (e = f && f = h) // test that {a, d} == {e, h} if( (a == e && d == h) || (a == h && d == e) ) { // learn: n implies a == d Debug("diamonds") << "+ C holds" << endl; Node newEquality = a.getType().isBoolean() ? a.iffNode(d) : a.eqNode(d); Debug("diamonds") << " ==> " << newEquality << endl; learned << n.impNode(newEquality); } else { Debug("diamonds") << "+ C fails" << endl; } } } if(options::ufSymmetryBreaker()) { d_symb.assertFormula(n); } }/* TheoryUF::ppStaticLearn() */ EqualityStatus TheoryUF::getEqualityStatus(TNode a, TNode b) { // Check for equality (simplest) if (d_equalityEngine.areEqual(a, b)) { // The terms are implied to be equal return EQUALITY_TRUE; } // Check for disequality if (d_equalityEngine.areDisequal(a, b, false)) { // The terms are implied to be dis-equal return EQUALITY_FALSE; } // All other terms we interpret as dis-equal in the model return EQUALITY_FALSE_IN_MODEL; } void TheoryUF::addSharedTerm(TNode t) { Debug("uf::sharing") << "TheoryUF::addSharedTerm(" << t << ")" << std::endl; d_equalityEngine.addTriggerTerm(t, THEORY_UF); } //TODO: move quantifiers::TermArgTrie to src/theory/ void TheoryUF::addCarePairs( quantifiers::TermArgTrie * t1, quantifiers::TermArgTrie * t2, unsigned arity, unsigned depth ){ if( depth==arity ){ if( t2!=NULL ){ Node f1 = t1->getNodeData(); Node f2 = t2->getNodeData(); if( !d_equalityEngine.areEqual( f1, f2 ) ){ Debug("uf::sharing") << "TheoryUf::computeCareGraph(): checking function " << f1 << " and " << f2 << std::endl; vector< pair > currentPairs; for (unsigned k = 0; k < f1.getNumChildren(); ++ k) { TNode x = f1[k]; TNode y = f2[k]; Assert( d_equalityEngine.hasTerm(x) ); Assert( d_equalityEngine.hasTerm(y) ); Assert( !d_equalityEngine.areDisequal( x, y, false ) ); if( !d_equalityEngine.areEqual( x, y ) ){ if( d_equalityEngine.isTriggerTerm(x, THEORY_UF) && d_equalityEngine.isTriggerTerm(y, THEORY_UF) ){ TNode x_shared = d_equalityEngine.getTriggerTermRepresentative(x, THEORY_UF); TNode y_shared = d_equalityEngine.getTriggerTermRepresentative(y, THEORY_UF); EqualityStatus eqStatus = d_valuation.getEqualityStatus(x_shared, y_shared); if( eqStatus==EQUALITY_FALSE_AND_PROPAGATED || eqStatus==EQUALITY_FALSE || eqStatus==EQUALITY_FALSE_IN_MODEL ){ //an argument is disequal, we are done return; }else{ currentPairs.push_back(make_pair(x_shared, y_shared)); } } } } for (unsigned c = 0; c < currentPairs.size(); ++ c) { Debug("uf::sharing") << "TheoryUf::computeCareGraph(): adding to care-graph" << std::endl; addCarePair(currentPairs[c].first, currentPairs[c].second); } } } }else{ if( t2==NULL ){ if( depth<(arity-1) ){ //add care pairs internal to each child for( std::map< TNode, quantifiers::TermArgTrie >::iterator it = t1->d_data.begin(); it != t1->d_data.end(); ++it ){ addCarePairs( &it->second, NULL, arity, depth+1 ); } } //add care pairs based on each pair of non-disequal arguments for( std::map< TNode, quantifiers::TermArgTrie >::iterator it = t1->d_data.begin(); it != t1->d_data.end(); ++it ){ std::map< TNode, quantifiers::TermArgTrie >::iterator it2 = it; ++it2; for( ; it2 != t1->d_data.end(); ++it2 ){ if( !d_equalityEngine.areDisequal(it->first, it2->first, false) ){ addCarePairs( &it->second, &it2->second, arity, depth+1 ); } } } }else{ //add care pairs based on product of indices, non-disequal arguments for( std::map< TNode, quantifiers::TermArgTrie >::iterator it = t1->d_data.begin(); it != t1->d_data.end(); ++it ){ for( std::map< TNode, quantifiers::TermArgTrie >::iterator it2 = t2->d_data.begin(); it2 != t2->d_data.end(); ++it2 ){ if( !d_equalityEngine.areDisequal(it->first, it2->first, false) ){ addCarePairs( &it->second, &it2->second, arity, depth+1 ); } } } } } } void TheoryUF::computeCareGraph() { if (d_sharedTerms.size() > 0) { //use term indexing Debug("uf::sharing") << "TheoryUf::computeCareGraph(): Build term indices..." << std::endl; std::map< Node, quantifiers::TermArgTrie > index; std::map< Node, unsigned > arity; unsigned functionTerms = d_functionsTerms.size(); for (unsigned i = 0; i < functionTerms; ++ i) { TNode f1 = d_functionsTerms[i]; Node op = f1.getOperator(); std::vector< TNode > reps; bool has_trigger_arg = false; for( unsigned j=0; j::iterator itii = index.begin(); itii != index.end(); ++itii ){ Debug("uf::sharing") << "TheoryUf::computeCareGraph(): Process index " << itii->first << "..." << std::endl; addCarePairs( &itii->second, NULL, arity[ itii->first ], 0 ); } } }/* TheoryUF::computeCareGraph() */ void TheoryUF::conflict(TNode a, TNode b) { eq::EqProof* pf = d_proofsEnabled ? new eq::EqProof() : NULL; if (a.getKind() == kind::CONST_BOOLEAN) { d_conflictNode = explain(a.iffNode(b),pf); } else { d_conflictNode = explain(a.eqNode(b),pf); } ProofUF* puf = d_proofsEnabled ? new ProofUF( pf ) : NULL; d_out->conflict(d_conflictNode, puf); d_conflict = true; } void TheoryUF::eqNotifyNewClass(TNode t) { if (d_thss != NULL) { d_thss->newEqClass(t); } } void TheoryUF::eqNotifyPreMerge(TNode t1, TNode t2) { if (getLogicInfo().isQuantified()) { //getQuantifiersEngine()->getEfficientEMatcher()->merge( t1, t2 ); } } void TheoryUF::eqNotifyPostMerge(TNode t1, TNode t2) { if (d_thss != NULL) { d_thss->merge(t1, t2); } } void TheoryUF::eqNotifyDisequal(TNode t1, TNode t2, TNode reason) { if (d_thss != NULL) { d_thss->assertDisequal(t1, t2, reason); } } } /* namespace CVC4::theory::uf */ } /* namespace CVC4::theory */ } /* namespace CVC4 */