/********************* */ /*! \file theory_engine.h ** \verbatim ** Original author: mdeters ** Major contributors: dejan ** Minor contributors (to current version): cconway, barrett, taking ** This file is part of the CVC4 prototype. ** Copyright (c) 2009, 2010, 2011 The Analysis of Computer Systems Group (ACSys) ** Courant Institute of Mathematical Sciences ** New York University ** See the file COPYING in the top-level source directory for licensing ** information.\endverbatim ** ** \brief The theory engine ** ** The theory engine. **/ #include "cvc4_private.h" #ifndef __CVC4__THEORY_ENGINE_H #define __CVC4__THEORY_ENGINE_H #include #include #include #include "expr/node.h" #include "expr/command.h" #include "prop/prop_engine.h" #include "context/cdset.h" #include "theory/theory.h" #include "theory/substitutions.h" #include "theory/rewriter.h" #include "theory/substitutions.h" #include "theory/shared_terms_database.h" #include "theory/term_registration_visitor.h" #include "theory/valuation.h" #include "util/options.h" #include "util/stats.h" #include "util/hash.h" #include "util/cache.h" #include "util/ite_removal.h" namespace CVC4 { // In terms of abstraction, this is below (and provides services to) // PropEngine. struct NodeTheoryPair { Node node; theory::TheoryId theory; NodeTheoryPair(Node node, theory::TheoryId theory) : node(node), theory(theory) {} NodeTheoryPair() : theory(theory::THEORY_LAST) {} bool operator == (const NodeTheoryPair& pair) const { return node == pair.node && theory == pair.theory; } }; struct NodeTheoryPairHashFunction { NodeHashFunction hashFunction; size_t operator()(const NodeTheoryPair& pair) const { return hashFunction(pair.node)*0x9e3779b9 + pair.theory; } }; /** * This is essentially an abstraction for a collection of theories. A * TheoryEngine provides services to a PropEngine, making various * T-solvers look like a single unit to the propositional part of * CVC4. */ class TheoryEngine { /** Associated PropEngine engine */ prop::PropEngine* d_propEngine; /** Our context */ context::Context* d_context; /** Our user context */ context::UserContext* d_userContext; /** * A table of from theory IDs to theory pointers. Never use this table * directly, use theoryOf() instead. */ theory::Theory* d_theoryTable[theory::THEORY_LAST]; /** * A bitmap of theories that are "active" for the current run. We * mark a theory active when we firt see a term or type belonging to * it. This is important because we can optimize for single-theory * runs (no sharing), can reduce the cost of walking the DAG on * registration, etc. */ theory::Theory::Set d_activeTheories; /** * The database of shared terms. */ SharedTermsDatabase d_sharedTerms; typedef std::hash_map NodeMap; /** * Cache from proprocessing of atoms. */ NodeMap d_atomPreprocessingCache; /** * Used for "missed-t-propagations" dumping mode only. A set of all * theory-propagable literals. */ std::vector d_possiblePropagations; /** * Used for "missed-t-propagations" dumping mode only. A * context-dependent set of those theory-propagable literals that * have been propagated. */ context::CDSet d_hasPropagated; /** * Statistics for a particular theory. */ class Statistics { static std::string mkName(std::string prefix, theory::TheoryId theory, std::string suffix) { std::stringstream ss; ss << prefix << theory << suffix; return ss.str(); } public: IntStat conflicts, propagations, lemmas; Statistics(theory::TheoryId theory): conflicts(mkName("theory<", theory, ">::conflicts"), 0), propagations(mkName("theory<", theory, ">::propagations"), 0), lemmas(mkName("theory<", theory, ">::lemmas"), 0) { StatisticsRegistry::registerStat(&conflicts); StatisticsRegistry::registerStat(&propagations); StatisticsRegistry::registerStat(&lemmas); } ~Statistics() { StatisticsRegistry::unregisterStat(&conflicts); StatisticsRegistry::unregisterStat(&propagations); StatisticsRegistry::unregisterStat(&lemmas); } };/* class TheoryEngine::Statistics */ /** * An output channel for Theory that passes messages * back to a TheoryEngine. */ class EngineOutputChannel : public theory::OutputChannel { friend class TheoryEngine; /** * The theory engine we're communicating with. */ TheoryEngine* d_engine; /** * The statistics of the theory interractions. */ Statistics d_statistics; /** * The theory owning this chanell. */ theory::TheoryId d_theory; public: EngineOutputChannel(TheoryEngine* engine, theory::TheoryId theory) : d_engine(engine), d_statistics(theory), d_theory(theory) { } void conflict(TNode conflictNode) throw(AssertionException) { Trace("theory") << "EngineOutputChannel<" << d_theory << ">::conflict(" << conflictNode << ")" << std::endl; ++ d_statistics.conflicts; d_engine->conflict(conflictNode); } void propagate(TNode literal) throw(AssertionException) { Trace("theory") << "EngineOutputChannel<" << d_theory << ">::propagate(" << literal << ")" << std::endl; ++ d_statistics.propagations; d_engine->propagate(literal, d_theory); } void lemma(TNode lemma, bool removable = false) throw(TypeCheckingExceptionPrivate, AssertionException) { Trace("theory") << "EngineOutputChannel<" << d_theory << ">::lemma(" << lemma << ")" << std::endl; ++ d_statistics.lemmas; d_engine->lemma(lemma, false, removable); } void setIncomplete() throw(AssertionException) { d_engine->setIncomplete(d_theory); } };/* class EngineOutputChannel */ /** * Output channels for individual theories. */ EngineOutputChannel* d_theoryOut[theory::THEORY_LAST]; /** * Are we in conflict. */ context::CDO d_inConflict; void conflict(TNode conflict) { Assert(properConflict(conflict)); // Mark that we are in conflict d_inConflict = true; if(Dump.isOn("t-conflicts")) { Dump("t-conflicts") << CommentCommand("theory conflict: expect unsat") << std::endl << CheckSatCommand(conflict.toExpr()) << std::endl; } // Construct the lemma (note that no CNF caching should happen as all the literals already exists) lemma(conflict, true, false); } /** * Debugging flag to ensure that shutdown() is called before the * destructor. */ bool d_hasShutDown; /** * True if a theory has notified us of incompleteness (at this * context level or below). */ context::CDO d_incomplete; /** * Called by the theories to notify that the current branch is incomplete. */ void setIncomplete(theory::TheoryId theory) { d_incomplete = true; } /** * Is the theory active. */ bool isActive(theory::TheoryId theory) { return theory::Theory::setContains(theory, d_activeTheories); } struct SharedEquality { /** The node/theory pair for the assertion */ NodeTheoryPair toAssert; /** This is the node/theory pair that we will use to explain it */ NodeTheoryPair toExplain; SharedEquality(TNode assertion, TNode original, theory::TheoryId sendingTheory, theory::TheoryId receivingTheory) : toAssert(assertion, sendingTheory), toExplain(original, receivingTheory) { } }; /** * A map from asserted facts to where they came from (for explanations). */ context::CDMap d_sharedAssertions; /** * Assert a shared equalities propagated by theories. */ void assertSharedEqualities(); /** The logic of the problem */ std::string d_logic; /** * Literals that are propagated by the theory. Note that these are TNodes. * The theory can only propagate nodes that have an assigned literal in the * sat solver and are hence referenced in the SAT solver. */ context::CDList d_propagatedLiterals; /** * The index of the next literal to be propagated by a theory. */ context::CDO d_propagatedLiteralsIndex; /** * Shared term equalities that should be asserted to the individual theories. */ std::vector d_propagatedEqualities; /** * Called by the output channel to propagate literals and facts */ void propagate(TNode literal, theory::TheoryId theory); /** * Internal method to call the propagation routines and collect the * propagated literals. */ void propagate(theory::Theory::Effort effort); /** * A variable to mark if we added any lemmas. */ bool d_lemmasAdded; /** * Adds a new lemma */ void lemma(TNode node, bool negated, bool removable) { if(Dump.isOn("t-lemmas")) { Dump("t-lemmas") << CommentCommand("theory lemma: expect valid") << std::endl << QueryCommand(node.toExpr()) << std::endl; } // Remove the ITEs and assert to prop engine std::vector additionalLemmas; additionalLemmas.push_back(node); RemoveITE::run(additionalLemmas); d_propEngine->assertLemma(theory::Rewriter::rewrite(additionalLemmas[0]), negated, removable); for (unsigned i = 1; i < additionalLemmas.size(); ++ i) { d_propEngine->assertLemma(theory::Rewriter::rewrite(additionalLemmas[i]), false, removable); } // Mark that we added some lemmas d_lemmasAdded = true; } public: /** Constructs a theory engine */ TheoryEngine(context::Context* context, context::UserContext* userContext); /** Destroys a theory engine */ ~TheoryEngine(); /** * Adds a theory. Only one theory per TheoryId can be present, so if * there is another theory it will be deleted. */ template inline void addTheory(theory::TheoryId theoryId) { Assert(d_theoryTable[theoryId] == NULL && d_theoryOut[theoryId] == NULL); d_theoryOut[theoryId] = new EngineOutputChannel(this, theoryId); d_theoryTable[theoryId] = new TheoryClass(d_context, d_userContext, *d_theoryOut[theoryId], theory::Valuation(this)); } /** * Sets the logic (SMT-LIB format). All theory specific setup/hacks * should go in here. */ void setLogic(std::string logic); /** * Mark a theory active if it's not already. */ void markActive(theory::Theory::Set theories) { d_activeTheories = theory::Theory::setUnion(d_activeTheories, theories); } inline void setPropEngine(prop::PropEngine* propEngine) { Assert(d_propEngine == NULL); d_propEngine = propEngine; } /** * Get a pointer to the underlying propositional engine. */ inline prop::PropEngine* getPropEngine() const { return d_propEngine; } /** * Runs theory specific preprocesssing on the non-Boolean parts of the formula. * This is only called on input assertions, after ITEs have been removed. */ Node preprocess(TNode node); /** * Return whether or not we are incomplete (in the current context). */ inline bool isIncomplete() { return d_incomplete; } /** * This is called at shutdown time by the SmtEngine, just before * destruction. It is important because there are destruction * ordering issues between PropEngine and Theory. */ void shutdown(); /** * Solve the given literal with a theory that owns it. */ theory::Theory::SolveStatus solve(TNode literal, theory::SubstitutionMap& substitutionOut); /** * Preregister a Theory atom with the responsible theory (or * theories). */ void preRegister(TNode preprocessed); /** * Call the theories to perform one last rewrite on the theory atoms * if they wish. This last rewrite is only performed on the input atoms. * At this point it is ensured that atoms do not contain any Boolean * strucure, i.e. there is no ITE nodes in them. * */ Node preCheckRewrite(TNode node); /** * Assert the formula to the appropriate theory. * @param node the assertion */ void assertFact(TNode node); /** * Check all (currently-active) theories for conflicts. * @param effort the effort level to use */ void check(theory::Theory::Effort effort); /** * Run the combination framework. */ void combineTheories(); /** * Calls staticLearning() on all theories, accumulating their * combined contributions in the "learned" builder. */ void staticLearning(TNode in, NodeBuilder<>& learned); /** * Calls presolve() on all active theories and returns true * if one of the theories discovers a conflict. */ bool presolve(); /** * Calls notifyRestart() on all active theories. */ void notifyRestart(); void getPropagatedLiterals(std::vector& literals) { for (; d_propagatedLiteralsIndex < d_propagatedLiterals.size(); d_propagatedLiteralsIndex = d_propagatedLiteralsIndex + 1) { literals.push_back(d_propagatedLiterals[d_propagatedLiteralsIndex]); } } Node getExplanation(TNode node, theory::Theory* theory); bool properConflict(TNode conflict) const; bool properPropagation(TNode lit) const; bool properExplanation(TNode node, TNode expl) const; inline Node getExplanation(TNode node) { TNode atom = node.getKind() == kind::NOT ? node[0] : node; Node explanation = theoryOf(atom)->explain(node); Assert(!explanation.isNull()); if(Dump.isOn("t-explanations")) { Dump("t-explanations") << CommentCommand(std::string("theory explanation from ") + theoryOf(atom)->identify() + ": expect valid") << std::endl << QueryCommand(explanation.impNode(node).toExpr()) << std::endl; } Assert(properExplanation(node, explanation)); return explanation; } Node getValue(TNode node); /** * Get the theory associated to a given Node. * * @returns the theory, or NULL if the TNode is * of built-in type. */ inline theory::Theory* theoryOf(TNode node) { return d_theoryTable[theory::Theory::theoryOf(node)]; } /** * Get the theory associated to a the given theory id. It will also mark the * theory as currently active, we assume that theories are called only through * theoryOf. * * @returns the theory, or NULL if the TNode is * of built-in type. */ inline theory::Theory* theoryOf(theory::TheoryId theoryId) { return d_theoryTable[theoryId]; } private: /** Default visitor for pre-registration */ PreRegisterVisitor d_preRegistrationVisitor; /** Visitor for collecting shared terms */ SharedTermsVisitor d_sharedTermsVisitor; };/* class TheoryEngine */ }/* CVC4 namespace */ #endif /* __CVC4__THEORY_ENGINE_H */