/********************* */ /*! \file regexp_elim.cpp ** \verbatim ** Top contributors (to current version): ** Andrew Reynolds ** This file is part of the CVC4 project. ** Copyright (c) 2009-2018 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** \brief Implementation of techniques for eliminating regular expressions ** **/ #include "theory/strings/regexp_elim.h" #include "options/strings_options.h" #include "theory/strings/theory_strings_rewriter.h" using namespace CVC4; using namespace CVC4::kind; using namespace CVC4::theory; using namespace CVC4::theory::strings; RegExpElimination::RegExpElimination() { d_zero = NodeManager::currentNM()->mkConst(Rational(0)); d_one = NodeManager::currentNM()->mkConst(Rational(1)); d_neg_one = NodeManager::currentNM()->mkConst(Rational(-1)); } Node RegExpElimination::eliminate(Node atom) { Assert(atom.getKind() == STRING_IN_REGEXP); if (atom[1].getKind() == REGEXP_CONCAT) { return eliminateConcat(atom); } else if (atom[1].getKind() == REGEXP_STAR) { return eliminateStar(atom); } return Node::null(); } Node RegExpElimination::eliminateConcat(Node atom) { NodeManager* nm = NodeManager::currentNM(); Node x = atom[0]; Node lenx = nm->mkNode(STRING_LENGTH, x); Node re = atom[1]; // memberships of the form x in re.++ * s1 * ... * sn *, where * are // any number of repetitions (exact or indefinite) of re.allchar. Trace("re-elim-debug") << "Try re concat with gaps " << atom << std::endl; std::vector children; TheoryStringsRewriter::getConcat(re, children); bool onlySigmasAndConsts = true; std::vector sep_children; std::vector gap_minsize; std::vector gap_exact; // the first gap is initially strict zero gap_minsize.push_back(0); gap_exact.push_back(true); for (const Node& c : children) { Trace("re-elim-debug") << " " << c << std::endl; onlySigmasAndConsts = false; if (c.getKind() == STRING_TO_REGEXP) { onlySigmasAndConsts = true; sep_children.push_back(c[0]); // the next gap is initially strict zero gap_minsize.push_back(0); gap_exact.push_back(true); } else if (c.getKind() == REGEXP_STAR && c[0].getKind() == REGEXP_SIGMA) { // found a gap of any size onlySigmasAndConsts = true; gap_exact[gap_exact.size() - 1] = false; } else if (c.getKind() == REGEXP_SIGMA) { // add one to the minimum size of the gap onlySigmasAndConsts = true; gap_minsize[gap_minsize.size() - 1]++; } if (!onlySigmasAndConsts) { Trace("re-elim-debug") << "...cannot handle " << c << std::endl; break; } } // we should always rewrite concatenations that are purely re.allchar // and re.*( re.allchar ). Assert(!onlySigmasAndConsts || !sep_children.empty()); if (onlySigmasAndConsts && !sep_children.empty()) { bool canProcess = true; std::vector conj; // The following constructs a set of constraints that encodes that a // set of string terms are found, in order, in string x. // prev_end stores the current (symbolic) index in x that we are // searching. Node prev_end = d_zero; unsigned gap_minsize_end = gap_minsize.back(); bool gap_exact_end = gap_exact.back(); std::vector non_greedy_find_vars; for (unsigned i = 0, size = sep_children.size(); i < size; i++) { Node sc = sep_children[i]; if (gap_minsize[i] > 0) { // the gap to this child is at least gap_minsize[i] prev_end = nm->mkNode(PLUS, prev_end, nm->mkConst(Rational(gap_minsize[i]))); } Node lensc = nm->mkNode(STRING_LENGTH, sc); if (gap_exact[i]) { // if the gap is exact, it is a substring constraint Node curr = prev_end; Node ss = nm->mkNode(STRING_SUBSTR, x, curr, lensc); conj.push_back(ss.eqNode(sc)); prev_end = nm->mkNode(PLUS, curr, lensc); } else { // otherwise, we can use indexof to represent some next occurrence if (gap_exact[i + 1] && i + 1 != size) { if (!options::regExpElimAgg()) { canProcess = false; break; } // if the gap after this one is strict, we need a non-greedy find // thus, we add a symbolic constant Node k = nm->mkBoundVar(nm->integerType()); non_greedy_find_vars.push_back(k); prev_end = nm->mkNode(PLUS, prev_end, k); } Node curr = nm->mkNode(STRING_STRIDOF, x, sc, prev_end); Node idofFind = curr.eqNode(d_neg_one).negate(); conj.push_back(idofFind); prev_end = nm->mkNode(PLUS, curr, lensc); } } if (canProcess) { // since sep_children is non-empty, conj is non-empty Assert(!conj.empty()); // Process the last gap, if necessary. // Notice that if the last gap is not exact and its minsize is zero, // then the last indexof/substr constraint entails the following // constraint, so it is not necessary to add. if (gap_minsize_end > 0 || gap_exact_end) { Node fit = nm->mkNode( gap_exact_end ? EQUAL : LEQ, nm->mkNode(PLUS, prev_end, nm->mkConst(Rational(gap_minsize_end))), lenx); conj.push_back(fit); } Node res = conj.size() == 1 ? conj[0] : nm->mkNode(AND, conj); // process the non-greedy find variables if (!non_greedy_find_vars.empty()) { std::vector children; for (const Node& v : non_greedy_find_vars) { Node bound = nm->mkNode( AND, nm->mkNode(LEQ, d_zero, v), nm->mkNode(LT, v, lenx)); children.push_back(bound); } children.push_back(res); Node body = nm->mkNode(AND, children); Node bvl = nm->mkNode(BOUND_VAR_LIST, non_greedy_find_vars); res = nm->mkNode(EXISTS, bvl, body); } // e.g., writing "A" for (str.to.re "A") and _ for re.allchar: // x in (re.++ "A" (re.* _) "B" (re.* _)) ---> // substr(x,0,1)="A" ^ indexof(x,"B",1)!=-1 // x in (re.++ (re.* _) "A" _ _ _ (re.* _) "B" _ _ (re.* _)) ---> // indexof(x,"A",0)!=-1 ^ // indexof( x, "B", indexof( x, "A", 0 ) + 1 + 3 ) != -1 ^ // indexof( x, "B", indexof( x, "A", 0 ) + 1 + 3 )+1+2 <= len(x) // An example of a non-greedy find: // x in re.++( re.*( _ ), "A", _, "B", re.*( _ ) ) ---> // exists k. 0 <= k < len( x ) ^ // indexof( x, "A", k ) != -1 ^ // substr( x, indexof( x, "A", k )+2, 1 ) = "B" return returnElim(atom, res, "concat-with-gaps"); } } if (!options::regExpElimAgg()) { return Node::null(); } // only aggressive rewrites below here // if the first or last child is constant string, we can split the membership // into a conjunction of two memberships. Node sStartIndex = d_zero; Node sLength = lenx; std::vector sConstraints; std::vector rexpElimChildren; unsigned nchildren = children.size(); Assert(nchildren > 1); for (unsigned r = 0; r < 2; r++) { unsigned index = r == 0 ? 0 : nchildren - 1; Assert(children[index + (r == 0 ? 1 : -1)].getKind() != STRING_TO_REGEXP); Node c = children[index]; if (c.getKind() == STRING_TO_REGEXP) { Node s = c[0]; Node lens = nm->mkNode(STRING_LENGTH, s); Node sss = r == 0 ? d_zero : nm->mkNode(MINUS, lenx, lens); Node ss = nm->mkNode(STRING_SUBSTR, x, sss, lens); sConstraints.push_back(ss.eqNode(s)); if (r == 0) { sStartIndex = lens; } sLength = nm->mkNode(MINUS, sLength, lens); } if (r == 1 && !sConstraints.empty()) { // add the middle children for (unsigned i = 1; i < (nchildren - 1); i++) { rexpElimChildren.push_back(children[i]); } } if (c.getKind() != STRING_TO_REGEXP) { rexpElimChildren.push_back(c); } } Assert(rexpElimChildren.size() + sConstraints.size() == nchildren); if (!sConstraints.empty()) { Node ss = nm->mkNode(STRING_SUBSTR, x, sStartIndex, sLength); Assert(!rexpElimChildren.empty()); Node regElim = TheoryStringsRewriter::mkConcat(REGEXP_CONCAT, rexpElimChildren); sConstraints.push_back(nm->mkNode(STRING_IN_REGEXP, ss, regElim)); Node ret = nm->mkNode(AND, sConstraints); // e.g. // x in re.++( "A", R ) ---> substr(x,0,1)="A" ^ substr(x,1,len(x)-1) in R return returnElim(atom, ret, "concat-splice"); } Assert(nchildren > 1); for (unsigned i = 0; i < nchildren; i++) { if (children[i].getKind() == STRING_TO_REGEXP) { Node s = children[i][0]; Node lens = nm->mkNode(STRING_LENGTH, s); // there exists an index in this string such that the substring is this Node k; std::vector echildren; if (i == 0) { k = d_zero; } else if (i + 1 == nchildren) { k = nm->mkNode(MINUS, lenx, lens); } else { k = nm->mkBoundVar(nm->integerType()); Node bound = nm->mkNode(AND, nm->mkNode(LEQ, d_zero, k), nm->mkNode(LT, k, nm->mkNode(MINUS, lenx, lens))); echildren.push_back(bound); } Node substrEq = nm->mkNode(STRING_SUBSTR, x, k, lens).eqNode(s); echildren.push_back(substrEq); if (i > 0) { std::vector rprefix; rprefix.insert(rprefix.end(), children.begin(), children.begin() + i); Node rpn = TheoryStringsRewriter::mkConcat(REGEXP_CONCAT, rprefix); Node substrPrefix = nm->mkNode( STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, x, d_zero, k), rpn); echildren.push_back(substrPrefix); } if (i + 1 < nchildren) { std::vector rsuffix; rsuffix.insert(rsuffix.end(), children.begin() + i + 1, children.end()); Node rps = TheoryStringsRewriter::mkConcat(REGEXP_CONCAT, rsuffix); Node ks = nm->mkNode(PLUS, k, lens); Node substrSuffix = nm->mkNode( STRING_IN_REGEXP, nm->mkNode(STRING_SUBSTR, x, ks, nm->mkNode(MINUS, lenx, ks)), rps); echildren.push_back(substrSuffix); } Node body = nm->mkNode(AND, echildren); if (k.getKind() == BOUND_VARIABLE) { Node bvl = nm->mkNode(BOUND_VAR_LIST, k); body = nm->mkNode(EXISTS, bvl, body); } // e.g. x in re.++( R1, "AB", R2 ) ---> // exists k. // 0 <= k <= (len(x)-2) ^ // substr( x, k, 2 ) = "AB" ^ // substr( x, 0, k ) in R1 ^ // substr( x, k+2, len(x)-(k+2) ) in R2 return returnElim(atom, body, "concat-find"); } } return Node::null(); } Node RegExpElimination::eliminateStar(Node atom) { if (!options::regExpElimAgg()) { return Node::null(); } // only aggressive rewrites below here NodeManager* nm = NodeManager::currentNM(); Node x = atom[0]; Node lenx = nm->mkNode(STRING_LENGTH, x); Node re = atom[1]; // for regular expression star, // if the period is a fixed constant, we can turn it into a bounded // quantifier std::vector disj; if (re[0].getKind() == REGEXP_UNION) { for (const Node& r : re[0]) { disj.push_back(r); } } else { disj.push_back(re[0]); } bool lenOnePeriod = true; std::vector char_constraints; Node index = nm->mkBoundVar(nm->integerType()); Node substr_ch = nm->mkNode(STRING_SUBSTR, x, index, d_one); substr_ch = Rewriter::rewrite(substr_ch); // handle the case where it is purely characters for (const Node& r : disj) { Assert(r.getKind() != REGEXP_UNION); Assert(r.getKind() != REGEXP_SIGMA); lenOnePeriod = false; // lenOnePeriod is true if this regular expression is a single character // regular expression if (r.getKind() == STRING_TO_REGEXP) { Node s = r[0]; if (s.isConst() && s.getConst().size() == 1) { lenOnePeriod = true; } } else if (r.getKind() == REGEXP_RANGE) { lenOnePeriod = true; } if (!lenOnePeriod) { break; } else { Node regexp_ch = nm->mkNode(STRING_IN_REGEXP, substr_ch, r); regexp_ch = Rewriter::rewrite(regexp_ch); Assert(regexp_ch.getKind() != STRING_IN_REGEXP); char_constraints.push_back(regexp_ch); } } if (lenOnePeriod) { Assert(!char_constraints.empty()); Node bound = nm->mkNode( AND, nm->mkNode(LEQ, d_zero, index), nm->mkNode(LT, index, lenx)); Node conc = char_constraints.size() == 1 ? char_constraints[0] : nm->mkNode(OR, char_constraints); Node body = nm->mkNode(OR, bound.negate(), conc); Node bvl = nm->mkNode(BOUND_VAR_LIST, index); Node res = nm->mkNode(FORALL, bvl, body); // e.g. // x in (re.* (re.union "A" "B" )) ---> // forall k. 0<=k (substr(x,k,1) in "A" OR substr(x,k,1) in "B") return returnElim(atom, res, "star-char"); } // otherwise, for stars of constant length these are periodic if (disj.size() == 1) { Node r = disj[0]; if (r.getKind() == STRING_TO_REGEXP) { Node s = r[0]; if (s.isConst()) { Node lens = nm->mkNode(STRING_LENGTH, s); lens = Rewriter::rewrite(lens); Assert(lens.isConst()); std::vector conj; Node bound = nm->mkNode( AND, nm->mkNode(LEQ, d_zero, index), nm->mkNode(LT, index, nm->mkNode(INTS_DIVISION, lenx, lens))); Node conc = nm->mkNode(STRING_SUBSTR, x, nm->mkNode(MULT, index, lens), lens) .eqNode(s); Node body = nm->mkNode(OR, bound.negate(), conc); Node bvl = nm->mkNode(BOUND_VAR_LIST, index); Node res = nm->mkNode(FORALL, bvl, body); res = nm->mkNode( AND, nm->mkNode(INTS_MODULUS, lenx, lens).eqNode(d_zero), res); // e.g. // x in ("abc")* ---> // forall k. 0 <= k < (len( x ) div 3) => substr(x,3*k,3) = "abc" ^ // len(x) mod 3 = 0 return returnElim(atom, res, "star-constant"); } } } return Node::null(); } Node RegExpElimination::returnElim(Node atom, Node atomElim, const char* id) { Trace("re-elim") << "re-elim: " << atom << " to " << atomElim << " by " << id << "." << std::endl; return atomElim; }