/********************* */ /*! \file sygus_abduct.cpp ** \verbatim ** Top contributors (to current version): ** Andrew Reynolds ** This file is part of the CVC4 project. ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** \brief Implementation of sygus abduction utility, which ** transforms an arbitrary input into an abduction problem. **/ #include "theory/quantifiers/sygus/sygus_abduct.h" #include "expr/datatype.h" #include "expr/dtype.h" #include "expr/node_algorithm.h" #include "expr/sygus_datatype.h" #include "printer/sygus_print_callback.h" #include "theory/datatypes/sygus_datatype_utils.h" #include "theory/quantifiers/quantifiers_attributes.h" #include "theory/quantifiers/quantifiers_rewriter.h" #include "theory/quantifiers/sygus/sygus_grammar_cons.h" #include "theory/quantifiers/term_util.h" #include "theory/rewriter.h" using namespace std; using namespace CVC4::kind; namespace CVC4 { namespace theory { namespace quantifiers { SygusAbduct::SygusAbduct() {} Node SygusAbduct::mkAbductionConjecture(const std::string& name, const std::vector& asserts, const std::vector& axioms, TypeNode abdGType) { NodeManager* nm = NodeManager::currentNM(); std::unordered_set symset; for (size_t i = 0, size = asserts.size(); i < size; i++) { expr::getSymbols(asserts[i], symset); } Trace("sygus-abduct-debug") << "...finish, got " << symset.size() << " symbols." << std::endl; Trace("sygus-abduct-debug") << "Setup symbols..." << std::endl; std::vector syms; std::vector vars; std::vector varlist; std::vector varlistTypes; for (const Node& s : symset) { TypeNode tn = s.getType(); if (tn.isConstructor() || tn.isSelector() || tn.isTester()) { // datatype symbols should be considered interpreted symbols here, not // (higher-order) variables. continue; } // Notice that we allow for non-first class (e.g. function) variables here. // This is applicable to the case where we are doing get-abduct in a logic // with UF. std::stringstream ss; ss << s; Node var = nm->mkBoundVar(tn); syms.push_back(s); vars.push_back(var); Node vlv = nm->mkBoundVar(ss.str(), tn); varlist.push_back(vlv); varlistTypes.push_back(tn); // set that this variable encodes the term s SygusVarToTermAttribute sta; vlv.setAttribute(sta, s); } Trace("sygus-abduct-debug") << "...finish" << std::endl; Trace("sygus-abduct-debug") << "Make abduction predicate..." << std::endl; // make the abduction predicate to synthesize TypeNode abdType = varlistTypes.empty() ? nm->booleanType() : nm->mkPredicateType(varlistTypes); Node abd = nm->mkBoundVar(name.c_str(), abdType); Trace("sygus-abduct-debug") << "...finish" << std::endl; // the sygus variable list Node abvl; // if provided, we will associate the provide sygus datatype type with the // function-to-synthesize. However, we must convert it so that its // free symbols are universally quantified. if (!abdGType.isNull()) { Assert(abdGType.isDatatype() && abdGType.getDType().isSygus()); Trace("sygus-abduct-debug") << "Process abduction type:" << std::endl; Trace("sygus-abduct-debug") << abdGType.getDType().getName() << std::endl; // substitute the free symbols of the grammar with variables corresponding // to the formal argument list of the new sygus datatype type. TypeNode abdGTypeS = datatypes::utils::substituteAndGeneralizeSygusType( abdGType, syms, varlist); Assert(abdGTypeS.isDatatype() && abdGTypeS.getDType().isSygus()); Trace("sygus-abduct-debug") << "Make sygus grammar attribute..." << std::endl; Node sym = nm->mkBoundVar("sfproxy_abduct", abdGTypeS); // Set the sygus grammar attribute to indicate that abdGTypeS encodes the // grammar for abd. theory::SygusSynthGrammarAttribute ssg; abd.setAttribute(ssg, sym); Trace("sygus-abduct-debug") << "Finished setting up grammar." << std::endl; // use the bound variable list from the new substituted grammar type const DType& agtsd = abdGTypeS.getDType(); abvl = agtsd.getSygusVarList(); Assert(!abvl.isNull() && abvl.getKind() == BOUND_VAR_LIST); } else { // the bound variable list of the abduct-to-synthesize is determined by // the variable list above abvl = nm->mkNode(BOUND_VAR_LIST, varlist); // We do not set a grammar type for abd (SygusSynthGrammarAttribute). // Its grammar will be constructed internally in the default way } Trace("sygus-abduct-debug") << "Make abduction predicate app..." << std::endl; std::vector achildren; achildren.push_back(abd); achildren.insert(achildren.end(), vars.begin(), vars.end()); Node abdApp = vars.empty() ? abd : nm->mkNode(APPLY_UF, achildren); Trace("sygus-abduct-debug") << "...finish" << std::endl; Trace("sygus-abduct-debug") << "Set attributes..." << std::endl; // set the sygus bound variable list abd.setAttribute(theory::SygusSynthFunVarListAttribute(), abvl); Trace("sygus-abduct-debug") << "...finish" << std::endl; Trace("sygus-abduct-debug") << "Make conjecture body..." << std::endl; Node input = asserts.size() == 1 ? asserts[0] : nm->mkNode(AND, asserts); input = input.substitute(syms.begin(), syms.end(), vars.begin(), vars.end()); // A(x) => ~input( x ) input = nm->mkNode(OR, abdApp.negate(), input.negate()); Trace("sygus-abduct-debug") << "...finish" << std::endl; Trace("sygus-abduct-debug") << "Make conjecture..." << std::endl; Node res = input.negate(); if (!vars.empty()) { Node bvl = nm->mkNode(BOUND_VAR_LIST, vars); // exists x. ~( A( x ) => ~input( x ) ) res = nm->mkNode(EXISTS, bvl, res); } // sygus attribute Node sygusVar = nm->mkSkolem("sygus", nm->booleanType()); theory::SygusAttribute ca; sygusVar.setAttribute(ca, true); Node instAttr = nm->mkNode(INST_ATTRIBUTE, sygusVar); std::vector iplc; iplc.push_back(instAttr); Node aconj = axioms.size() == 0 ? nm->mkConst(true) : (axioms.size() == 1 ? axioms[0] : nm->mkNode(AND, axioms)); aconj = aconj.substitute(syms.begin(), syms.end(), vars.begin(), vars.end()); Trace("sygus-abduct") << "---> Assumptions: " << aconj << std::endl; Node sc = nm->mkNode(AND, aconj, abdApp); Node vbvl = nm->mkNode(BOUND_VAR_LIST, vars); sc = nm->mkNode(EXISTS, vbvl, sc); Node sygusScVar = nm->mkSkolem("sygus_sc", nm->booleanType()); sygusScVar.setAttribute(theory::SygusSideConditionAttribute(), sc); instAttr = nm->mkNode(INST_ATTRIBUTE, sygusScVar); // build in the side condition // exists x. A( x ) ^ input_axioms( x ) // as an additional annotation on the sygus conjecture. In other words, // the abducts A we procedure must be consistent with our axioms. iplc.push_back(instAttr); Node instAttrList = nm->mkNode(INST_PATTERN_LIST, iplc); Node fbvl = nm->mkNode(BOUND_VAR_LIST, abd); // forall A. exists x. ~( A( x ) => ~input( x ) ) res = nm->mkNode(FORALL, fbvl, res, instAttrList); Trace("sygus-abduct-debug") << "...finish" << std::endl; res = theory::Rewriter::rewrite(res); Trace("sygus-abduct") << "Generate: " << res << std::endl; return res; } } // namespace quantifiers } // namespace theory } // namespace CVC4