/****************************************************************************** * Top contributors (to current version): * Andrew Reynolds, Mathias Preiner * * This file is part of the cvc5 project. * * Copyright (c) 2009-2021 by the authors listed in the file AUTHORS * in the top-level source directory and their institutional affiliations. * All rights reserved. See the file COPYING in the top-level source * directory for licensing information. * **************************************************************************** * * quantifier util */ #include "cvc5_private.h" #ifndef CVC5__THEORY__QUANT_UTIL_H #define CVC5__THEORY__QUANT_UTIL_H #include #include #include #include "expr/node.h" #include "smt/env_obj.h" #include "theory/incomplete_id.h" #include "theory/theory.h" namespace cvc5 { namespace theory { /** Quantifiers utility * * This is a lightweight version of a quantifiers module that does not implement * methods for checking satisfiability. */ class QuantifiersUtil : protected EnvObj { public: QuantifiersUtil(Env& env); virtual ~QuantifiersUtil(){} /** Called at the beginning of check-sat call. */ virtual void presolve() {} /* reset * Called at the beginning of an instantiation round * Returns false if the reset failed. When reset fails, the utility should * have added a lemma via a call to d_qim.addPendingLemma. */ virtual bool reset(Theory::Effort e) { return true; } /* Called for new quantifiers */ virtual void registerQuantifier(Node q) {} /** Identify this module (for debugging, dynamic configuration, etc..) */ virtual std::string identify() const = 0; /** Check complete? * * Returns false if the utility's reasoning was globally incomplete * (e.g. "sat" must be replaced with "incomplete"). If this method returns * false, it should update incId to the reason for incompleteness. */ virtual bool checkComplete(IncompleteId& incId) { return true; } }; class QuantPhaseReq { private: /** helper functions compute phase requirements */ void computePhaseReqs( Node n, bool polarity, std::map< Node, int >& phaseReqs ); public: QuantPhaseReq(){} QuantPhaseReq( Node n, bool computeEq = false ); ~QuantPhaseReq(){} void initialize( Node n, bool computeEq ); /** is phase required */ bool isPhaseReq( Node lit ) { return d_phase_reqs.find( lit )!=d_phase_reqs.end(); } /** get phase requirement */ bool getPhaseReq( Node lit ) { return d_phase_reqs.find( lit )==d_phase_reqs.end() ? false : d_phase_reqs[ lit ]; } /** phase requirements for each quantifier for each instantiation literal */ std::map< Node, bool > d_phase_reqs; std::map< Node, bool > d_phase_reqs_equality; std::map< Node, Node > d_phase_reqs_equality_term; /** * Get the polarity of the child^th child of n, assuming its polarity * is given by (hasPol, pol). A term has polarity if it is only relevant * if asserted with one polarity. Its polarity is (typically) the number * of negations it is beneath. */ static void getPolarity(Node n, size_t child, bool hasPol, bool pol, bool& newHasPol, bool& newPol); /** * Get the entailed polarity of the child^th child of n, assuming its * entailed polarity is given by (hasPol, pol). A term has entailed polarity * if it must be asserted with a polarity. Its polarity is (typically) the * number of negations it is beneath. * * Entailed polarity and polarity above differ, e.g.: * (and A B): A and B have true polarity and true entailed polarity * (or A B): A and B have true polarity and no entailed polarity */ static void getEntailPolarity(Node n, size_t child, bool hasPol, bool pol, bool& newHasPol, bool& newPol); }; } } // namespace cvc5 #endif /* CVC5__THEORY__QUANT_UTIL_H */