/********************* */ /*! \file quant_util.cpp ** \verbatim ** Top contributors (to current version): ** Andrew Reynolds, Morgan Deters, Tim King ** This file is part of the CVC4 project. ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** \brief Implementation of quantifier utilities **/ #include "theory/quantifiers/quant_util.h" #include "theory/quantifiers/inst_match.h" #include "theory/quantifiers/term_database.h" #include "theory/quantifiers_engine.h" using namespace std; using namespace CVC4; using namespace CVC4::kind; using namespace CVC4::context; using namespace CVC4::theory; unsigned QuantifiersModule::needsModel( Theory::Effort e ) { return QuantifiersEngine::QEFFORT_NONE; } eq::EqualityEngine * QuantifiersModule::getEqualityEngine() { return d_quantEngine->getMasterEqualityEngine(); } bool QuantifiersModule::areEqual( TNode n1, TNode n2 ) { return d_quantEngine->getEqualityQuery()->areEqual( n1, n2 ); } bool QuantifiersModule::areDisequal( TNode n1, TNode n2 ) { return d_quantEngine->getEqualityQuery()->areDisequal( n1, n2 ); } TNode QuantifiersModule::getRepresentative( TNode n ) { return d_quantEngine->getEqualityQuery()->getRepresentative( n ); } quantifiers::TermDb * QuantifiersModule::getTermDatabase() { return d_quantEngine->getTermDatabase(); } bool QuantArith::getMonomial( Node n, Node& c, Node& v ){ if( n.getKind()==MULT && n.getNumChildren()==2 && n[0].isConst() ){ c = n[0]; v = n[1]; return true; }else{ return false; } } bool QuantArith::getMonomial( Node n, std::map< Node, Node >& msum ) { if( n.isConst() ){ if( msum.find(Node::null())==msum.end() ){ msum[Node::null()] = n; return true; } }else if( n.getKind()==MULT && n.getNumChildren()==2 && n[0].isConst() ){ if( msum.find(n[1])==msum.end() ){ msum[n[1]] = n[0]; return true; } }else{ if( msum.find(n)==msum.end() ){ msum[n] = Node::null(); return true; } } return false; } bool QuantArith::getMonomialSum( Node n, std::map< Node, Node >& msum ) { if ( n.getKind()==PLUS ){ for( unsigned i=0; i& msum ) { if( lit.getKind()==GEQ || lit.getKind()==EQUAL ){ if( getMonomialSum( lit[0], msum ) ){ if( lit[1].isConst() && lit[1].getConst().isZero() ){ return true; }else{ //subtract the other side std::map< Node, Node > msum2; if( getMonomialSum( lit[1], msum2 ) ){ for( std::map< Node, Node >::iterator it = msum2.begin(); it != msum2.end(); ++it ){ std::map< Node, Node >::iterator it2 = msum.find( it->first ); if( it2!=msum.end() ){ Node r = NodeManager::currentNM()->mkNode( MINUS, it2->second.isNull() ? NodeManager::currentNM()->mkConst( Rational(1) ) : it2->second, it->second.isNull() ? NodeManager::currentNM()->mkConst( Rational(1) ) : it->second ); msum[it->first] = Rewriter::rewrite( r ); }else{ msum[it->first] = it->second.isNull() ? NodeManager::currentNM()->mkConst( Rational(-1) ) : negate( it->second ); } } return true; } } } } return false; } Node QuantArith::mkNode( std::map< Node, Node >& msum ) { std::vector< Node > children; for( std::map< Node, Node >::iterator it = msum.begin(); it != msum.end(); ++it ){ Node m; if( !it->first.isNull() ){ if( !it->second.isNull() ){ m = NodeManager::currentNM()->mkNode( MULT, it->second, it->first ); }else{ m = it->first; } }else{ Assert( !it->second.isNull() ); m = it->second; } children.push_back(m); } return children.size()>1 ? NodeManager::currentNM()->mkNode( PLUS, children ) : (children.size()==1 ? children[0] : NodeManager::currentNM()->mkConst( Rational(0) )); } // given (msum 0), solve (veq_c * v val) or (val veq_c * v), where: // veq_c is either null (meaning 1), or positive. // return value 1: veq_c*v is RHS, -1: veq_c*v is LHS, 0: failed. int QuantArith::isolate( Node v, std::map< Node, Node >& msum, Node & veq_c, Node & val, Kind k ) { std::map< Node, Node >::iterator itv = msum.find( v ); if( itv!=msum.end() ){ std::vector< Node > children; Rational r = itv->second.isNull() ? Rational(1) : itv->second.getConst(); if ( r.sgn()!=0 ){ for( std::map< Node, Node >::iterator it = msum.begin(); it != msum.end(); ++it ){ if( it->first!=v ){ Node m; if( !it->first.isNull() ){ if ( !it->second.isNull() ){ m = NodeManager::currentNM()->mkNode( MULT, it->second, it->first ); }else{ m = it->first; } }else{ m = it->second; } children.push_back(m); } } val = children.size()>1 ? NodeManager::currentNM()->mkNode( PLUS, children ) : (children.size()==1 ? children[0] : NodeManager::currentNM()->mkConst( Rational(0) )); if( !r.isOne() && !r.isNegativeOne() ){ if( v.getType().isInteger() ){ veq_c = NodeManager::currentNM()->mkConst( r.abs() ); }else{ val = NodeManager::currentNM()->mkNode( MULT, val, NodeManager::currentNM()->mkConst( Rational(1) / r.abs() ) ); } } if( r.sgn()==1 ){ val = negate(val); }else{ val = Rewriter::rewrite( val ); } return ( r.sgn()==1 || k==EQUAL ) ? 1 : -1; } } return 0; } int QuantArith::isolate( Node v, std::map< Node, Node >& msum, Node & veq, Kind k, bool doCoeff ) { Node veq_c; Node val; //isolate v in the (in)equality int ires = isolate( v, msum, veq_c, val, k ); if( ires!=0 ){ Node vc = v; if( !veq_c.isNull() ){ if( doCoeff ){ vc = NodeManager::currentNM()->mkNode( MULT, veq_c, vc ); }else{ return 0; } } bool inOrder = ires==1; veq = NodeManager::currentNM()->mkNode( k, inOrder ? vc : val, inOrder ? val : vc ); } return ires; } Node QuantArith::solveEqualityFor( Node lit, Node v ) { Assert( lit.getKind()==EQUAL || lit.getKind()==IFF ); //first look directly at sides TypeNode tn = lit[0].getType(); for( unsigned r=0; r<2; r++ ){ if( lit[r]==v ){ return lit[1-r]; } } if( tn.isReal() ){ if( quantifiers::TermDb::containsTerm( lit, v ) ){ std::map< Node, Node > msum; if( QuantArith::getMonomialSumLit( lit, msum ) ){ Node val, veqc; if( QuantArith::isolate( v, msum, veqc, val, EQUAL )!=0 ){ if( veqc.isNull() ){ return val; } } } } } return Node::null(); } Node QuantArith::negate( Node t ) { Node tt = NodeManager::currentNM()->mkNode( MULT, NodeManager::currentNM()->mkConst( Rational(-1) ), t ); tt = Rewriter::rewrite( tt ); return tt; } Node QuantArith::offset( Node t, int i ) { Node tt = NodeManager::currentNM()->mkNode( PLUS, NodeManager::currentNM()->mkConst( Rational(i) ), t ); tt = Rewriter::rewrite( tt ); return tt; } void QuantArith::debugPrintMonomialSum( std::map< Node, Node >& msum, const char * c ) { for(std::map< Node, Node >::iterator it = msum.begin(); it != msum.end(); ++it ){ Trace(c) << " "; if( !it->second.isNull() ){ Trace(c) << it->second; if( !it->first.isNull() ){ Trace(c) << " * "; } } if( !it->first.isNull() ){ Trace(c) << it->first; } Trace(c) << std::endl; } Trace(c) << std::endl; } void QuantRelevance::registerQuantifier( Node f ){ //compute symbols in f std::vector< Node > syms; computeSymbols( f[1], syms ); d_syms[f].insert( d_syms[f].begin(), syms.begin(), syms.end() ); //set initial relevance int minRelevance = -1; for( int i=0; i<(int)syms.size(); i++ ){ d_syms_quants[ syms[i] ].push_back( f ); int r = getRelevance( syms[i] ); if( r!=-1 && ( minRelevance==-1 || r& syms ){ if( n.getKind()==APPLY_UF ){ Node op = n.getOperator(); if( std::find( syms.begin(), syms.end(), op )==syms.end() ){ syms.push_back( op ); } } if( n.getKind()!=FORALL ){ for( int i=0; i<(int)n.getNumChildren(); i++ ){ computeSymbols( n[i], syms ); } } } /** set relevance */ void QuantRelevance::setRelevance( Node s, int r ){ if( d_computeRel ){ int rOld = getRelevance( s ); if( rOld==-1 || r phaseReqs2; computePhaseReqs( n, false, phaseReqs2 ); for( std::map< Node, int >::iterator it = phaseReqs2.begin(); it != phaseReqs2.end(); ++it ){ if( it->second==1 ){ d_phase_reqs[ it->first ] = true; }else if( it->second==-1 ){ d_phase_reqs[ it->first ] = false; } } Debug("inst-engine-phase-req") << "Phase requirements for " << n << ":" << std::endl; //now, compute if any patterns are equality required if( computeEq ){ for( std::map< Node, bool >::iterator it = d_phase_reqs.begin(); it != d_phase_reqs.end(); ++it ){ Debug("inst-engine-phase-req") << " " << it->first << " -> " << it->second << std::endl; if( it->first.getKind()==EQUAL ){ if( quantifiers::TermDb::hasInstConstAttr(it->first[0]) ){ if( !quantifiers::TermDb::hasInstConstAttr(it->first[1]) ){ d_phase_reqs_equality_term[ it->first[0] ] = it->first[1]; d_phase_reqs_equality[ it->first[0] ] = it->second; Debug("inst-engine-phase-req") << " " << it->first[0] << ( it->second ? " == " : " != " ) << it->first[1] << std::endl; } }else if( quantifiers::TermDb::hasInstConstAttr(it->first[1]) ){ d_phase_reqs_equality_term[ it->first[1] ] = it->first[0]; d_phase_reqs_equality[ it->first[1] ] = it->second; Debug("inst-engine-phase-req") << " " << it->first[1] << ( it->second ? " == " : " != " ) << it->first[0] << std::endl; } } } } } void QuantPhaseReq::computePhaseReqs( Node n, bool polarity, std::map< Node, int >& phaseReqs ){ bool newReqPol = false; bool newPolarity; if( n.getKind()==NOT ){ newReqPol = true; newPolarity = !polarity; }else if( n.getKind()==OR || n.getKind()==IMPLIES ){ if( !polarity ){ newReqPol = true; newPolarity = false; } }else if( n.getKind()==AND ){ if( polarity ){ newReqPol = true; newPolarity = true; } }else{ int val = polarity ? 1 : -1; if( phaseReqs.find( n )==phaseReqs.end() ){ phaseReqs[n] = val; }else if( val!=phaseReqs[n] ){ phaseReqs[n] = 0; } } if( newReqPol ){ for( int i=0; i<(int)n.getNumChildren(); i++ ){ if( n.getKind()==IMPLIES && i==0 ){ computePhaseReqs( n[i], !newPolarity, phaseReqs ); }else{ computePhaseReqs( n[i], newPolarity, phaseReqs ); } } } } void QuantPhaseReq::getPolarity( Node n, int child, bool hasPol, bool pol, bool& newHasPol, bool& newPol ) { if( n.getKind()==AND || n.getKind()==OR || n.getKind()==SEP_STAR ){ newHasPol = hasPol; newPol = pol; }else if( n.getKind()==IMPLIES ){ newHasPol = hasPol; newPol = child==0 ? !pol : pol; }else if( n.getKind()==NOT ){ newHasPol = hasPol; newPol = !pol; }else if( n.getKind()==ITE ){ newHasPol = (child!=0) && hasPol; newPol = pol; }else if( n.getKind()==FORALL ){ newHasPol = (child==1) && hasPol; newPol = pol; }else{ newHasPol = false; newPol = pol; } } void QuantPhaseReq::getEntailPolarity( Node n, int child, bool hasPol, bool pol, bool& newHasPol, bool& newPol ) { if( n.getKind()==AND || n.getKind()==OR ){ newHasPol = hasPol && pol==( n.getKind()==AND ); newPol = pol; }else if( n.getKind()==IMPLIES ){ newHasPol = hasPol && !pol; newPol = child==0 ? !pol : pol; }else if( n.getKind()==NOT ){ newHasPol = hasPol; newPol = !pol; }else{ newHasPol = false; newPol = pol; } } void QuantEPR::registerNode( Node n, std::map< int, std::map< Node, bool > >& visited, bool beneathQuant, bool hasPol, bool pol ) { int vindex = hasPol ? ( pol ? 1 : -1 ) : 0; if( visited[vindex].find( n )==visited[vindex].end() ){ visited[vindex][n] = true; if( n.getKind()==FORALL ){ if( beneathQuant || !hasPol || !pol ){ for( unsigned i=0; i0 ){ if( tn.isSort() ){ if( d_non_epr.find( tn )==d_non_epr.end() ){ Trace("quant-epr") << "Sort " << tn << " is non-EPR because of " << n << std::endl; d_non_epr[tn] = true; } } for( unsigned i=0; i > visited; registerNode( assertion, visited, false, true, true ); } void QuantEPR::finishInit() { for( std::map< TypeNode, std::vector< Node > >::iterator it = d_consts.begin(); it != d_consts.end(); ++it ){ if( d_non_epr.find( it->first )!=d_non_epr.end() ){ it->second.clear(); }else{ if( it->second.empty() ){ it->second.push_back( NodeManager::currentNM()->mkSkolem( "e", it->first, "EPR base constant" ) ); } if( Trace.isOn("quant-epr") ){ Trace("quant-epr") << "Type " << it->first << " is EPR, with constants : " << std::endl; for( unsigned i=0; isecond.size(); i++ ){ Trace("quant-epr") << " " << it->second[i] << std::endl; } } } } } bool QuantEPR::isEPRConstant( TypeNode tn, Node k ) { return std::find( d_consts[tn].begin(), d_consts[tn].end(), k )!=d_consts[tn].end(); }