/********************* */ /*! \file inst_propagator.cpp ** \verbatim ** Top contributors (to current version): ** Andrew Reynolds ** This file is part of the CVC4 project. ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** Propagate mechanism for instantiations **/ #include #include "theory/quantifiers/inst_propagator.h" #include "theory/rewriter.h" #include "theory/quantifiers/term_database.h" using namespace CVC4; using namespace std; using namespace CVC4::theory; using namespace CVC4::theory::quantifiers; using namespace CVC4::kind; EqualityQueryInstProp::EqualityQueryInstProp( QuantifiersEngine* qe ) : d_qe( qe ){ d_true = NodeManager::currentNM()->mkConst( true ); d_false = NodeManager::currentNM()->mkConst( false ); } bool EqualityQueryInstProp::reset( Theory::Effort e ) { d_uf.clear(); d_uf_exp.clear(); d_diseq_list.clear(); return true; } /** contains term */ bool EqualityQueryInstProp::hasTerm( Node a ) { if( getEngine()->hasTerm( a ) ){ return true; }else{ std::vector< Node > exp; Node ar = getUfRepresentative( a, exp ); return !ar.isNull() && getEngine()->hasTerm( ar ); } } /** get the representative of the equivalence class of a */ Node EqualityQueryInstProp::getRepresentative( Node a ) { if( getEngine()->hasTerm( a ) ){ a = getEngine()->getRepresentative( a ); } std::vector< Node > exp; Node ar = getUfRepresentative( a, exp ); return ar.isNull() ? a : ar; } /** returns true if a and b are equal in the current context */ bool EqualityQueryInstProp::areEqual( Node a, Node b ) { if( a==b ){ return true; }else{ eq::EqualityEngine* ee = getEngine(); if( ee->hasTerm( a ) && ee->hasTerm( b ) ){ if( ee->areEqual( a, b ) ){ return true; } } return false; } } /** returns true is a and b are disequal in the current context */ bool EqualityQueryInstProp::areDisequal( Node a, Node b ) { if( a==b ){ return true; }else{ eq::EqualityEngine* ee = getEngine(); if( ee->hasTerm( a ) && ee->hasTerm( b ) ){ if( ee->areDisequal( a, b, false ) ){ return true; } } return false; } } /** get the equality engine associated with this query */ eq::EqualityEngine* EqualityQueryInstProp::getEngine() { return d_qe->getMasterEqualityEngine(); } /** get the equivalence class of a */ void EqualityQueryInstProp::getEquivalenceClass( Node a, std::vector< Node >& eqc ) { //TODO? } TNode EqualityQueryInstProp::getCongruentTerm( Node f, std::vector< TNode >& args ) { TNode t = d_qe->getTermDatabase()->getCongruentTerm( f, args ); if( !t.isNull() ){ return t; }else{ //TODO? return TNode::null(); } } Node EqualityQueryInstProp::getRepresentativeExp( Node a, std::vector< Node >& exp ) { bool engine_has_a = getEngine()->hasTerm( a ); if( engine_has_a ){ a = getEngine()->getRepresentative( a ); } //get union find representative, if this occurs in the equality engine, return it unsigned prev_size = exp.size(); Node ar = getUfRepresentative( a, exp ); if( !ar.isNull() ){ if( engine_has_a || getEngine()->hasTerm( ar ) ){ Assert( getEngine()->hasTerm( ar ) ); Assert( getEngine()->getRepresentative( ar )==ar ); return ar; } }else{ if( engine_has_a ){ return a; } } //retract explanation while( exp.size()>prev_size ){ exp.pop_back(); } return Node::null(); } bool EqualityQueryInstProp::areEqualExp( Node a, Node b, std::vector< Node >& exp ) { if( areEqual( a, b ) ){ return true; }else{ std::vector< Node > exp_a; Node ar = getUfRepresentative( a, exp_a ); if( !ar.isNull() ){ std::vector< Node > exp_b; if( ar==getUfRepresentative( b, exp_b ) ){ merge_exp( exp, exp_a ); merge_exp( exp, exp_b ); return true; } } return false; } } bool EqualityQueryInstProp::areDisequalExp( Node a, Node b, std::vector< Node >& exp ) { if( areDisequal( a, b ) ){ return true; }else{ //TODO? return false; } } Node EqualityQueryInstProp::getUfRepresentative( Node a, std::vector< Node >& exp ) { Assert( exp.empty() ); std::map< Node, Node >::iterator it = d_uf.find( a ); if( it!=d_uf.end() ){ if( it->second==a ){ Assert( d_uf_exp[ a ].empty() ); return it->second; }else{ Node m = getUfRepresentative( it->second, exp ); Assert( !m.isNull() ); if( m!=it->second ){ //update union find d_uf[ a ] = m; //update explanation : merge the explanation of the parent merge_exp( d_uf_exp[ a ], exp ); Trace("qip-eq") << "EqualityQueryInstProp::getUfRepresentative : merge " << a << " -> " << m << ", exp size=" << d_uf_exp[ a ].size() << std::endl; } //add current explanation to exp: note that exp is a subset of d_uf_exp[ a ], reset exp.clear(); exp.insert( exp.end(), d_uf_exp[ a ].begin(), d_uf_exp[ a ].end() ); return m; } }else{ return Node::null(); } } // set a == b with reason, return status, modify a and b to representatives pre-merge int EqualityQueryInstProp::setEqual( Node& a, Node& b, std::vector< Node >& reason ) { int status = STATUS_MERGED_UNKNOWN; Trace("qip-eq") << "EqualityQueryInstProp::setEqual " << a << ", " << b << ", reason size = " << reason.size() << std::endl; //get the representative for a std::vector< Node > exp_a; Node ar = getUfRepresentative( a, exp_a ); if( ar.isNull() ){ Assert( exp_a.empty() ); ar = a; } if( ar==b ){ Trace("qip-eq") << "EqualityQueryInstProp::setEqual : already equal" << std::endl; return STATUS_NONE; } bool swap = false; //get the representative for b std::vector< Node > exp_b; Node br = getUfRepresentative( b, exp_b ); if( br.isNull() ){ Assert( exp_b.empty() ); br = b; if( !getEngine()->hasTerm( br ) ){ if( ar!=a ){ swap = true; } }else{ if( getEngine()->hasTerm( ar ) ){ status = STATUS_MERGED_KNOWN; } } }else{ if( ar==br ){ Trace("qip-eq") << "EqualityQueryInstProp::setEqual : already equal" << std::endl; return STATUS_NONE; }else if( getEngine()->hasTerm( ar ) ){ if( getEngine()->hasTerm( br ) ){ status = STATUS_MERGED_KNOWN; }else{ swap = true; } } } if( swap ){ //swap Node temp_r = ar; ar = br; br = temp_r; } Assert( ar!=br ); Assert( !getEngine()->hasTerm( ar ) || getEngine()->hasTerm( br ) ); //update the union find Assert( d_uf_exp[ar].empty() ); Assert( d_uf_exp[br].empty() ); d_uf[ar] = br; merge_exp( d_uf_exp[ar], exp_a ); merge_exp( d_uf_exp[ar], exp_b ); merge_exp( d_uf_exp[ar], reason ); d_uf[br] = br; d_uf_exp[br].clear(); Trace("qip-eq") << "EqualityQueryInstProp::setEqual : merge " << ar << " -> " << br << ", exp size = " << d_uf_exp[ar].size() << ", status = " << status << std::endl; a = ar; b = br; return status; } void EqualityQueryInstProp::addArgument( std::vector< TNode >& args, std::vector< TNode >& props, Node n, bool is_prop, bool pol ) { if( is_prop ){ if( isLiteral( n ) ){ props.push_back( pol ? n : n.negate() ); return; } } args.push_back( n ); } bool EqualityQueryInstProp::isLiteral( Node n ) { Kind ak = n.getKind()==NOT ? n[0].getKind() : n.getKind(); Assert( ak!=NOT ); return ak!=AND && ak!=OR && ak!=IFF && ak!=ITE; } //this is identical to TermDb::evaluateTerm2, but tracks more information Node EqualityQueryInstProp::evaluateTermExp( TNode n, std::vector< Node >& exp, std::map< TNode, Node >& visited, bool hasPol, bool pol, std::map< Node, bool >& watch_list_out, std::vector< TNode >& props ) { std::map< TNode, Node >::iterator itv = visited.find( n ); if( itv != visited.end() ){ return itv->second; }else{ Trace("term-db-eval") << "evaluate term : " << n << std::endl; std::vector< Node > exp_n; Node ret = getRepresentativeExp( n, exp_n ); if( ret.isNull() ){ //term is not known to be equal to a representative in equality engine, evaluate it Kind k = n.getKind(); if( k==FORALL ){ ret = Node::null(); }else{ std::map< Node, bool > watch_list_out_curr; TNode f = d_qe->getTermDatabase()->getMatchOperator( n ); std::vector< TNode > args; bool ret_set = false; bool childChanged = false; int abort_i = -1; //get the child entailed polarity Assert( n.getKind()!=IMPLIES ); bool newHasPol, newPol; QuantPhaseReq::getEntailPolarity( n, 0, hasPol, pol, newHasPol, newPol ); //for each child for( unsigned i=0; i=2 ){ //we are done if at least two args are unevaluated abort_i = i; break; } }else if( k==kind::ITE ){ //we are done if we are ITE and condition is unevaluated Assert( i==0 ); args.push_back( c ); abort_i = i; break; }else{ args.push_back( c ); } } } //add remaining children if we aborted if( abort_i!=-1 ){ for( int i=(abort_i+1); i<(int)n.getNumChildren(); i++ ){ args.push_back( n[i] ); } } //copy over the watch list for( std::map< Node, bool >::iterator itc = watch_list_out_curr.begin(); itc != watch_list_out_curr.end(); ++itc ){ watch_list_out[itc->first] = itc->second; } //if we have not short-circuited evaluation if( !ret_set ){ //if it is an indexed term, return the congruent term if( !f.isNull() && watch_list_out.empty() ){ Assert( args.size()==n.getNumChildren() ); //args contains terms known by the equality engine TNode nn = getCongruentTerm( f, args ); Trace("term-db-eval") << " got congruent term " << nn << " from DB for " << n << std::endl; if( !nn.isNull() ){ //successfully constructed representative in EE Assert( exp_n.empty() ); ret = getRepresentativeExp( nn, exp_n ); Trace("term-db-eval") << "return rep, exp size = " << exp_n.size() << std::endl; merge_exp( exp, exp_n ); ret_set = true; Assert( !ret.isNull() ); } } if( !ret_set ){ if( childChanged ){ Trace("term-db-eval") << "return rewrite" << std::endl; if( ( k==kind::AND || k==kind::OR ) ){ if( args.empty() ){ ret = k==kind::AND ? d_true : d_false; ret_set = true; }else if( args.size()==1 ){ ret = args[0]; ret_set = true; } } if( !ret_set ){ Assert( args.size()==n.getNumChildren() ); if( n.getMetaKind() == kind::metakind::PARAMETERIZED ){ args.insert( args.begin(), n.getOperator() ); } ret = NodeManager::currentNM()->mkNode( k, args ); ret = Rewriter::rewrite( ret ); watch_list_out[ret] = true; } }else{ ret = n; watch_list_out[ret] = true; } } } } }else{ Trace("term-db-eval") << "...exists in ee, return rep, exp size = " << exp_n.size() << std::endl; merge_exp( exp, exp_n ); } Trace("term-db-eval") << "evaluated term : " << n << ", got : " << ret << ", exp size = " << exp.size() << std::endl; visited[n] = ret; return ret; } } void EqualityQueryInstProp::merge_exp( std::vector< Node >& v, std::vector< Node >& v_to_merge, int up_to_size ) { //TODO : optimize if( v.empty() ){ Assert( up_to_size==-1 || up_to_size==(int)v_to_merge.size() ); v.insert( v.end(), v_to_merge.begin(), v_to_merge.end() ); }else{ //std::vector< Node >::iterator v_end = v.end(); up_to_size = up_to_size==-1 ? (int)v_to_merge.size() : up_to_size; for( int j=0; j& terms, Node body ) { d_active = true; //information about the instance d_q = q; d_lem = lem; Assert( d_terms.empty() ); d_terms.insert( d_terms.end(), terms.begin(), terms.end() ); //the current lemma d_curr = body; d_curr_exp.push_back( body ); } InstPropagator::InstPropagator( QuantifiersEngine* qe ) : d_qe( qe ), d_notify(*this), d_qy( qe ){ } bool InstPropagator::reset( Theory::Effort e ) { d_icount = 0; d_ii.clear(); for( unsigned i=0; i<2; i++ ){ d_conc_to_id[i].clear(); } d_conflict = false; d_watch_list.clear(); d_relevant_inst.clear(); return d_qy.reset( e ); } void InstPropagator::notifyInstantiation( unsigned quant_e, Node q, Node lem, std::vector< Node >& terms, Node body ) { if( !d_conflict ){ if( Trace.isOn("qip-prop") ){ Trace("qip-prop") << "InstPropagator:: Notify instantiation " << q << " : " << std::endl; for( unsigned i=0; i visited; std::map< Node, bool > watch_list; std::vector< TNode > props; Node eval = d_qy.evaluateTermExp( ii.d_curr, ii.d_curr_exp, visited, true, true, watch_list, props ); if( eval.isNull() ){ ii.d_active = false; }else if( firstTime || eval!=ii.d_curr ){ if( EqualityQueryInstProp::isLiteral( eval ) ){ props.push_back( eval ); eval = d_qy.d_true; watch_list.clear(); } if( Trace.isOn("qip-prop") ){ Trace("qip-prop") << "Update info [" << id << "]..." << std::endl; Trace("qip-prop") << "...updated lemma " << ii.d_curr << " -> " << eval << ", exp = "; debugPrintExplanation( ii.d_curr_exp, "qip-prop" ); Trace("qip-prop") << std::endl; Trace("qip-prop") << "...watch list: " << std::endl; for( std::map< Node, bool >::iterator itw = watch_list.begin(); itw!=watch_list.end(); ++itw ){ Trace("qip-prop") << " " << itw->first << std::endl; } Trace("qip-prop") << "...new propagations: " << std::endl; for( unsigned i=0; i::iterator itw = watch_list.begin(); itw != watch_list.end(); ++itw ){ d_watch_list[ itw->first ][ id ] = true; } }else{ Trace("qip-prop-debug") << "...conclusion is duplicate." << std::endl; ii.d_active = false; } } }else{ Trace("qip-prop-debug") << "...did not update." << std::endl; } Assert( !d_conflict ); return true; } void InstPropagator::propagate( Node a, Node b, bool pol, std::vector< Node >& exp ) { if( Trace.isOn("qip-propagate") ){ Trace("qip-propagate") << "* Propagate " << a << ( pol ? " == " : " != " ) << b << ", exp = "; debugPrintExplanation( exp, "qip-propagate" ); Trace("qip-propagate") << "..." << std::endl; } if( pol ){ std::vector< Node > exp_d; if( d_qy.areDisequalExp( a, b, exp_d ) ){ Trace("qip-prop-debug") << "...conflict." << std::endl; EqualityQueryInstProp::merge_exp( exp, exp_d ); conflict( exp ); }else{ //set equal int status = d_qy.setEqual( a, b, exp ); if( status==EqualityQueryInstProp::STATUS_NONE ){ Trace("qip-prop-debug") << "...already equal." << std::endl; return; }else if( status==EqualityQueryInstProp::STATUS_MERGED_KNOWN ){ Assert( d_qy.getEngine()->hasTerm( a ) ); Assert( d_qy.getEngine()->hasTerm( b ) ); Trace("qip-prop-debug") << "...equality between known terms." << std::endl; addRelevantInstances( exp, "qip-propagate" ); } Trace("qip-prop-debug") << "...merging " << a << " and " << b << std::endl; for( unsigned i=0; i<2; i++ ){ //update terms from watched lists Node c = i==0 ? a : b; std::map< Node, std::map< unsigned, bool > >::iterator it = d_watch_list.find( c ); if( it!=d_watch_list.end() ){ Trace("qip-prop-debug") << "...update ids from watch list of " << c << ", size=" << it->second.size() << "..." << std::endl; for( std::map< unsigned, bool >::iterator itw = it->second.begin(); itw != it->second.end(); ++itw ){ unsigned idw = itw->first; if( std::find( d_update_list.begin(), d_update_list.end(), idw )==d_update_list.end() ){ Trace("qip-prop-debug") << "...will update " << idw << std::endl; d_update_list.push_back( idw ); } } d_watch_list.erase( c ); } } } }else{ std::vector< Node > exp_e; if( d_qy.areEqualExp( a, b, exp_e ) ){ EqualityQueryInstProp::merge_exp( exp, exp_e ); conflict( exp ); }else{ //TODO? } } } void InstPropagator::conflict( std::vector< Node >& exp ) { Trace("qip-propagate") << "Conflict, exp size =" << exp.size() << std::endl; d_conflict = true; d_relevant_inst.clear(); addRelevantInstances( exp, "qip-propagate" ); } bool InstPropagator::cacheConclusion( unsigned id, Node body, int prop_index ) { Assert( prop_index==0 || prop_index==1 ); //check if the conclusion is non-redundant if( d_conc_to_id[prop_index].find( body )==d_conc_to_id[prop_index].end() ){ d_conc_to_id[prop_index][body] = id; return true; }else{ return false; } } void InstPropagator::addRelevantInstances( std::vector< Node >& exp, const char * c ) { for( unsigned i=0; i& exp, const char * c ) { for( unsigned i=0; i