/********************* */ /*! \file pseudoboolean_proc.cpp ** \verbatim ** Top contributors (to current version): ** Tim King, Paul Meng ** This file is part of the CVC4 project. ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** \brief [[ Add one-line brief description here ]] ** ** [[ Add lengthier description here ]] ** \todo document this file **/ #include "theory/arith/pseudoboolean_proc.h" #include "base/output.h" #include "theory/arith/arith_utilities.h" #include "theory/arith/normal_form.h" #include "theory/rewriter.h" namespace CVC4 { namespace theory { namespace arith { PseudoBooleanProcessor::PseudoBooleanProcessor(context::Context* user_context) : d_pbBounds(user_context) , d_subCache(user_context) , d_pbs(user_context, 0) {} bool PseudoBooleanProcessor::decomposeAssertion(Node assertion, bool negated){ if (assertion.getKind() != kind::GEQ){ return false; } Assert(assertion.getKind() == kind::GEQ); Debug("pbs::rewrites") << "decomposeAssertion" << assertion << std::endl; Node l = assertion[0]; Node r = assertion[1]; if( r.getKind() != kind::CONST_RATIONAL ){ Debug("pbs::rewrites") << "not rhs constant" << assertion << std::endl; return false; } // don't bother matching on anything other than + on the left hand side if( l.getKind() != kind::PLUS){ Debug("pbs::rewrites") << "not plus" << assertion << std::endl; return false; } if(!Polynomial::isMember(l)){ Debug("pbs::rewrites") << "not polynomial" << assertion << std::endl; return false; } Polynomial p = Polynomial::parsePolynomial(l); clear(); if (negated) { // (not (>= p r)) // (< p r) // (> (-p) (-r)) // (>= (-p) (-r +1)) d_off = (-r.getConst()); if (d_off.value().isIntegral()) { d_off = d_off.value() + Rational(1); } else { d_off = Rational(d_off.value().ceiling()); } } else { // (>= p r) d_off = r.getConst(); d_off = Rational(d_off.value().ceiling()); } Assert(d_off.value().isIntegral()); int adj = negated ? -1 : 1; for(Polynomial::iterator i=p.begin(), end=p.end(); i != end; ++i){ Monomial m = *i; const Rational& coeff = m.getConstant().getValue(); if(!(coeff.isOne() || coeff.isNegativeOne())){ return false; } Assert(coeff.sgn() != 0); const VarList& vl = m.getVarList(); Node v = vl.getNode(); if(!isPseudoBoolean(v)){ return false; } int sgn = adj * coeff.sgn(); if(sgn > 0){ d_pos.push_back(v); }else{ d_neg.push_back(v); } } // all of the variables are pseudoboolean // with coefficients +/- and the offsetoff return true; } bool PseudoBooleanProcessor::isPseudoBoolean(Node v) const{ CDNode2PairMap::const_iterator ci = d_pbBounds.find(v); if(ci != d_pbBounds.end()){ const PairNode& p = (*ci).second; return !(p.first).isNull() && !(p.second).isNull(); } return false; } void PseudoBooleanProcessor::addGeqZero(Node v, Node exp){ Assert(isIntVar(v)); Assert(!exp.isNull()); CDNode2PairMap::const_iterator ci = d_pbBounds.find(v); Debug("pbs::rewrites") << "addGeqZero " << v << std::endl; if(ci == d_pbBounds.end()){ d_pbBounds.insert(v, std::make_pair(exp, Node::null())); }else{ const PairNode& p = (*ci).second; if(p.first.isNull()){ Assert(!p.second.isNull()); d_pbBounds.insert(v, std::make_pair(exp, p.second)); Debug("pbs::rewrites") << "add pbs " << v << std::endl; Assert(isPseudoBoolean(v)); d_pbs = d_pbs + 1; } } } void PseudoBooleanProcessor::addLeqOne(Node v, Node exp){ Assert(isIntVar(v)); Assert(!exp.isNull()); Debug("pbs::rewrites") << "addLeqOne " << v << std::endl; CDNode2PairMap::const_iterator ci = d_pbBounds.find(v); if(ci == d_pbBounds.end()){ d_pbBounds.insert(v, std::make_pair(Node::null(), exp)); }else{ const PairNode& p = (*ci).second; if(p.second.isNull()){ Assert(!p.first.isNull()); d_pbBounds.insert(v, std::make_pair(p.first, exp)); Debug("pbs::rewrites") << "add pbs " << v << std::endl; Assert(isPseudoBoolean(v)); d_pbs = d_pbs + 1; } } } void PseudoBooleanProcessor::learnRewrittenGeq(Node assertion, bool negated, Node orig){ Assert(assertion.getKind() == kind::GEQ); Assert(assertion == Rewriter::rewrite(assertion)); // assume assertion is rewritten Node l = assertion[0]; Node r = assertion[1]; if(r.getKind() == kind::CONST_RATIONAL){ const Rational& rc = r.getConst(); if(isIntVar(l)){ if(!negated && rc.isZero()){ // (>= x 0) addGeqZero(l, orig); }else if(negated && rc == Rational(2)){ addLeqOne(l, orig); } }else if(l.getKind() == kind::MULT && l.getNumChildren() == 2){ Node c = l[0], v = l[1]; if(c.getKind() == kind::CONST_RATIONAL && c.getConst().isNegativeOne()){ if(isIntVar(v)){ if(!negated && rc.isNegativeOne()){ // (>= (* -1 x) -1) addLeqOne(v, orig); } } } } } if(!negated){ learnGeqSub(assertion); } } void PseudoBooleanProcessor::learnInternal(Node assertion, bool negated, Node orig){ switch(assertion.getKind()){ case kind::GEQ: case kind::GT: case kind::LEQ: case kind::LT: { Node rw = Rewriter::rewrite(assertion); if(assertion == rw){ if(assertion.getKind() == kind::GEQ){ learnRewrittenGeq(assertion, negated, orig); } }else{ learnInternal(rw, negated, orig); } } break; case kind::NOT: learnInternal(assertion[0], !negated, orig); break; default: break; // do nothing } } void PseudoBooleanProcessor::learn(Node assertion){ if(assertion.getKind() == kind::AND){ Node::iterator ci=assertion.begin(), cend = assertion.end(); for(; ci != cend; ++ci){ learn(*ci); } }else{ learnInternal(assertion, false, assertion); } } Node PseudoBooleanProcessor::mkGeqOne(Node v){ NodeManager* nm = NodeManager::currentNM(); return nm->mkNode(kind::GEQ, v, mkRationalNode(Rational(1))); } void PseudoBooleanProcessor::learn(const NodeVec& assertions){ NodeVec::const_iterator ci, cend; ci = assertions.begin(); cend=assertions.end(); for(; ci != cend; ++ci ){ learn(*ci); } } void PseudoBooleanProcessor::addSub(Node from, Node to){ if(!d_subCache.hasSubstitution(from)){ Node rw_to = Rewriter::rewrite(to); d_subCache.addSubstitution(from, rw_to); } } void PseudoBooleanProcessor::learnGeqSub(Node geq){ Assert(geq.getKind() == kind::GEQ); const bool negated = false; bool success = decomposeAssertion(geq, negated); if(!success){ Debug("pbs::rewrites") << "failed " << std::endl; return; } Assert(d_off.value().isIntegral()); Integer off = d_off.value().ceiling(); // \sum pos >= \sum neg + off // for now special case everything we want // target easy clauses if( d_pos.size() == 1 && d_neg.size() == 1 && off.isZero() ){ // x >= y // |- (y >= 1) => (x >= 1) Node x = d_pos.front(); Node y = d_neg.front(); Node xGeq1 = mkGeqOne(x); Node yGeq1 = mkGeqOne(y); Node imp = yGeq1.impNode(xGeq1); addSub(geq, imp); }else if( d_pos.size() == 0 && d_neg.size() == 2 && off.isNegativeOne()){ // 0 >= (x + y -1) // |- 1 >= x + y // |- (or (not (x >= 1)) (not (y >= 1))) Node x = d_neg[0]; Node y = d_neg[1]; Node xGeq1 = mkGeqOne(x); Node yGeq1 = mkGeqOne(y); Node cases = (xGeq1.notNode()).orNode(yGeq1.notNode()); addSub(geq, cases); }else if( d_pos.size() == 2 && d_neg.size() == 1 && off.isZero() ){ // (x + y) >= z // |- (z >= 1) => (or (x >= 1) (y >=1 )) Node x = d_pos[0]; Node y = d_pos[1]; Node z = d_neg[0]; Node xGeq1 = mkGeqOne(x); Node yGeq1 = mkGeqOne(y); Node zGeq1 = mkGeqOne(z); NodeManager* nm =NodeManager::currentNM(); Node dis = nm->mkNode(kind::OR, zGeq1.notNode(), xGeq1, yGeq1); addSub(geq, dis); } } Node PseudoBooleanProcessor::applyReplacements(Node pre){ Node assertion = Rewriter::rewrite(pre); Node result = d_subCache.apply(assertion); if(Debug.isOn("pbs::rewrites") && result != assertion ){ Debug("pbs::rewrites") << "applyReplacements" < " << result << std::endl; } return result; } bool PseudoBooleanProcessor::likelyToHelp() const{ return d_pbs >= 100; } void PseudoBooleanProcessor::applyReplacements(NodeVec& assertions){ for(size_t i=0, N=assertions.size(); i < N; ++i){ Node assertion = assertions[i]; Node res = applyReplacements(assertion); assertions[i] = res; } } void PseudoBooleanProcessor::clear() { d_off.clear(); d_pos.clear(); d_neg.clear(); } }/* CVC4::theory::arith namespace */ }/* CVC4::theory namespace */ }/* CVC4 namespace */