/********************* */ /*! \file uf_proof.cpp ** \verbatim ** Top contributors (to current version): ** Liana Hadarean, Guy Katz ** This file is part of the CVC4 project. ** Copyright (c) 2009-2016 by the authors listed in the file AUTHORS ** in the top-level source directory) and their institutional affiliations. ** All rights reserved. See the file COPYING in the top-level source ** directory for licensing information.\endverbatim ** ** [[ Add lengthier description here ]] ** \todo document this file **/ #include "proof/theory_proof.h" #include "proof/proof_manager.h" #include "proof/uf_proof.h" #include "theory/uf/theory_uf.h" #include namespace CVC4 { inline static Node eqNode(TNode n1, TNode n2) { return NodeManager::currentNM()->mkNode(n1.getType().isBoolean() ? kind::IFF : kind::EQUAL, n1, n2); } // congrence matching term helper inline static bool match(TNode n1, TNode n2) { Debug("pf::uf") << "match " << n1 << " " << n2 << std::endl; if(ProofManager::currentPM()->hasOp(n1)) { n1 = ProofManager::currentPM()->lookupOp(n1); } if(ProofManager::currentPM()->hasOp(n2)) { n2 = ProofManager::currentPM()->lookupOp(n2); } Debug("pf::uf") << "+ match " << n1 << " " << n2 << std::endl; if(n1 == n2) { return true; } if(n1.getType().isFunction() && n2.hasOperator()) { if(ProofManager::currentPM()->hasOp(n2.getOperator())) { return n1 == ProofManager::currentPM()->lookupOp(n2.getOperator()); } else { return n1 == n2.getOperator(); } } if(n2.getType().isFunction() && n1.hasOperator()) { if(ProofManager::currentPM()->hasOp(n1.getOperator())) { return n2 == ProofManager::currentPM()->lookupOp(n1.getOperator()); } else { return n2 == n1.getOperator(); } } if(n1.hasOperator() && n2.hasOperator() && n1.getOperator() != n2.getOperator()) { return false; } for(size_t i = 0; i < n1.getNumChildren() && i < n2.getNumChildren(); ++i) { if(n1[i] != n2[i]) { return false; } } return true; } void ProofUF::toStream(std::ostream& out) { ProofLetMap map; toStream(out, map); } void ProofUF::toStream(std::ostream& out, const ProofLetMap& map) { Trace("theory-proof-debug") << "; Print UF proof..." << std::endl; //AJR : carry this further? toStreamLFSC(out, ProofManager::getUfProof(), d_proof, map); } void ProofUF::toStreamLFSC(std::ostream& out, TheoryProof * tp, theory::eq::EqProof * pf, const ProofLetMap& map) { Debug("pf::uf") << "ProofUF::toStreamLFSC starting" << std::endl; Debug("lfsc-uf") << "Printing uf proof in LFSC : " << std::endl; pf->debug_print("lfsc-uf"); Debug("lfsc-uf") << std::endl; toStreamRecLFSC( out, tp, pf, 0, map ); } Node ProofUF::toStreamRecLFSC(std::ostream& out, TheoryProof * tp, theory::eq::EqProof * pf, unsigned tb, const ProofLetMap& map) { Debug("pf::uf") << std::endl << std::endl << "toStreamRecLFSC called. tb = " << tb << " . proof:" << std::endl; pf->debug_print("pf::uf"); Debug("pf::uf") << std::endl; if (tb == 0) { // Special case: false was an input, so the proof is just "false". if (pf->d_id == theory::eq::MERGED_THROUGH_EQUALITY && pf->d_node == NodeManager::currentNM()->mkConst(false)) { out << "(clausify_false "; out << ProofManager::getLitName(NodeManager::currentNM()->mkConst(false).notNode()); out << ")" << std::endl; return Node(); } Assert(pf->d_id == theory::eq::MERGED_THROUGH_TRANS); Assert(!pf->d_node.isNull()); Assert(pf->d_children.size() >= 2); int neg = -1; theory::eq::EqProof subTrans; subTrans.d_id = theory::eq::MERGED_THROUGH_TRANS; subTrans.d_node = pf->d_node; size_t i = 0; while (i < pf->d_children.size()) { // Look for the negative clause, with which we will form a contradiction. if(!pf->d_children[i]->d_node.isNull() && pf->d_children[i]->d_node.getKind() == kind::NOT) { Assert(neg < 0); neg = i; ++i; } // Handle congruence closures over equalities. else if (pf->d_children[i]->d_id==theory::eq::MERGED_THROUGH_CONGRUENCE && pf->d_children[i]->d_node.isNull()) { Debug("pf::uf") << "Handling congruence over equalities" << std::endl; // Gather the sequence of consecutive congruence closures. std::vector congruenceClosures; unsigned count; Debug("pf::uf") << "Collecting congruence sequence" << std::endl; for (count = 0; i + count < pf->d_children.size() && pf->d_children[i + count]->d_id==theory::eq::MERGED_THROUGH_CONGRUENCE && pf->d_children[i + count]->d_node.isNull(); ++count) { Debug("pf::uf") << "Found a congruence: " << std::endl; pf->d_children[i+count]->debug_print("pf::uf"); congruenceClosures.push_back(pf->d_children[i+count]); } Debug("pf::uf") << "Total number of congruences found: " << congruenceClosures.size() << std::endl; // Determine if the "target" of the congruence sequence appears right before or right after the sequence. bool targetAppearsBefore = true; bool targetAppearsAfter = true; if ((i == 0) || (i == 1 && neg == 0)) { Debug("pf::uf") << "Target does not appear before" << std::endl; targetAppearsBefore = false; } if ((i + count >= pf->d_children.size()) || (!pf->d_children[i + count]->d_node.isNull() && pf->d_children[i + count]->d_node.getKind() == kind::NOT)) { Debug("pf::uf") << "Target does not appear after" << std::endl; targetAppearsAfter = false; } // Assert that we have precisely one target clause. Assert(targetAppearsBefore != targetAppearsAfter); // Begin breaking up the congruences and ordering the equalities correctly. std::vector orderedEqualities; // Insert target clause first. if (targetAppearsBefore) { orderedEqualities.push_back(pf->d_children[i - 1]); // The target has already been added to subTrans; remove it. subTrans.d_children.pop_back(); } else { orderedEqualities.push_back(pf->d_children[i + count]); } // Start with the congruence closure closest to the target clause, and work our way back/forward. if (targetAppearsBefore) { for (unsigned j = 0; j < count; ++j) { if (pf->d_children[i + j]->d_children[0]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY) orderedEqualities.insert(orderedEqualities.begin(), pf->d_children[i + j]->d_children[0]); if (pf->d_children[i + j]->d_children[1]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY) orderedEqualities.insert(orderedEqualities.end(), pf->d_children[i + j]->d_children[1]); } } else { for (unsigned j = 0; j < count; ++j) { if (pf->d_children[i + count - 1 - j]->d_children[0]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY) orderedEqualities.insert(orderedEqualities.begin(), pf->d_children[i + count - 1 - j]->d_children[0]); if (pf->d_children[i + count - 1 - j]->d_children[1]->d_id != theory::eq::MERGED_THROUGH_REFLEXIVITY) orderedEqualities.insert(orderedEqualities.end(), pf->d_children[i + count - 1 - j]->d_children[1]); } } // Copy the result into the main transitivity proof. subTrans.d_children.insert(subTrans.d_children.end(), orderedEqualities.begin(), orderedEqualities.end()); // Increase i to skip over the children that have been processed. i += count; if (targetAppearsAfter) { ++i; } } // Else, just copy the child proof as is else { subTrans.d_children.push_back(pf->d_children[i]); ++i; } } bool disequalityFound = (neg >= 0); if (!disequalityFound) { Debug("pf::uf") << "A disequality was NOT found. UNSAT due to merged constants" << std::endl; Debug("pf::uf") << "Proof for: " << pf->d_node << std::endl; Assert(pf->d_node.getKind() == kind::EQUAL); Assert(pf->d_node.getNumChildren() == 2); Assert (pf->d_node[0].isConst() && pf->d_node[1].isConst()); } Node n1; std::stringstream ss; Debug("pf::uf") << "\nsubtrans has " << subTrans.d_children.size() << " children\n"; if(!disequalityFound || subTrans.d_children.size() >= 2) { n1 = toStreamRecLFSC(ss, tp, &subTrans, 1, map); } else { n1 = toStreamRecLFSC(ss, tp, subTrans.d_children[0], 1, map); Debug("pf::uf") << "\nsubTrans unique child " << subTrans.d_children[0]->d_id << " was proven\ngot: " << n1 << std::endl; } Debug("pf::uf") << "\nhave proven: " << n1 << std::endl; out << "(clausify_false (contra _ "; if (disequalityFound) { Node n2 = pf->d_children[neg]->d_node; Assert(n2.getKind() == kind::NOT); Debug("pf::uf") << "n2 is " << n2[0] << std::endl; if (n2[0].getNumChildren() > 0) { Debug("pf::uf") << "\nn2[0]: " << n2[0][0] << std::endl; } if (n1.getNumChildren() > 1) { Debug("pf::uf") << "n1[1]: " << n1[1] << std::endl; } if(n2[0].getKind() == kind::APPLY_UF) { out << "(trans _ _ _ _ "; if (n1[0] == n2[0]) { out << "(symm _ _ _ "; out << ss.str(); out << ") "; } else { Assert(n1[1] == n2[0]); out << ss.str(); } out << "(pred_eq_f _ " << ProofManager::getLitName(n2[0]) << ")) t_t_neq_f))" << std::endl; } else { Assert((n1[0] == n2[0][0] && n1[1] == n2[0][1]) || (n1[1] == n2[0][0] && n1[0] == n2[0][1])); if(n1[1] == n2[0][0]) { out << "(symm _ _ _ " << ss.str() << ")"; } else { out << ss.str(); } out << " " << ProofManager::getLitName(n2[0]) << "))" << std::endl; } } else { Node n2 = pf->d_node; Assert(n2.getKind() == kind::EQUAL); Assert((n1[0] == n2[0] && n1[1] == n2[1]) || (n1[1] == n2[0] && n1[0] == n2[1])); out << ss.str(); out << " "; ProofManager::getTheoryProofEngine()->printConstantDisequalityProof(out, n1[0].toExpr(), n1[1].toExpr(), map); out << "))" << std::endl; } return Node(); } switch(pf->d_id) { case theory::eq::MERGED_THROUGH_CONGRUENCE: { Debug("pf::uf") << "\nok, looking at congruence:\n"; pf->debug_print("pf::uf"); std::stack stk; for(const theory::eq::EqProof* pf2 = pf; pf2->d_id == theory::eq::MERGED_THROUGH_CONGRUENCE; pf2 = pf2->d_children[0]) { Assert(!pf2->d_node.isNull()); Assert(pf2->d_node.getKind() == kind::PARTIAL_APPLY_UF || pf2->d_node.getKind() == kind::BUILTIN || pf2->d_node.getKind() == kind::APPLY_UF || pf2->d_node.getKind() == kind::SELECT || pf2->d_node.getKind() == kind::STORE); Assert(pf2->d_children.size() == 2); out << "(cong _ _ _ _ _ _ "; stk.push(pf2); } Assert(stk.top()->d_children[0]->d_id != theory::eq::MERGED_THROUGH_CONGRUENCE); NodeBuilder<> b1(kind::PARTIAL_APPLY_UF), b2(kind::PARTIAL_APPLY_UF); const theory::eq::EqProof* pf2 = stk.top(); stk.pop(); Assert(pf2->d_id == theory::eq::MERGED_THROUGH_CONGRUENCE); Node n1 = toStreamRecLFSC(out, tp, pf2->d_children[0], tb + 1, map); out << " "; std::stringstream ss; Node n2 = toStreamRecLFSC(ss, tp, pf2->d_children[1], tb + 1, map); Debug("pf::uf") << "\nok, in FIRST cong[" << stk.size() << "]" << "\n"; pf2->debug_print("pf::uf"); Debug("pf::uf") << "looking at " << pf2->d_node << "\n"; Debug("pf::uf") << " " << n1 << "\n"; Debug("pf::uf") << " " << n2 << "\n"; int side = 0; if(match(pf2->d_node, n1[0])) { //if(tb == 1) { Debug("pf::uf") << "SIDE IS 0\n"; //} side = 0; } else { //if(tb == 1) { Debug("pf::uf") << "SIDE IS 1\n"; //} if(!match(pf2->d_node, n1[1])) { Debug("pf::uf") << "IN BAD CASE, our first subproof is\n"; pf2->d_children[0]->debug_print("pf::uf"); } Assert(match(pf2->d_node, n1[1])); side = 1; } if(n1[side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::PARTIAL_APPLY_UF || n1[side].getKind() == kind::SELECT || n1[side].getKind() == kind::STORE) { if(n1[side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::PARTIAL_APPLY_UF) { b1 << n1[side].getOperator(); } else { b1 << ProofManager::currentPM()->mkOp(n1[side].getOperator()); } b1.append(n1[side].begin(), n1[side].end()); } else { b1 << n1[side]; } if(n1[1-side].getKind() == kind::PARTIAL_APPLY_UF || n1[1-side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::SELECT || n1[side].getKind() == kind::STORE) { if(n1[1-side].getKind() == kind::PARTIAL_APPLY_UF || n1[1-side].getKind() == kind::APPLY_UF) { b2 << n1[1-side].getOperator(); } else { b2 << ProofManager::currentPM()->mkOp(n1[1-side].getOperator()); } b2.append(n1[1-side].begin(), n1[1-side].end()); } else { b2 << n1[1-side]; } Debug("pf::uf") << "pf2->d_node " << pf2->d_node << std::endl; Debug("pf::uf") << "b1.getNumChildren() " << b1.getNumChildren() << std::endl; Debug("pf::uf") << "n1 " << n1 << std::endl; Debug("pf::uf") << "n2 " << n2 << std::endl; Debug("pf::uf") << "side " << side << std::endl; if(pf2->d_node[b1.getNumChildren() - (pf2->d_node.getMetaKind() == kind::metakind::PARAMETERIZED ? 0 : 1)] == n2[side]) { b1 << n2[side]; b2 << n2[1-side]; out << ss.str(); } else { Assert(pf2->d_node[b1.getNumChildren() - (pf2->d_node.getMetaKind() == kind::metakind::PARAMETERIZED ? 0 : 1)] == n2[1-side]); b1 << n2[1-side]; b2 << n2[side]; out << "(symm _ _ _ " << ss.str() << ")"; } out << ")"; while(!stk.empty()) { if(tb == 1) { Debug("pf::uf") << "\nMORE TO DO\n"; } pf2 = stk.top(); stk.pop(); Assert(pf2->d_id == theory::eq::MERGED_THROUGH_CONGRUENCE); out << " "; ss.str(""); n2 = toStreamRecLFSC(ss, tp, pf2->d_children[1], tb + 1, map); Debug("pf::uf") << "\nok, in cong[" << stk.size() << "]" << "\n"; Debug("pf::uf") << "looking at " << pf2->d_node << "\n"; Debug("pf::uf") << " " << n1 << "\n"; Debug("pf::uf") << " " << n2 << "\n"; Debug("pf::uf") << " " << b1 << "\n"; Debug("pf::uf") << " " << b2 << "\n"; if(pf2->d_node[b1.getNumChildren()] == n2[side]) { b1 << n2[side]; b2 << n2[1-side]; out << ss.str(); } else { Assert(pf2->d_node[b1.getNumChildren()] == n2[1-side]); b1 << n2[1-side]; b2 << n2[side]; out << "(symm _ _ _ " << ss.str() << ")"; } out << ")"; } n1 = b1; n2 = b2; Debug("pf::uf") << "at end assert, got " << pf2->d_node << " and " << n1 << std::endl; if(pf2->d_node.getKind() == kind::PARTIAL_APPLY_UF) { Assert(n1 == pf2->d_node); } if(n1.getOperator().getType().getNumChildren() == n1.getNumChildren() + 1) { if(ProofManager::currentPM()->hasOp(n1.getOperator())) { b1.clear(ProofManager::currentPM()->lookupOp(n2.getOperator()).getConst()); } else { b1.clear(kind::APPLY_UF); b1 << n1.getOperator(); } b1.append(n1.begin(), n1.end()); n1 = b1; Debug("pf::uf") << "at[2] end assert, got " << pf2->d_node << " and " << n1 << std::endl; if(pf2->d_node.getKind() == kind::APPLY_UF) { Assert(n1 == pf2->d_node); } } if(n2.getOperator().getType().getNumChildren() == n2.getNumChildren() + 1) { if(ProofManager::currentPM()->hasOp(n2.getOperator())) { b2.clear(ProofManager::currentPM()->lookupOp(n2.getOperator()).getConst()); } else { b2.clear(kind::APPLY_UF); b2 << n2.getOperator(); } b2.append(n2.begin(), n2.end()); n2 = b2; } Node n = (side == 0 ? eqNode(n1, n2) : eqNode(n2, n1)); if(tb == 1) { Debug("pf::uf") << "\ncong proved: " << n << "\n"; } return n; } case theory::eq::MERGED_THROUGH_REFLEXIVITY: Assert(!pf->d_node.isNull()); Assert(pf->d_children.empty()); out << "(refl _ "; tp->printTerm(NodeManager::currentNM()->toExpr(pf->d_node), out, map); out << ")"; return eqNode(pf->d_node, pf->d_node); case theory::eq::MERGED_THROUGH_EQUALITY: Assert(!pf->d_node.isNull()); Assert(pf->d_children.empty()); out << ProofManager::getLitName(pf->d_node.negate()); return pf->d_node; case theory::eq::MERGED_THROUGH_TRANS: { Assert(!pf->d_node.isNull()); Assert(pf->d_children.size() >= 2); std::stringstream ss; Debug("pf::uf") << "\ndoing trans proof[[\n"; pf->debug_print("pf::uf"); Debug("pf::uf") << "\n"; Node n1 = toStreamRecLFSC(ss, tp, pf->d_children[0], tb + 1, map); Debug("pf::uf") << "\ndoing trans proof, got n1 " << n1 << "\n"; if(tb == 1) { Debug("pf::uf") << "\ntrans proof[0], got n1 " << n1 << "\n"; } bool identicalEqualities = false; bool evenLengthSequence; Node nodeAfterEqualitySequence; std::map childToStream; for(size_t i = 1; i < pf->d_children.size(); ++i) { std::stringstream ss1(ss.str()), ss2; ss.str(""); // It is possible that we've already converted the i'th child to stream. If so, // use previously stored result. Otherwise, convert and store. Node n2; if (childToStream.find(i) != childToStream.end()) n2 = childToStream[i]; else { n2 = toStreamRecLFSC(ss2, tp, pf->d_children[i], tb + 1, map); childToStream[i] = n2; } // The following branch is dedicated to handling sequences of identical equalities, // i.e. trans[ a=b, a=b, a=b ]. // // There are two cases: // 1. The number of equalities is odd. Then, the sequence can be collapsed to just one equality, // i.e. a=b. // 2. The number of equalities is even. Now, we have two options: a=a or b=b. To determine this, // we look at the node after the equality sequence. If it needs a, we go for a=a; and if it needs // b, we go for b=b. If there is no following node, we look at the goal of the transitivity proof, // and use it to determine which option we need. if(n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) { if (((n1[0] == n2[0]) && (n1[1] == n2[1])) || ((n1[0] == n2[1]) && (n1[1] == n2[0]))) { // We are in a sequence of identical equalities Debug("pf::uf") << "Detected identical equalities: " << std::endl << "\t" << n1 << std::endl; if (!identicalEqualities) { // The sequence of identical equalities has started just now identicalEqualities = true; Debug("pf::uf") << "The sequence is just beginning. Determining length..." << std::endl; // Determine whether the length of this sequence is odd or even. evenLengthSequence = true; bool sequenceOver = false; size_t j = i + 1; while (j < pf->d_children.size() && !sequenceOver) { std::stringstream dontCare; nodeAfterEqualitySequence = toStreamRecLFSC(dontCare, tp, pf->d_children[j], tb + 1, map ); if (((nodeAfterEqualitySequence[0] == n1[0]) && (nodeAfterEqualitySequence[1] == n1[1])) || ((nodeAfterEqualitySequence[0] == n1[1]) && (nodeAfterEqualitySequence[1] == n1[0]))) { evenLengthSequence = !evenLengthSequence; } else { sequenceOver = true; } ++j; } if (evenLengthSequence) { // If the length is even, we need to apply transitivity for the "correct" hand of the equality. Debug("pf::uf") << "Equality sequence of even length" << std::endl; Debug("pf::uf") << "n1 is: " << n1 << std::endl; Debug("pf::uf") << "n2 is: " << n2 << std::endl; Debug("pf::uf") << "pf-d_node is: " << pf->d_node << std::endl; Debug("pf::uf") << "Next node is: " << nodeAfterEqualitySequence << std::endl; ss << "(trans _ _ _ _ "; // If the sequence is at the very end of the transitivity proof, use pf->d_node to guide us. if (!sequenceOver) { if (match(n1[0], pf->d_node[0])) { n1 = eqNode(n1[0], n1[0]); ss << ss1.str() << " (symm _ _ _ " << ss1.str() << ")"; } else if (match(n1[1], pf->d_node[1])) { n1 = eqNode(n1[1], n1[1]); ss << " (symm _ _ _ " << ss1.str() << ")" << ss1.str(); } else { Debug("pf::uf") << "Error: identical equalities over, but hands don't match what we're proving." << std::endl; Assert(false); } } else { // We have a "next node". Use it to guide us. Assert(nodeAfterEqualitySequence.getKind() == kind::EQUAL || nodeAfterEqualitySequence.getKind() == kind::IFF); if ((n1[0] == nodeAfterEqualitySequence[0]) || (n1[0] == nodeAfterEqualitySequence[1])) { // Eliminate n1[1] ss << ss1.str() << " (symm _ _ _ " << ss1.str() << ")"; n1 = eqNode(n1[0], n1[0]); } else if ((n1[1] == nodeAfterEqualitySequence[0]) || (n1[1] == nodeAfterEqualitySequence[1])) { // Eliminate n1[0] ss << " (symm _ _ _ " << ss1.str() << ")" << ss1.str(); n1 = eqNode(n1[1], n1[1]); } else { Debug("pf::uf") << "Error: even length sequence, but I don't know which hand to keep!" << std::endl; Assert(false); } } ss << ")"; } else { Debug("pf::uf") << "Equality sequence length is odd!" << std::endl; ss.str(ss1.str()); } Debug("pf::uf") << "Have proven: " << n1 << std::endl; } else { ss.str(ss1.str()); } // Ignore the redundancy. continue; } } if (identicalEqualities) { // We were in a sequence of identical equalities, but it has now ended. Resume normal operation. identicalEqualities = false; } Debug("pf::uf") << "\ndoing trans proof, got n2 " << n2 << "\n"; if(tb == 1) { Debug("pf::uf") << "\ntrans proof[" << i << "], got n2 " << n2 << "\n"; Debug("pf::uf") << (n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) << "\n"; if ((n1.getNumChildren() >= 2) && (n2.getNumChildren() >= 2)) { Debug("pf::uf") << n1[0].getId() << " " << n1[1].getId() << " / " << n2[0].getId() << " " << n2[1].getId() << "\n"; Debug("pf::uf") << n1[0].getId() << " " << n1[0] << "\n"; Debug("pf::uf") << n1[1].getId() << " " << n1[1] << "\n"; Debug("pf::uf") << n2[0].getId() << " " << n2[0] << "\n"; Debug("pf::uf") << n2[1].getId() << " " << n2[1] << "\n"; Debug("pf::uf") << (n1[0] == n2[0]) << "\n"; Debug("pf::uf") << (n1[1] == n2[1]) << "\n"; Debug("pf::uf") << (n1[0] == n2[1]) << "\n"; Debug("pf::uf") << (n1[1] == n2[0]) << "\n"; } } ss << "(trans _ _ _ _ "; if((n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) && (n1.getKind() == kind::EQUAL || n1.getKind() == kind::IFF)) // Both elements of the transitivity rule are equalities/iffs { if(n1[0] == n2[0]) { if(tb == 1) { Debug("pf::uf") << "case 1\n"; } n1 = eqNode(n1[1], n2[1]); ss << "(symm _ _ _ " << ss1.str() << ") " << ss2.str(); } else if(n1[1] == n2[1]) { if(tb == 1) { Debug("pf::uf") << "case 2\n"; } n1 = eqNode(n1[0], n2[0]); ss << ss1.str() << " (symm _ _ _ " << ss2.str() << ")"; } else if(n1[0] == n2[1]) { if(tb == 1) { Debug("pf::uf") << "case 3\n"; } n1 = eqNode(n2[0], n1[1]); ss << ss2.str() << " " << ss1.str(); if(tb == 1) { Debug("pf::uf") << "++ proved " << n1 << "\n"; } } else if(n1[1] == n2[0]) { if(tb == 1) { Debug("pf::uf") << "case 4\n"; } n1 = eqNode(n1[0], n2[1]); ss << ss1.str() << " " << ss2.str(); } else { Warning() << "\n\ntrans proof failure at step " << i << "\n\n"; Warning() << "0 proves " << n1 << "\n"; Warning() << "1 proves " << n2 << "\n\n"; pf->debug_print("pf::uf",0); //toStreamRec(Warning.getStream(), pf, 0); Warning() << "\n\n"; Unreachable(); } Debug("pf::uf") << "++ trans proof[" << i << "], now have " << n1 << std::endl; } else if(n1.getKind() == kind::EQUAL || n1.getKind() == kind::IFF) { // n1 is an equality/iff, but n2 is a predicate if(n1[0] == n2) { n1 = n1[1].iffNode(NodeManager::currentNM()->mkConst(true)); ss << "(symm _ _ _ " << ss1.str() << ") (pred_eq_t _ " << ss2.str() << ")"; } else if(n1[1] == n2) { n1 = n1[0].iffNode(NodeManager::currentNM()->mkConst(true)); ss << ss1.str() << " (pred_eq_t _ " << ss2.str() << ")"; } else { Unreachable(); } } else if(n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) { // n2 is an equality/iff, but n1 is a predicate if(n2[0] == n1) { n1 = n2[1].iffNode(NodeManager::currentNM()->mkConst(true)); ss << "(symm _ _ _ " << ss2.str() << ") (pred_eq_t _ " << ss1.str() << ")"; } else if(n2[1] == n1) { n1 = n2[0].iffNode(NodeManager::currentNM()->mkConst(true)); ss << ss2.str() << " (pred_eq_t _ " << ss1.str() << ")"; } else { Unreachable(); } } else { // Both n1 and n2 are predicates. Don't know what to do... Unreachable(); } ss << ")"; } out << ss.str(); Debug("pf::uf") << "\n++ trans proof done, have proven " << n1 << std::endl; return n1; } default: Assert(!pf->d_node.isNull()); Assert(pf->d_children.empty()); Debug("pf::uf") << "theory proof: " << pf->d_node << " by rule " << int(pf->d_id) << std::endl; AlwaysAssert(false); return pf->d_node; } } UFProof::UFProof(theory::uf::TheoryUF* uf, TheoryProofEngine* pe) : TheoryProof(uf, pe) {} void UFProof::registerTerm(Expr term) { // already registered if (d_declarations.find(term) != d_declarations.end()) return; Type type = term.getType(); if (type.isSort()) { // declare uninterpreted sorts d_sorts.insert(type); } if (term.getKind() == kind::APPLY_UF) { Expr function = term.getOperator(); d_declarations.insert(function); } if (term.isVariable()) { d_declarations.insert(term); } // recursively declare all other terms for (unsigned i = 0; i < term.getNumChildren(); ++i) { // could belong to other theories d_proofEngine->registerTerm(term[i]); } } void LFSCUFProof::printOwnedTerm(Expr term, std::ostream& os, const ProofLetMap& map) { Debug("pf::uf") << std::endl << "(pf::uf) LFSCUfProof::printOwnedTerm: term = " << term << std::endl; Assert (theory::Theory::theoryOf(term) == theory::THEORY_UF); if (term.getKind() == kind::VARIABLE || term.getKind() == kind::SKOLEM) { os << term; return; } Assert (term.getKind() == kind::APPLY_UF); d_proofEngine->treatBoolsAsFormulas(false); if(term.getType().isBoolean()) { os << "(p_app "; } Expr func = term.getOperator(); for (unsigned i = 0; i < term.getNumChildren(); ++i) { os << "(apply _ _ "; } os << func << " "; for (unsigned i = 0; i < term.getNumChildren(); ++i) { d_proofEngine->printBoundTerm(term[i], os, map); os << ")"; } if(term.getType().isBoolean()) { os << ")"; } d_proofEngine->treatBoolsAsFormulas(true); } void LFSCUFProof::printOwnedSort(Type type, std::ostream& os) { Debug("pf::uf") << std::endl << "(pf::uf) LFSCArrayProof::printOwnedSort: type is: " << type << std::endl; Assert (type.isSort()); os << type; } void LFSCUFProof::printTheoryLemmaProof(std::vector& lemma, std::ostream& os, std::ostream& paren, const ProofLetMap& map) { os << " ;; UF Theory Lemma \n;;"; for (unsigned i = 0; i < lemma.size(); ++i) { os << lemma[i] <<" "; } os <<"\n"; //os << " (clausify_false trust)"; UFProof::printTheoryLemmaProof(lemma, os, paren, map); } void LFSCUFProof::printSortDeclarations(std::ostream& os, std::ostream& paren) { for (TypeSet::const_iterator it = d_sorts.begin(); it != d_sorts.end(); ++it) { if (!ProofManager::currentPM()->wasPrinted(*it)) { os << "(% " << *it << " sort\n"; paren << ")"; ProofManager::currentPM()->markPrinted(*it); } } } void LFSCUFProof::printTermDeclarations(std::ostream& os, std::ostream& paren) { // declaring the terms Debug("pf::uf") << "LFSCUFProof::printTermDeclarations called" << std::endl; for (ExprSet::const_iterator it = d_declarations.begin(); it != d_declarations.end(); ++it) { Expr term = *it; os << "(% " << ProofManager::sanitize(term) << " "; os << "(term "; Type type = term.getType(); if (type.isFunction()) { std::ostringstream fparen; FunctionType ftype = (FunctionType)type; std::vector args = ftype.getArgTypes(); args.push_back(ftype.getRangeType()); os << "(arrow"; for (unsigned i = 0; i < args.size(); i++) { Type arg_type = args[i]; os << " "; d_proofEngine->printSort(arg_type, os); if (i < args.size() - 2) { os << " (arrow"; fparen << ")"; } } os << fparen.str() << "))\n"; } else { Assert (term.isVariable()); os << type << ")\n"; } paren << ")"; } Debug("pf::uf") << "LFSCUFProof::printTermDeclarations done" << std::endl; } void LFSCUFProof::printDeferredDeclarations(std::ostream& os, std::ostream& paren) { // Nothing to do here at this point. } void LFSCUFProof::printAliasingDeclarations(std::ostream& os, std::ostream& paren, const ProofLetMap &globalLetMap) { // Nothing to do here at this point. } } /* namespace CVC4 */