/********************* */ /*! \file cdhashmap.h ** \verbatim ** Original author: mdeters ** Major contributors: none ** Minor contributors (to current version): dejan ** This file is part of the CVC4 prototype. ** Copyright (c) 2009-2012 New York University and The University of Iowa ** See the file COPYING in the top-level source directory for licensing ** information.\endverbatim ** ** \brief Context-dependent map class. ** ** Context-dependent map class. Generic templated class for a map ** which must be saved and restored as contexts are pushed and ** popped. Requires that operator= be defined for the data class, ** and operator== for the key class. For key types that don't have a ** __gnu_cxx::hash<>, you should provide an explicit HashFcn. ** ** Internal documentation: ** ** CDMap<> is something of a work in progress at present (26 May ** 2010), due to some recent discoveries of problems with its ** internal state. Here are some notes on the internal use of ** CDOhash_maps that may be useful in figuring out this mess: ** ** So you have a CDMap<>. ** ** You insert some (key,value) pairs. Each allocates a CDOhash_map<> ** and goes on a doubly-linked list headed by map.d_first and ** threaded via CDOhash_map.{d_prev,d_next}. CDOhash_maps are constructed ** with a NULL d_map pointer, but then immediately call ** makeCurrent() and set the d_map pointer back to the map. At ** context level 0, this doesn't lead to anything special. In ** higher context levels, this stores away a CDOhash_map with a NULL ** map pointer at level 0, and a non-NULL map pointer in the ** current context level. (Remember that for later.) ** ** When a key is associated to a new value in a CDMap, its ** associated CDOhash_map calls makeCurrent(), then sets the new ** value. The save object is also a CDOhash_map (allocated in context ** memory). ** ** Now, CDOhash_maps disappear in a variety of ways. ** ** First, you might pop beyond a "modification of the value" ** scope level, requiring a re-association of the key to an old ** value. This is easy. CDOhash_map::restore() does the work, and ** the context memory of the save object is reclaimed as usual. ** ** Second, you might pop beyond a "insert the key" scope level, ** requiring that the key be completely removed from the map and ** its CDOhash_map object memory freed. Here, the CDOhash_map is restored ** to a "NULL-map" state (see above), signaling it to remove ** itself from the map completely and put itself on a "trash ** list" for the map. ** ** Third, you might obliterate() the key. This calls the CDOhash_map ** destructor, which calls destroy(), which does a successive ** restore() until level 0. If the key was in the map since ** level 0, the restore() won't remove it, so in that case ** obliterate() removes it from the map and frees the CDOhash_map's ** memory. ** ** Fourth, you might delete the cdhashmap(calling CDMap::~CDMap()). ** This first calls destroy(), as per ContextObj contract, but ** cdhashmapdoesn't save/restore itself, so that does nothing at the ** CDMap-level. Then it empties the trash. Then, for each ** element in the map, it marks it as being "part of a complete ** map destruction", which essentially short-circuits ** CDOhash_map::restore() (see CDOhash_map::restore()), then deallocates ** it. Finally it asserts that the trash is empty (which it ** should be, since restore() was short-circuited). ** ** Fifth, you might clear() the CDMap. This does exactly the ** same as CDMap::~CDMap(), except that it doesn't call destroy() ** on itself. ** ** CDMap::emptyTrash() simply goes through and calls ** ->deleteSelf() on all elements in the trash. ** ContextObj::deleteSelf() calls the CDOhash_map destructor, then ** frees the memory associated to the CDOhash_map. CDOhash_map::~CDOhash_map() ** calls destroy(), which restores as much as possible. (Note, ** though, that since objects placed on the trash have already ** restored to the fullest extent possible, it does nothing.) **/ #include "cvc4_private.h" #ifndef __CVC4__CONTEXT__CDMAP_H #define __CVC4__CONTEXT__CDMAP_H #include #include #include #include "context/context.h" #include "util/cvc4_assert.h" #include "context/cdhashmap_forward.h" namespace CVC4 { namespace context { // Auxiliary class: almost the same as CDO (see cdo.h) template > class CDOhash_map : public ContextObj { friend class CDHashMap; Key d_key; Data d_data; CDHashMap* d_map; /** never put this cdhashmapelement on the trash */ bool d_noTrash; // Doubly-linked list for keeping track of elements in order of insertion CDOhash_map* d_prev; CDOhash_map* d_next; virtual ContextObj* save(ContextMemoryManager* pCMM) { return new(pCMM) CDOhash_map(*this); } virtual void restore(ContextObj* data) { if(d_map != NULL) { CDOhash_map* p = static_cast(data); if(p->d_map == NULL) { Assert(d_map->d_map.find(d_key) != d_map->d_map.end() && (*d_map->d_map.find(d_key)).second == this); // no longer in map (popped beyond first level in which it was) d_map->d_map.erase(d_key); // If we call deleteSelf() here, it re-enters restore(). So, // put it on a "trash heap" instead, for later deletion. // // FIXME multithreading if(d_map->d_first == this) { Debug("gc") << "remove first-elem " << this << " from map " << d_map << " with next-elem " << d_next << std::endl; if(d_next == this) { Assert(d_prev == this); d_map->d_first = NULL; } else { d_map->d_first = d_next; } } else { Debug("gc") << "remove nonfirst-elem " << this << " from map " << d_map << std::endl; } d_next->d_prev = d_prev; d_prev->d_next = d_next; if(d_noTrash) { Debug("gc") << "CDMap<> no-trash " << this << std::endl; } else { Debug("gc") << "CDMap<> trash push_back " << this << std::endl; //this->deleteSelf(); d_map->d_trash.push_back(this); } } else { d_data = p->d_data; } } } /** ensure copy ctor is only called by us */ CDOhash_map(const CDOhash_map& other) : ContextObj(other), d_key(other.d_key), d_data(other.d_data), d_map(other.d_map), d_prev(NULL), d_next(NULL) { } public: CDOhash_map(Context* context, CDHashMap* map, const Key& key, const Data& data, bool atLevelZero = false, bool allocatedInCMM = false) : ContextObj(allocatedInCMM, context), d_key(key), d_map(NULL), d_noTrash(allocatedInCMM) { // untested, probably unsafe. Assert(!(atLevelZero && allocatedInCMM)); if(atLevelZero) { // "Initializing" map insertion: this entry will never be // removed from the map, it's inserted at level 0 as an // "initializing" element. See // CDMap<>::insertAtContextLevelZero(). d_data = data; } else { // Normal map insertion: first makeCurrent(), then set the data // and then, later, the map. Order is important; we can't // initialize d_map in the constructor init list above, because // we want the restore of d_map to NULL to signal us to remove // the element from the map. if(allocatedInCMM) { // Force a save/restore point, even though the object is // allocated here. This is so that we can detect when the // object falls out of the map (otherwise we wouldn't get it). makeSaveRestorePoint(); } set(data); } d_map = map; CDOhash_map*& first = d_map->d_first; if(first == NULL) { first = d_next = d_prev = this; Debug("gc") << "add first-elem " << this << " to map " << d_map << std::endl; } else { Debug("gc") << "add nonfirst-elem " << this << " to map " << d_map << " with first-elem " << first << "[" << first->d_prev << " " << first->d_next << std::endl; d_prev = first->d_prev; d_next = first; d_prev->d_next = this; first->d_prev = this; } } ~CDOhash_map() throw(AssertionException) { destroy(); } void set(const Data& data) { makeCurrent(); d_data = data; } const Key& getKey() const { return d_key; } const Data& get() const { return d_data; } operator Data() { return get(); } const Data& operator=(const Data& data) { set(data); return data; } CDOhash_map* next() const { if(d_next == d_map->d_first) { return NULL; } else { return d_next; } } };/* class CDOhash_map<> */ /** * Generic templated class for a map which must be saved and restored * as contexts are pushed and popped. Requires that operator= be * defined for the data class, and operator== for the key class. */ template class CDHashMap : public ContextObj { typedef CDOhash_map Element; typedef __gnu_cxx::hash_map table_type; friend class CDOhash_map; table_type d_map; Element* d_first; Context* d_context; std::vector d_trash; // Nothing to save; the elements take care of themselves virtual ContextObj* save(ContextMemoryManager* pCMM) { Unreachable(); } // Similarly, nothing to restore virtual void restore(ContextObj* data) { Unreachable(); } void emptyTrash() { //FIXME multithreading for(typename std::vector::iterator i = d_trash.begin(); i != d_trash.end(); ++i) { Debug("gc") << "emptyTrash(): " << *i << std::endl; (*i)->deleteSelf(); } d_trash.clear(); } public: CDHashMap(Context* context) : ContextObj(context), d_map(), d_first(NULL), d_context(context), d_trash() { } ~CDHashMap() throw(AssertionException) { Debug("gc") << "cdhashmap" << this << " disappearing, destroying..." << std::endl; destroy(); Debug("gc") << "cdhashmap" << this << " disappearing, done destroying" << std::endl; Debug("gc") << "cdhashmap" << this << " gone, emptying trash" << std::endl; emptyTrash(); Debug("gc") << "done emptying trash for " << this << std::endl; for(typename table_type::iterator i = d_map.begin(); i != d_map.end(); ++i) { // mark it as being a destruction (short-circuit restore()) (*i).second->d_map = NULL; if(!(*i).second->d_noTrash) { (*i).second->deleteSelf(); } } d_map.clear(); d_first = NULL; Assert(d_trash.empty()); } void clear() throw(AssertionException) { Debug("gc") << "clearing cdhashmap" << this << ", emptying trash" << std::endl; emptyTrash(); Debug("gc") << "done emptying trash for " << this << std::endl; for(typename table_type::iterator i = d_map.begin(); i != d_map.end(); ++i) { // mark it as being a destruction (short-circuit restore()) (*i).second->d_map = NULL; if(!(*i).second->d_noTrash) { (*i).second->deleteSelf(); } } d_map.clear(); d_first = NULL; Assert(d_trash.empty()); } // The usual operators of map size_t size() const { return d_map.size(); } bool empty() const { return d_map.empty(); } size_t count(const Key& k) const { return d_map.count(k); } // If a key is not present, a new object is created and inserted Element& operator[](const Key& k) { emptyTrash(); typename table_type::iterator i = d_map.find(k); Element* obj; if(i == d_map.end()) {// create new object obj = new(true) Element(d_context, this, k, Data()); d_map[k] = obj; } else { obj = (*i).second; } return *obj; } bool insert(const Key& k, const Data& d) { emptyTrash(); typename table_type::iterator i = d_map.find(k); if(i == d_map.end()) {// create new object Element* obj = new(true) Element(d_context, this, k, d); d_map[k] = obj; return true; } else { (*i).second->set(d); return false; } } // Use this for pointer data d allocated in context memory at this // level. THIS IS HIGHLY EXPERIMENTAL. It seems to work if ALL // your data objects are allocated from context memory. void insertDataFromContextMemory(const Key& k, const Data& d) { emptyTrash(); AlwaysAssert(d_map.find(k) == d_map.end()); Element* obj = new(d_context->getCMM()) Element(d_context, this, k, d, false /* atLevelZero */, true /* allocatedInCMM */); d_map[k] = obj; } /** * Version of insert() for CDMap<> that inserts data value d at * context level zero. This is a special escape hatch for inserting * "initializing" data into the map. Imagine something happens at a * deep context level L that causes insertion into a map, such that * the object should have an "initializing" value v1 below context * level L, and a "current" value v2 at context level L. Then you * can (assuming key k): * * map.insertAtContextLevelZero(k, v1); * map.insert(k, v2); * * The justification for this "escape hatch" has to do with * variables and assignments in theories (e.g., in arithmetic). * Let's say you introduce a new variable x at some deep decision * level (thanks to lazy registration, or a splitting lemma, or * whatever). x might be mapped to something, but for theory * implementation simplicity shouldn't disappear from the map on * backjump; rather, it can take another (legal) value, or a special * value to indicate it needs to be recomputed. * * It is an error (checked via AlwaysAssert()) to * insertAtContextLevelZero() a key that already is in the map. */ void insertAtContextLevelZero(const Key& k, const Data& d) { emptyTrash(); AlwaysAssert(d_map.find(k) == d_map.end()); Element* obj = new(true) Element(d_context, this, k, d, true /* atLevelZero */); d_map[k] = obj; } // FIXME: no erase(), too much hassle to implement efficiently... /** * "Obliterating" is kind of like erasing, except it's not * backtrackable; the key is permanently removed from the map. * (Naturally, it can be re-added as a new element.) */ void obliterate(const Key& k) { typename table_type::iterator i = d_map.find(k); if(i != d_map.end()) { Debug("gc") << "key " << k << " obliterated" << std::endl; // We can't call ->deleteSelf() here, because it calls the // ContextObj destructor, which calls CDOhash_map::destroy(), which // restore()'s, which puts the CDOhash_map on the trash, which causes // a double-delete. (*i).second->~Element(); // Writing ...->~CDOhash_map() in the above is legal (?) but breaks // g++ 4.1, though later versions have no problem. typename table_type::iterator j = d_map.find(k); // This if() succeeds for objects inserted when in the // zero-scope: they were never save()'d there, so restore() // never gets a NULL map and so they leak. if(j != d_map.end()) { Element* elt = (*j).second; if(d_first == elt) { if(elt->d_next == elt) { Assert(elt->d_prev == elt); d_first = NULL; } else { d_first = elt->d_next; } } else { elt->d_prev->d_next = elt->d_next; elt->d_next->d_prev = elt->d_prev; } d_map.erase(j);//FIXME multithreading Debug("gc") << "key " << k << " obliterated zero-scope: " << elt << std::endl; // was already destructed, so don't call ->deleteSelf() if(!elt->d_noTrash) { ::operator delete(elt); } } } } class iterator { const Element* d_it; public: iterator(const Element* p) : d_it(p) {} iterator(const iterator& i) : d_it(i.d_it) {} // Default constructor iterator() {} // (Dis)equality bool operator==(const iterator& i) const { return d_it == i.d_it; } bool operator!=(const iterator& i) const { return d_it != i.d_it; } // Dereference operators. std::pair operator*() const { return std::pair(d_it->getKey(), d_it->get()); } // Prefix increment iterator& operator++() { d_it = d_it->next(); return *this; } // Postfix increment: requires a Proxy object to hold the // intermediate value for dereferencing class Proxy { const std::pair* d_pair; public: Proxy(const std::pair& p) : d_pair(&p) {} const std::pair& operator*() const { return *d_pair; } };/* class CDMap<>::iterator::Proxy */ // Actual postfix increment: returns Proxy with the old value. // Now, an expression like *i++ will return the current *i, and // then advance the iterator. However, don't try to use // Proxy for anything else. const Proxy operator++(int) { Proxy e(*(*this)); ++(*this); return e; } };/* class CDMap<>::iterator */ typedef iterator const_iterator; iterator begin() const { return iterator(d_first); } iterator end() const { return iterator(NULL); } iterator find(const Key& k) const { typename table_type::const_iterator i = d_map.find(k); if(i == d_map.end()) { return end(); } else { return iterator((*i).second); } } iterator find(const Key& k) { emptyTrash(); return const_cast(this)->find(k); } };/* class CDMap<> */ }/* CVC4::context namespace */ }/* CVC4 namespace */ #endif /* __CVC4__CONTEXT__CDMAP_H */