; Depends On: th_lra.plf ;; Proof (from predicates on linear polynomials) that the following imply bottom ; ; -x - 1/2 y + 2 >= 0 ; x + y - 8 >= 0 ; x - y + 0 >= 0 ; (check ; Variables (% x var_real (% y var_real ; linear monomials (combinations) (@ m1 (lmonc (~ 1/1) x (lmonc (~ 1/2) y lmonn)) (@ m2 (lmonc 1/1 x (lmonc 1/1 y lmonn)) (@ m3 (lmonc 1/1 x (lmonc (~ 1/1) y lmonn)) ; linear polynomials (affine) (@ p1 (polyc 2/1 m1) (@ p2 (polyc (~ 8/1) m2) (@ p3 (polyc 0/1 m3) (% pf_nonneg_1 (th_holds (>=0_poly p1)) (% pf_nonneg_2 (th_holds (>=0_poly p2)) (% pf_nonneg_3 (th_holds (>=0_poly p3)) (: (holds cln) (lra_contra_>= _ (lra_add_>=_>= _ _ _ (lra_mul_c_>= _ _ 4/1 pf_nonneg_1) (lra_add_>=_>= _ _ _ (lra_mul_c_>= _ _ 3/1 pf_nonneg_2) (lra_add_>=_>= _ _ _ (lra_mul_c_>= _ _ 1/1 pf_nonneg_3) (lra_axiom_>= 0/1)))))) ))))) )))) )) ) ;; Proof (from predicates on real terms) that the following imply bottom ; ; -x - 1/2 y >= 2 ; x + y >= 8 ; x - y >= 0 ; (check ; Declarations ; Variables (% x var_real (% y var_real ; real predicates (@ f1 (>=_Real (+_Real (*_Real (a_real (~ 1/1)) (a_var_real x)) (*_Real (a_real (~ 1/2)) (a_var_real y))) (a_real (~ 2/1))) (@ f2 (>=_Real (+_Real (*_Real (a_real 1/1) (a_var_real x)) (*_Real (a_real 1/1) (a_var_real y))) (a_real 8/1)) (@ f3 (>=_Real (+_Real (*_Real (a_real 1/1) (a_var_real x)) (*_Real (a_real (~ 1/1)) (a_var_real y))) (a_real 0/1)) ; proof of real predicates (% pf_f1 (th_holds f1) (% pf_f2 (th_holds f2) (% pf_f3 (th_holds f3) ; Normalization ; real term -> linear polynomial normalization witnesses (@ n1 (poly_formula_norm_>= _ _ _ (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _ (pn_mul_c_L _ _ _ (~ 1/1) (pn_var x)) (pn_mul_c_L _ _ _ (~ 1/2) (pn_var y))) (pn_const (~ 2/1)))) (@ n2 (poly_formula_norm_>= _ _ _ (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _ (pn_mul_c_L _ _ _ 1/1 (pn_var x)) (pn_mul_c_L _ _ _ 1/1 (pn_var y))) (pn_const 8/1))) (@ n3 (poly_formula_norm_>= _ _ _ (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _ (pn_mul_c_L _ _ _ 1/1 (pn_var x)) (pn_mul_c_L _ _ _ (~ 1/1) (pn_var y))) (pn_const 0/1))) ; proof of linear polynomial predicates (@ pf_n1 (poly_form _ _ n1 pf_f1) (@ pf_n2 (poly_form _ _ n2 pf_f2) (@ pf_n3 (poly_form _ _ n3 pf_f3) ; derivation of a contradiction using farkas coefficients (: (holds cln) (lra_contra_>= _ (lra_add_>=_>= _ _ _ (lra_mul_c_>= _ _ 4/1 pf_n1) (lra_add_>=_>= _ _ _ (lra_mul_c_>= _ _ 3/1 pf_n2) (lra_add_>=_>= _ _ _ (lra_mul_c_>= _ _ 1/1 pf_n3) (lra_axiom_>= 0/1)))))) ))) ))) ))) ))) )) ) ;; Term proof, 2 (>=), one (not >=) ;; Proof (from predicates on real terms) that the following imply bottom ; ; -x + y >= 2 ; x + y >= 2 ; not[ y >= -2] => [y < -2] => [-y > 2] ; (check ; Declarations ; Variables (% x var_real (% y var_real ; real predicates (@ f1 (>=_Real (+_Real (*_Real (a_real (~ 1/1)) (a_var_real x)) (a_var_real y)) (a_real 2/1)) (@ f2 (>=_Real (+_Real (a_var_real x) (a_var_real y)) (a_real 2/1)) (@ f3 (not (>=_Real (a_var_real y) (a_real (~ 2/1)))) ; Normalization ; proof of real predicates (% pf_f1 (th_holds f1) (% pf_f2 (th_holds f2) (% pf_f3 (th_holds f3) ; real term -> linear polynomial normalization witnesses (@ n1 (poly_formula_norm_>= _ _ _ (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _ (pn_mul_c_L _ _ _ (~ 1/1) (pn_var x)) (pn_var y)) (pn_const 2/1))) (@ n2 (poly_formula_norm_>= _ _ _ (pn_- _ _ _ _ _ (pn_+ _ _ _ _ _ (pn_var x) (pn_var y)) (pn_const 2/1))) (@ n3 (poly_formula_norm_>= _ _ _ (pn_- _ _ _ _ _ (pn_var y) (pn_const (~ 2/1)))) ; proof of linear polynomial predicates (@ pf_n1 (poly_form _ _ n1 pf_f1) (@ pf_n2 (poly_form _ _ n2 pf_f2) (@ pf_n3 (poly_flip_not_>= _ _ (poly_form_not _ _ n3 pf_f3)) ; derivation of a contradiction using farkas coefficients (: (holds cln) (lra_contra_> _ (lra_add_>=_> _ _ _ (lra_mul_c_>= _ _ 1/1 pf_n1) (lra_add_>=_> _ _ _ (lra_mul_c_>= _ _ 1/1 pf_n2) (lra_add_>_>= _ _ _ (lra_mul_c_> _ _ 2/1 pf_n3) (lra_axiom_>= 0/1)))))) ))) ))) ))) ))) )) )