summaryrefslogtreecommitdiff
path: root/src/theory/arith/nl/transcendental_solver.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/theory/arith/nl/transcendental_solver.cpp')
-rw-r--r--src/theory/arith/nl/transcendental_solver.cpp1476
1 files changed, 1476 insertions, 0 deletions
diff --git a/src/theory/arith/nl/transcendental_solver.cpp b/src/theory/arith/nl/transcendental_solver.cpp
new file mode 100644
index 000000000..1377aa54a
--- /dev/null
+++ b/src/theory/arith/nl/transcendental_solver.cpp
@@ -0,0 +1,1476 @@
+/********************* */
+/*! \file transcendental_solver.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andrew Reynolds, Tim King, Mathias Preiner
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Implementation of solver for handling transcendental functions.
+ **/
+
+#include "theory/arith/nl/transcendental_solver.h"
+
+#include <cmath>
+#include <set>
+
+#include "expr/node_algorithm.h"
+#include "expr/node_builder.h"
+#include "options/arith_options.h"
+#include "theory/arith/arith_msum.h"
+#include "theory/arith/arith_utilities.h"
+#include "theory/rewriter.h"
+
+using namespace CVC4::kind;
+
+namespace CVC4 {
+namespace theory {
+namespace arith {
+namespace nl {
+
+TranscendentalSolver::TranscendentalSolver(NlModel& m) : d_model(m)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ d_true = nm->mkConst(true);
+ d_false = nm->mkConst(false);
+ d_zero = nm->mkConst(Rational(0));
+ d_one = nm->mkConst(Rational(1));
+ d_neg_one = nm->mkConst(Rational(-1));
+ d_taylor_real_fv = nm->mkBoundVar("x", nm->realType());
+ d_taylor_real_fv_base = nm->mkBoundVar("a", nm->realType());
+ d_taylor_real_fv_base_rem = nm->mkBoundVar("b", nm->realType());
+ d_taylor_degree = options::nlExtTfTaylorDegree();
+}
+
+TranscendentalSolver::~TranscendentalSolver() {}
+
+void TranscendentalSolver::initLastCall(const std::vector<Node>& assertions,
+ const std::vector<Node>& false_asserts,
+ const std::vector<Node>& xts,
+ std::vector<NlLemma>& lems)
+{
+ d_funcCongClass.clear();
+ d_funcMap.clear();
+ d_tf_region.clear();
+
+ NodeManager* nm = NodeManager::currentNM();
+
+ // register the extended function terms
+ std::vector<Node> trNeedsMaster;
+ bool needPi = false;
+ // for computing congruence
+ std::map<Kind, ArgTrie> argTrie;
+ for (unsigned i = 0, xsize = xts.size(); i < xsize; i++)
+ {
+ Node a = xts[i];
+ Kind ak = a.getKind();
+ bool consider = true;
+ // if is an unpurified application of SINE, or it is a transcendental
+ // applied to a trancendental, purify.
+ if (isTranscendentalKind(ak))
+ {
+ // if we've already computed master for a
+ if (d_trMaster.find(a) != d_trMaster.end())
+ {
+ // a master has at least one slave
+ consider = (d_trSlaves.find(a) != d_trSlaves.end());
+ }
+ else
+ {
+ if (ak == SINE)
+ {
+ // always not a master
+ consider = false;
+ }
+ else
+ {
+ for (const Node& ac : a)
+ {
+ if (isTranscendentalKind(ac.getKind()))
+ {
+ consider = false;
+ break;
+ }
+ }
+ }
+ if (!consider)
+ {
+ // wait to assign a master below
+ trNeedsMaster.push_back(a);
+ }
+ else
+ {
+ d_trMaster[a] = a;
+ d_trSlaves[a].insert(a);
+ }
+ }
+ }
+ if (ak == EXPONENTIAL || ak == SINE)
+ {
+ needPi = needPi || (ak == SINE);
+ // if we didn't indicate that it should be purified above
+ if (consider)
+ {
+ std::vector<Node> repList;
+ for (const Node& ac : a)
+ {
+ Node r = d_model.computeConcreteModelValue(ac);
+ repList.push_back(r);
+ }
+ Node aa = argTrie[ak].add(a, repList);
+ if (aa != a)
+ {
+ // apply congruence to pairs of terms that are disequal and congruent
+ Assert(aa.getNumChildren() == a.getNumChildren());
+ Node mvaa = d_model.computeAbstractModelValue(a);
+ Node mvaaa = d_model.computeAbstractModelValue(aa);
+ if (mvaa != mvaaa)
+ {
+ std::vector<Node> exp;
+ for (unsigned j = 0, size = a.getNumChildren(); j < size; j++)
+ {
+ exp.push_back(a[j].eqNode(aa[j]));
+ }
+ Node expn = exp.size() == 1 ? exp[0] : nm->mkNode(AND, exp);
+ Node cong_lemma = nm->mkNode(OR, expn.negate(), a.eqNode(aa));
+ lems.push_back(cong_lemma);
+ }
+ }
+ else
+ {
+ // new representative of congruence class
+ d_funcMap[ak].push_back(a);
+ }
+ // add to congruence class
+ d_funcCongClass[aa].push_back(a);
+ }
+ }
+ else if (ak == PI)
+ {
+ Assert(consider);
+ needPi = true;
+ d_funcMap[ak].push_back(a);
+ d_funcCongClass[a].push_back(a);
+ }
+ }
+ // initialize pi if necessary
+ if (needPi && d_pi.isNull())
+ {
+ mkPi();
+ getCurrentPiBounds(lems);
+ }
+
+ if (!lems.empty())
+ {
+ return;
+ }
+
+ // process SINE phase shifting
+ for (const Node& a : trNeedsMaster)
+ {
+ // should not have processed this already
+ Assert(d_trMaster.find(a) == d_trMaster.end());
+ Kind k = a.getKind();
+ Assert(k == SINE || k == EXPONENTIAL);
+ Node y =
+ nm->mkSkolem("y", nm->realType(), "phase shifted trigonometric arg");
+ Node new_a = nm->mkNode(k, y);
+ d_trSlaves[new_a].insert(new_a);
+ d_trSlaves[new_a].insert(a);
+ d_trMaster[a] = new_a;
+ d_trMaster[new_a] = new_a;
+ Node lem;
+ if (k == SINE)
+ {
+ Trace("nl-ext-tf") << "Basis sine : " << new_a << " for " << a
+ << std::endl;
+ Assert(!d_pi.isNull());
+ Node shift = nm->mkSkolem("s", nm->integerType(), "number of shifts");
+ // TODO : do not introduce shift here, instead needs model-based
+ // refinement for constant shifts (cvc4-projects #1284)
+ lem = nm->mkNode(
+ AND,
+ mkValidPhase(y, d_pi),
+ nm->mkNode(
+ ITE,
+ mkValidPhase(a[0], d_pi),
+ a[0].eqNode(y),
+ a[0].eqNode(nm->mkNode(
+ PLUS,
+ y,
+ nm->mkNode(MULT, nm->mkConst(Rational(2)), shift, d_pi)))),
+ new_a.eqNode(a));
+ }
+ else
+ {
+ // do both equalities to ensure that new_a becomes a preregistered term
+ lem = nm->mkNode(AND, a.eqNode(new_a), a[0].eqNode(y));
+ }
+ // note we must do preprocess on this lemma
+ Trace("nl-ext-lemma") << "NonlinearExtension::Lemma : purify : " << lem
+ << std::endl;
+ NlLemma nlem(lem);
+ nlem.d_preprocess = true;
+ lems.push_back(nlem);
+ }
+
+ if (Trace.isOn("nl-ext-mv"))
+ {
+ Trace("nl-ext-mv") << "Arguments of trancendental functions : "
+ << std::endl;
+ for (std::pair<const Kind, std::vector<Node> >& tfl : d_funcMap)
+ {
+ Kind k = tfl.first;
+ if (k == SINE || k == EXPONENTIAL)
+ {
+ for (const Node& tf : tfl.second)
+ {
+ Node v = tf[0];
+ d_model.computeConcreteModelValue(v);
+ d_model.computeAbstractModelValue(v);
+ d_model.printModelValue("nl-ext-mv", v);
+ }
+ }
+ }
+ }
+}
+
+bool TranscendentalSolver::preprocessAssertionsCheckModel(
+ std::vector<Node>& assertions)
+{
+ std::vector<Node> pvars;
+ std::vector<Node> psubs;
+ for (const std::pair<const Node, Node>& tb : d_trMaster)
+ {
+ pvars.push_back(tb.first);
+ psubs.push_back(tb.second);
+ }
+
+ // initialize representation of assertions
+ std::vector<Node> passertions;
+ for (const Node& a : assertions)
+
+ {
+ Node pa = a;
+ if (!pvars.empty())
+ {
+ pa = arithSubstitute(pa, pvars, psubs);
+ pa = Rewriter::rewrite(pa);
+ }
+ if (!pa.isConst() || !pa.getConst<bool>())
+ {
+ Trace("nl-ext-cm-assert") << "- assert : " << pa << std::endl;
+ passertions.push_back(pa);
+ }
+ }
+ // get model bounds for all transcendental functions
+ Trace("nl-ext-cm") << "----- Get bounds for transcendental functions..."
+ << std::endl;
+ for (std::pair<const Kind, std::vector<Node> >& tfs : d_funcMap)
+ {
+ Kind k = tfs.first;
+ for (const Node& tf : tfs.second)
+ {
+ Trace("nl-ext-cm") << "- Term: " << tf << std::endl;
+ bool success = true;
+ // tf is Figure 3 : tf( x )
+ Node bl;
+ Node bu;
+ if (k == PI)
+ {
+ bl = d_pi_bound[0];
+ bu = d_pi_bound[1];
+ }
+ else
+ {
+ std::pair<Node, Node> bounds = getTfModelBounds(tf, d_taylor_degree);
+ bl = bounds.first;
+ bu = bounds.second;
+ if (bl != bu)
+ {
+ d_model.setUsedApproximate();
+ }
+ }
+ if (!bl.isNull() && !bu.isNull())
+ {
+ // for each function in the congruence classe
+ for (const Node& ctf : d_funcCongClass[tf])
+ {
+ // each term in congruence classes should be master terms
+ Assert(d_trSlaves.find(ctf) != d_trSlaves.end());
+ // we set the bounds for each slave of tf
+ for (const Node& stf : d_trSlaves[ctf])
+ {
+ Trace("nl-ext-cm") << "...bound for " << stf << " : [" << bl << ", "
+ << bu << "]" << std::endl;
+ success = d_model.addCheckModelBound(stf, bl, bu);
+ }
+ }
+ }
+ else
+ {
+ Trace("nl-ext-cm") << "...no bound for " << tf << std::endl;
+ }
+ if (!success)
+ {
+ // a bound was conflicting
+ Trace("nl-ext-cm") << "...failed to set bound for " << tf << std::endl;
+ Trace("nl-ext-cm") << "-----" << std::endl;
+ return false;
+ }
+ }
+ }
+ // replace the assertions
+ assertions = passertions;
+ return true;
+}
+
+void TranscendentalSolver::incrementTaylorDegree() { d_taylor_degree++; }
+unsigned TranscendentalSolver::getTaylorDegree() const
+{
+ return d_taylor_degree;
+}
+
+void TranscendentalSolver::processSideEffect(const NlLemma& se)
+{
+ for (const std::tuple<Node, unsigned, Node>& sp : se.d_secantPoint)
+ {
+ Node tf = std::get<0>(sp);
+ unsigned d = std::get<1>(sp);
+ Node c = std::get<2>(sp);
+ d_secant_points[tf][d].push_back(c);
+ }
+}
+
+void TranscendentalSolver::mkPi()
+{
+ NodeManager* nm = NodeManager::currentNM();
+ if (d_pi.isNull())
+ {
+ d_pi = nm->mkNullaryOperator(nm->realType(), PI);
+ d_pi_2 = Rewriter::rewrite(
+ nm->mkNode(MULT, d_pi, nm->mkConst(Rational(1) / Rational(2))));
+ d_pi_neg_2 = Rewriter::rewrite(
+ nm->mkNode(MULT, d_pi, nm->mkConst(Rational(-1) / Rational(2))));
+ d_pi_neg =
+ Rewriter::rewrite(nm->mkNode(MULT, d_pi, nm->mkConst(Rational(-1))));
+ // initialize bounds
+ d_pi_bound[0] = nm->mkConst(Rational(103993) / Rational(33102));
+ d_pi_bound[1] = nm->mkConst(Rational(104348) / Rational(33215));
+ }
+}
+
+void TranscendentalSolver::getCurrentPiBounds(std::vector<NlLemma>& lemmas)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ Node pi_lem = nm->mkNode(AND,
+ nm->mkNode(GEQ, d_pi, d_pi_bound[0]),
+ nm->mkNode(LEQ, d_pi, d_pi_bound[1]));
+ lemmas.push_back(pi_lem);
+}
+
+std::vector<NlLemma> TranscendentalSolver::checkTranscendentalInitialRefine()
+{
+ NodeManager* nm = NodeManager::currentNM();
+ std::vector<NlLemma> lemmas;
+ Trace("nl-ext")
+ << "Get initial refinement lemmas for transcendental functions..."
+ << std::endl;
+ for (std::pair<const Kind, std::vector<Node> >& tfl : d_funcMap)
+ {
+ Kind k = tfl.first;
+ for (const Node& t : tfl.second)
+ {
+ // initial refinements
+ if (d_tf_initial_refine.find(t) == d_tf_initial_refine.end())
+ {
+ d_tf_initial_refine[t] = true;
+ Node lem;
+ if (k == SINE)
+ {
+ Node symn = nm->mkNode(SINE, nm->mkNode(MULT, d_neg_one, t[0]));
+ symn = Rewriter::rewrite(symn);
+ // Can assume it is its own master since phase is split over 0,
+ // hence -pi <= t[0] <= pi implies -pi <= -t[0] <= pi.
+ d_trMaster[symn] = symn;
+ d_trSlaves[symn].insert(symn);
+ Assert(d_trSlaves.find(t) != d_trSlaves.end());
+ std::vector<Node> children;
+
+ lem = nm->mkNode(AND,
+ // bounds
+ nm->mkNode(AND,
+ nm->mkNode(LEQ, t, d_one),
+ nm->mkNode(GEQ, t, d_neg_one)),
+ // symmetry
+ nm->mkNode(PLUS, t, symn).eqNode(d_zero),
+ // sign
+ nm->mkNode(EQUAL,
+ nm->mkNode(LT, t[0], d_zero),
+ nm->mkNode(LT, t, d_zero)),
+ // zero val
+ nm->mkNode(EQUAL,
+ nm->mkNode(GT, t[0], d_zero),
+ nm->mkNode(GT, t, d_zero)));
+ lem = nm->mkNode(
+ AND,
+ lem,
+ // zero tangent
+ nm->mkNode(AND,
+ nm->mkNode(IMPLIES,
+ nm->mkNode(GT, t[0], d_zero),
+ nm->mkNode(LT, t, t[0])),
+ nm->mkNode(IMPLIES,
+ nm->mkNode(LT, t[0], d_zero),
+ nm->mkNode(GT, t, t[0]))),
+ // pi tangent
+ nm->mkNode(
+ AND,
+ nm->mkNode(IMPLIES,
+ nm->mkNode(LT, t[0], d_pi),
+ nm->mkNode(LT, t, nm->mkNode(MINUS, d_pi, t[0]))),
+ nm->mkNode(
+ IMPLIES,
+ nm->mkNode(GT, t[0], d_pi_neg),
+ nm->mkNode(GT, t, nm->mkNode(MINUS, d_pi_neg, t[0])))));
+ }
+ else if (k == EXPONENTIAL)
+ {
+ // ( exp(x) > 0 ) ^ ( x=0 <=> exp( x ) = 1 ) ^ ( x < 0 <=> exp( x ) <
+ // 1 ) ^ ( x <= 0 V exp( x ) > x + 1 )
+ lem = nm->mkNode(
+ AND,
+ nm->mkNode(GT, t, d_zero),
+ nm->mkNode(EQUAL, t[0].eqNode(d_zero), t.eqNode(d_one)),
+ nm->mkNode(EQUAL,
+ nm->mkNode(LT, t[0], d_zero),
+ nm->mkNode(LT, t, d_one)),
+ nm->mkNode(OR,
+ nm->mkNode(LEQ, t[0], d_zero),
+ nm->mkNode(GT, t, nm->mkNode(PLUS, t[0], d_one))));
+ }
+ if (!lem.isNull())
+ {
+ lemmas.push_back(lem);
+ }
+ }
+ }
+ }
+
+ return lemmas;
+}
+
+std::vector<NlLemma> TranscendentalSolver::checkTranscendentalMonotonic()
+{
+ std::vector<NlLemma> lemmas;
+ Trace("nl-ext") << "Get monotonicity lemmas for transcendental functions..."
+ << std::endl;
+
+ // sort arguments of all transcendentals
+ std::map<Kind, std::vector<Node> > sorted_tf_args;
+ std::map<Kind, std::map<Node, Node> > tf_arg_to_term;
+
+ for (std::pair<const Kind, std::vector<Node> >& tfl : d_funcMap)
+ {
+ Kind k = tfl.first;
+ if (k == EXPONENTIAL || k == SINE)
+ {
+ for (const Node& tf : tfl.second)
+ {
+ Node a = tf[0];
+ Node mvaa = d_model.computeAbstractModelValue(a);
+ if (mvaa.isConst())
+ {
+ Trace("nl-ext-tf-mono-debug") << "...tf term : " << a << std::endl;
+ sorted_tf_args[k].push_back(a);
+ tf_arg_to_term[k][a] = tf;
+ }
+ }
+ }
+ }
+
+ SortNlModel smv;
+ smv.d_nlm = &d_model;
+ // sort by concrete values
+ smv.d_isConcrete = true;
+ smv.d_reverse_order = true;
+ for (std::pair<const Kind, std::vector<Node> >& tfl : d_funcMap)
+ {
+ Kind k = tfl.first;
+ if (!sorted_tf_args[k].empty())
+ {
+ std::sort(sorted_tf_args[k].begin(), sorted_tf_args[k].end(), smv);
+ Trace("nl-ext-tf-mono") << "Sorted transcendental function list for " << k
+ << " : " << std::endl;
+ for (unsigned i = 0; i < sorted_tf_args[k].size(); i++)
+ {
+ Node targ = sorted_tf_args[k][i];
+ Node mvatarg = d_model.computeAbstractModelValue(targ);
+ Trace("nl-ext-tf-mono")
+ << " " << targ << " -> " << mvatarg << std::endl;
+ Node t = tf_arg_to_term[k][targ];
+ Node mvat = d_model.computeAbstractModelValue(t);
+ Trace("nl-ext-tf-mono") << " f-val : " << mvat << std::endl;
+ }
+ std::vector<Node> mpoints;
+ std::vector<Node> mpoints_vals;
+ if (k == SINE)
+ {
+ mpoints.push_back(d_pi);
+ mpoints.push_back(d_pi_2);
+ mpoints.push_back(d_zero);
+ mpoints.push_back(d_pi_neg_2);
+ mpoints.push_back(d_pi_neg);
+ }
+ else if (k == EXPONENTIAL)
+ {
+ mpoints.push_back(Node::null());
+ }
+ if (!mpoints.empty())
+ {
+ // get model values for points
+ for (unsigned i = 0; i < mpoints.size(); i++)
+ {
+ Node mpv;
+ if (!mpoints[i].isNull())
+ {
+ mpv = d_model.computeAbstractModelValue(mpoints[i]);
+ Assert(mpv.isConst());
+ }
+ mpoints_vals.push_back(mpv);
+ }
+
+ unsigned mdir_index = 0;
+ int monotonic_dir = -1;
+ Node mono_bounds[2];
+ Node targ, targval, t, tval;
+ for (unsigned i = 0, size = sorted_tf_args[k].size(); i < size; i++)
+ {
+ Node sarg = sorted_tf_args[k][i];
+ Node sargval = d_model.computeAbstractModelValue(sarg);
+ Assert(sargval.isConst());
+ Node s = tf_arg_to_term[k][sarg];
+ Node sval = d_model.computeAbstractModelValue(s);
+ Assert(sval.isConst());
+
+ // increment to the proper monotonicity region
+ bool increment = true;
+ while (increment && mdir_index < mpoints.size())
+ {
+ increment = false;
+ if (mpoints[mdir_index].isNull())
+ {
+ increment = true;
+ }
+ else
+ {
+ Node pval = mpoints_vals[mdir_index];
+ Assert(pval.isConst());
+ if (sargval.getConst<Rational>() < pval.getConst<Rational>())
+ {
+ increment = true;
+ Trace("nl-ext-tf-mono") << "...increment at " << sarg
+ << " since model value is less than "
+ << mpoints[mdir_index] << std::endl;
+ }
+ }
+ if (increment)
+ {
+ tval = Node::null();
+ mono_bounds[1] = mpoints[mdir_index];
+ mdir_index++;
+ monotonic_dir = regionToMonotonicityDir(k, mdir_index);
+ if (mdir_index < mpoints.size())
+ {
+ mono_bounds[0] = mpoints[mdir_index];
+ }
+ else
+ {
+ mono_bounds[0] = Node::null();
+ }
+ }
+ }
+ // store the concavity region
+ d_tf_region[s] = mdir_index;
+ Trace("nl-ext-concavity") << "Transcendental function " << s
+ << " is in region #" << mdir_index;
+ Trace("nl-ext-concavity")
+ << ", arg model value = " << sargval << std::endl;
+
+ if (!tval.isNull())
+ {
+ NodeManager* nm = NodeManager::currentNM();
+ Node mono_lem;
+ if (monotonic_dir == 1
+ && sval.getConst<Rational>() > tval.getConst<Rational>())
+ {
+ mono_lem = nm->mkNode(
+ IMPLIES, nm->mkNode(GEQ, targ, sarg), nm->mkNode(GEQ, t, s));
+ }
+ else if (monotonic_dir == -1
+ && sval.getConst<Rational>() < tval.getConst<Rational>())
+ {
+ mono_lem = nm->mkNode(
+ IMPLIES, nm->mkNode(LEQ, targ, sarg), nm->mkNode(LEQ, t, s));
+ }
+ if (!mono_lem.isNull())
+ {
+ if (!mono_bounds[0].isNull())
+ {
+ Assert(!mono_bounds[1].isNull());
+ mono_lem = nm->mkNode(
+ IMPLIES,
+ nm->mkNode(AND,
+ mkBounded(mono_bounds[0], targ, mono_bounds[1]),
+ mkBounded(mono_bounds[0], sarg, mono_bounds[1])),
+ mono_lem);
+ }
+ Trace("nl-ext-tf-mono")
+ << "Monotonicity lemma : " << mono_lem << std::endl;
+ lemmas.push_back(mono_lem);
+ }
+ }
+ // store the previous values
+ targ = sarg;
+ targval = sargval;
+ t = s;
+ tval = sval;
+ }
+ }
+ }
+ }
+ return lemmas;
+}
+
+std::vector<NlLemma> TranscendentalSolver::checkTranscendentalTangentPlanes()
+{
+ std::vector<NlLemma> lemmas;
+ Trace("nl-ext") << "Get tangent plane lemmas for transcendental functions..."
+ << std::endl;
+ // this implements Figure 3 of "Satisfiaility Modulo Transcendental Functions
+ // via Incremental Linearization" by Cimatti et al
+ for (std::pair<const Kind, std::vector<Node> >& tfs : d_funcMap)
+ {
+ Kind k = tfs.first;
+ if (k == PI)
+ {
+ // We do not use Taylor approximation for PI currently.
+ // This is because the convergence is extremely slow, and hence an
+ // initial approximation is superior.
+ continue;
+ }
+ Trace("nl-ext-tftp-debug2") << "Taylor variables: " << std::endl;
+ Trace("nl-ext-tftp-debug2")
+ << " taylor_real_fv : " << d_taylor_real_fv << std::endl;
+ Trace("nl-ext-tftp-debug2")
+ << " taylor_real_fv_base : " << d_taylor_real_fv_base << std::endl;
+ Trace("nl-ext-tftp-debug2")
+ << " taylor_real_fv_base_rem : " << d_taylor_real_fv_base_rem
+ << std::endl;
+ Trace("nl-ext-tftp-debug2") << std::endl;
+
+ // we substitute into the Taylor sum P_{n,f(0)}( x )
+
+ for (const Node& tf : tfs.second)
+ {
+ // tf is Figure 3 : tf( x )
+ Trace("nl-ext-tftp") << "Compute tangent planes " << tf << std::endl;
+ // go until max degree is reached, or we don't meet bound criteria
+ for (unsigned d = 1; d <= d_taylor_degree; d++)
+ {
+ Trace("nl-ext-tftp") << "- run at degree " << d << "..." << std::endl;
+ unsigned prev = lemmas.size();
+ if (checkTfTangentPlanesFun(tf, d, lemmas))
+ {
+ Trace("nl-ext-tftp")
+ << "...fail, #lemmas = " << (lemmas.size() - prev) << std::endl;
+ break;
+ }
+ else
+ {
+ Trace("nl-ext-tftp") << "...success" << std::endl;
+ }
+ }
+ }
+ }
+
+ return lemmas;
+}
+
+bool TranscendentalSolver::checkTfTangentPlanesFun(Node tf,
+ unsigned d,
+ std::vector<NlLemma>& lemmas)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ Kind k = tf.getKind();
+ // this should only be run on master applications
+ Assert(d_trSlaves.find(tf) != d_trSlaves.end());
+
+ // Figure 3 : c
+ Node c = d_model.computeAbstractModelValue(tf[0]);
+ int csign = c.getConst<Rational>().sgn();
+ if (csign == 0)
+ {
+ // no secant/tangent plane is necessary
+ return true;
+ }
+ Assert(csign == 1 || csign == -1);
+
+ // Figure 3: P_l, P_u
+ // mapped to for signs of c
+ std::map<int, Node> poly_approx_bounds[2];
+ std::vector<Node> pbounds;
+ getPolynomialApproximationBoundForArg(k, c, d, pbounds);
+ poly_approx_bounds[0][1] = pbounds[0];
+ poly_approx_bounds[0][-1] = pbounds[1];
+ poly_approx_bounds[1][1] = pbounds[2];
+ poly_approx_bounds[1][-1] = pbounds[3];
+
+ // Figure 3 : v
+ Node v = d_model.computeAbstractModelValue(tf);
+
+ // check value of tf
+ Trace("nl-ext-tftp-debug") << "Process tangent plane refinement for " << tf
+ << ", degree " << d << "..." << std::endl;
+ Trace("nl-ext-tftp-debug") << " value in model : " << v << std::endl;
+ Trace("nl-ext-tftp-debug") << " arg value in model : " << c << std::endl;
+
+ std::vector<Node> taylor_vars;
+ taylor_vars.push_back(d_taylor_real_fv);
+
+ // compute the concavity
+ int region = -1;
+ std::unordered_map<Node, int, NodeHashFunction>::iterator itr =
+ d_tf_region.find(tf);
+ if (itr != d_tf_region.end())
+ {
+ region = itr->second;
+ Trace("nl-ext-tftp-debug") << " region is : " << region << std::endl;
+ }
+ // Figure 3 : conc
+ int concavity = regionToConcavity(k, itr->second);
+ Trace("nl-ext-tftp-debug") << " concavity is : " << concavity << std::endl;
+ if (concavity == 0)
+ {
+ // no secant/tangent plane is necessary
+ return true;
+ }
+ // bounds for which we are this concavity
+ // Figure 3: < l, u >
+ Node bounds[2];
+ if (k == SINE)
+ {
+ bounds[0] = regionToLowerBound(k, region);
+ Assert(!bounds[0].isNull());
+ bounds[1] = regionToUpperBound(k, region);
+ Assert(!bounds[1].isNull());
+ }
+
+ // Figure 3: P
+ Node poly_approx;
+
+ // compute whether this is a tangent refinement or a secant refinement
+ bool is_tangent = false;
+ bool is_secant = false;
+ std::pair<Node, Node> mvb = getTfModelBounds(tf, d);
+ for (unsigned r = 0; r < 2; r++)
+ {
+ Node pab = poly_approx_bounds[r][csign];
+ Node v_pab = r == 0 ? mvb.first : mvb.second;
+ if (!v_pab.isNull())
+ {
+ Trace("nl-ext-tftp-debug2")
+ << "...model value of " << pab << " is " << v_pab << std::endl;
+
+ Assert(v_pab.isConst());
+ Node comp = nm->mkNode(r == 0 ? LT : GT, v, v_pab);
+ Trace("nl-ext-tftp-debug2") << "...compare : " << comp << std::endl;
+ Node compr = Rewriter::rewrite(comp);
+ Trace("nl-ext-tftp-debug2") << "...got : " << compr << std::endl;
+ if (compr == d_true)
+ {
+ // beyond the bounds
+ if (r == 0)
+ {
+ poly_approx = poly_approx_bounds[r][csign];
+ is_tangent = concavity == 1;
+ is_secant = concavity == -1;
+ }
+ else
+ {
+ poly_approx = poly_approx_bounds[r][csign];
+ is_tangent = concavity == -1;
+ is_secant = concavity == 1;
+ }
+ if (Trace.isOn("nl-ext-tftp"))
+ {
+ Trace("nl-ext-tftp") << "*** Outside boundary point (";
+ Trace("nl-ext-tftp") << (r == 0 ? "low" : "high") << ") ";
+ printRationalApprox("nl-ext-tftp", v_pab);
+ Trace("nl-ext-tftp") << ", will refine..." << std::endl;
+ Trace("nl-ext-tftp")
+ << " poly_approx = " << poly_approx << std::endl;
+ Trace("nl-ext-tftp")
+ << " is_tangent = " << is_tangent << std::endl;
+ Trace("nl-ext-tftp") << " is_secant = " << is_secant << std::endl;
+ }
+ break;
+ }
+ else
+ {
+ Trace("nl-ext-tftp")
+ << " ...within " << (r == 0 ? "low" : "high") << " bound : ";
+ printRationalApprox("nl-ext-tftp", v_pab);
+ Trace("nl-ext-tftp") << std::endl;
+ }
+ }
+ }
+
+ // Figure 3: P( c )
+ Node poly_approx_c;
+ if (is_tangent || is_secant)
+ {
+ Assert(!poly_approx.isNull());
+ std::vector<Node> taylor_subs;
+ taylor_subs.push_back(c);
+ Assert(taylor_vars.size() == taylor_subs.size());
+ poly_approx_c = poly_approx.substitute(taylor_vars.begin(),
+ taylor_vars.end(),
+ taylor_subs.begin(),
+ taylor_subs.end());
+ Trace("nl-ext-tftp-debug2")
+ << "...poly approximation at c is " << poly_approx_c << std::endl;
+ }
+ else
+ {
+ // we may want to continue getting better bounds
+ return false;
+ }
+
+ if (is_tangent)
+ {
+ // compute tangent plane
+ // Figure 3: T( x )
+ // We use zero slope tangent planes, since the concavity of the Taylor
+ // approximation cannot be easily established.
+ Node tplane = poly_approx_c;
+
+ Node lem = nm->mkNode(concavity == 1 ? GEQ : LEQ, tf, tplane);
+ std::vector<Node> antec;
+ int mdir = regionToMonotonicityDir(k, region);
+ for (unsigned i = 0; i < 2; i++)
+ {
+ // Tangent plane is valid in the interval [c,u) if the slope of the
+ // function matches its concavity, and is valid in (l, c] otherwise.
+ Node use_bound = (mdir == concavity) == (i == 0) ? c : bounds[i];
+ if (!use_bound.isNull())
+ {
+ Node ant = nm->mkNode(i == 0 ? GEQ : LEQ, tf[0], use_bound);
+ antec.push_back(ant);
+ }
+ }
+ if (!antec.empty())
+ {
+ Node antec_n = antec.size() == 1 ? antec[0] : nm->mkNode(AND, antec);
+ lem = nm->mkNode(IMPLIES, antec_n, lem);
+ }
+ Trace("nl-ext-tftp-debug2")
+ << "*** Tangent plane lemma (pre-rewrite): " << lem << std::endl;
+ lem = Rewriter::rewrite(lem);
+ Trace("nl-ext-tftp-lemma")
+ << "*** Tangent plane lemma : " << lem << std::endl;
+ Assert(d_model.computeAbstractModelValue(lem) == d_false);
+ // Figure 3 : line 9
+ lemmas.push_back(lem);
+ }
+ else if (is_secant)
+ {
+ // bounds are the minimum and maximum previous secant points
+ // should not repeat secant points: secant lemmas should suffice to
+ // rule out previous assignment
+ Assert(std::find(
+ d_secant_points[tf][d].begin(), d_secant_points[tf][d].end(), c)
+ == d_secant_points[tf][d].end());
+ // Insert into the (temporary) vector. We do not update this vector
+ // until we are sure this secant plane lemma has been processed. We do
+ // this by mapping the lemma to a side effect below.
+ std::vector<Node> spoints = d_secant_points[tf][d];
+ spoints.push_back(c);
+
+ // sort
+ SortNlModel smv;
+ smv.d_nlm = &d_model;
+ smv.d_isConcrete = true;
+ std::sort(spoints.begin(), spoints.end(), smv);
+ // get the resulting index of c
+ unsigned index =
+ std::find(spoints.begin(), spoints.end(), c) - spoints.begin();
+ // bounds are the next closest upper/lower bound values
+ if (index > 0)
+ {
+ bounds[0] = spoints[index - 1];
+ }
+ else
+ {
+ // otherwise, we use the lower boundary point for this concavity
+ // region
+ if (k == SINE)
+ {
+ Assert(!bounds[0].isNull());
+ }
+ else if (k == EXPONENTIAL)
+ {
+ // pick c-1
+ bounds[0] = Rewriter::rewrite(nm->mkNode(MINUS, c, d_one));
+ }
+ }
+ if (index < spoints.size() - 1)
+ {
+ bounds[1] = spoints[index + 1];
+ }
+ else
+ {
+ // otherwise, we use the upper boundary point for this concavity
+ // region
+ if (k == SINE)
+ {
+ Assert(!bounds[1].isNull());
+ }
+ else if (k == EXPONENTIAL)
+ {
+ // pick c+1
+ bounds[1] = Rewriter::rewrite(nm->mkNode(PLUS, c, d_one));
+ }
+ }
+ Trace("nl-ext-tftp-debug2") << "...secant bounds are : " << bounds[0]
+ << " ... " << bounds[1] << std::endl;
+
+ // the secant plane may be conjunction of 1-2 guarded inequalities
+ std::vector<Node> lemmaConj;
+ for (unsigned s = 0; s < 2; s++)
+ {
+ // compute secant plane
+ Assert(!poly_approx.isNull());
+ Assert(!bounds[s].isNull());
+ // take the model value of l or u (since may contain PI)
+ Node b = d_model.computeAbstractModelValue(bounds[s]);
+ Trace("nl-ext-tftp-debug2") << "...model value of bound " << bounds[s]
+ << " is " << b << std::endl;
+ Assert(b.isConst());
+ if (c != b)
+ {
+ // Figure 3 : P(l), P(u), for s = 0,1
+ Node poly_approx_b;
+ std::vector<Node> taylor_subs;
+ taylor_subs.push_back(b);
+ Assert(taylor_vars.size() == taylor_subs.size());
+ poly_approx_b = poly_approx.substitute(taylor_vars.begin(),
+ taylor_vars.end(),
+ taylor_subs.begin(),
+ taylor_subs.end());
+ // Figure 3: S_l( x ), S_u( x ) for s = 0,1
+ Node splane;
+ Node rcoeff_n = Rewriter::rewrite(nm->mkNode(MINUS, b, c));
+ Assert(rcoeff_n.isConst());
+ Rational rcoeff = rcoeff_n.getConst<Rational>();
+ Assert(rcoeff.sgn() != 0);
+ poly_approx_b = Rewriter::rewrite(poly_approx_b);
+ poly_approx_c = Rewriter::rewrite(poly_approx_c);
+ splane = nm->mkNode(
+ PLUS,
+ poly_approx_b,
+ nm->mkNode(MULT,
+ nm->mkNode(MINUS, poly_approx_b, poly_approx_c),
+ nm->mkConst(Rational(1) / rcoeff),
+ nm->mkNode(MINUS, tf[0], b)));
+
+ Node lem = nm->mkNode(concavity == 1 ? LEQ : GEQ, tf, splane);
+ // With respect to Figure 3, this is slightly different.
+ // In particular, we chose b to be the model value of bounds[s],
+ // which is a constant although bounds[s] may not be (e.g. if it
+ // contains PI).
+ // To ensure that c...b does not cross an inflection point,
+ // we guard with the symbolic version of bounds[s].
+ // This leads to lemmas e.g. of this form:
+ // ( c <= x <= PI/2 ) => ( sin(x) < ( P( b ) - P( c ) )*( x -
+ // b ) + P( b ) )
+ // where b = (PI/2)^M, the current value of PI/2 in the model.
+ // This is sound since we are guarded by the symbolic
+ // representation of PI/2.
+ Node antec_n =
+ nm->mkNode(AND,
+ nm->mkNode(GEQ, tf[0], s == 0 ? bounds[s] : c),
+ nm->mkNode(LEQ, tf[0], s == 0 ? c : bounds[s]));
+ lem = nm->mkNode(IMPLIES, antec_n, lem);
+ Trace("nl-ext-tftp-debug2")
+ << "*** Secant plane lemma (pre-rewrite) : " << lem << std::endl;
+ lem = Rewriter::rewrite(lem);
+ Trace("nl-ext-tftp-lemma")
+ << "*** Secant plane lemma : " << lem << std::endl;
+ lemmaConj.push_back(lem);
+ Assert(d_model.computeAbstractModelValue(lem) == d_false);
+ }
+ }
+ // Figure 3 : line 22
+ Assert(!lemmaConj.empty());
+ Node lem =
+ lemmaConj.size() == 1 ? lemmaConj[0] : nm->mkNode(AND, lemmaConj);
+ NlLemma nlem(lem);
+ // The side effect says that if lem is added, then we should add the
+ // secant point c for (tf,d).
+ nlem.d_secantPoint.push_back(std::make_tuple(tf, d, c));
+ lemmas.push_back(nlem);
+ }
+ return true;
+}
+
+int TranscendentalSolver::regionToMonotonicityDir(Kind k, int region)
+{
+ if (k == EXPONENTIAL)
+ {
+ if (region == 1)
+ {
+ return 1;
+ }
+ }
+ else if (k == SINE)
+ {
+ if (region == 1 || region == 4)
+ {
+ return -1;
+ }
+ else if (region == 2 || region == 3)
+ {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+int TranscendentalSolver::regionToConcavity(Kind k, int region)
+{
+ if (k == EXPONENTIAL)
+ {
+ if (region == 1)
+ {
+ return 1;
+ }
+ }
+ else if (k == SINE)
+ {
+ if (region == 1 || region == 2)
+ {
+ return -1;
+ }
+ else if (region == 3 || region == 4)
+ {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+Node TranscendentalSolver::regionToLowerBound(Kind k, int region)
+{
+ if (k == SINE)
+ {
+ if (region == 1)
+ {
+ return d_pi_2;
+ }
+ else if (region == 2)
+ {
+ return d_zero;
+ }
+ else if (region == 3)
+ {
+ return d_pi_neg_2;
+ }
+ else if (region == 4)
+ {
+ return d_pi_neg;
+ }
+ }
+ return Node::null();
+}
+
+Node TranscendentalSolver::regionToUpperBound(Kind k, int region)
+{
+ if (k == SINE)
+ {
+ if (region == 1)
+ {
+ return d_pi;
+ }
+ else if (region == 2)
+ {
+ return d_pi_2;
+ }
+ else if (region == 3)
+ {
+ return d_zero;
+ }
+ else if (region == 4)
+ {
+ return d_pi_neg_2;
+ }
+ }
+ return Node::null();
+}
+
+Node TranscendentalSolver::getDerivative(Node n, Node x)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ Assert(x.isVar());
+ // only handle the cases of the taylor expansion of d
+ if (n.getKind() == EXPONENTIAL)
+ {
+ if (n[0] == x)
+ {
+ return n;
+ }
+ }
+ else if (n.getKind() == SINE)
+ {
+ if (n[0] == x)
+ {
+ Node na = nm->mkNode(MINUS, d_pi_2, n[0]);
+ Node ret = nm->mkNode(SINE, na);
+ ret = Rewriter::rewrite(ret);
+ return ret;
+ }
+ }
+ else if (n.getKind() == PLUS)
+ {
+ std::vector<Node> dchildren;
+ for (unsigned i = 0; i < n.getNumChildren(); i++)
+ {
+ // PLUS is flattened in rewriter, recursion depth is bounded by 1
+ Node dc = getDerivative(n[i], x);
+ if (dc.isNull())
+ {
+ return dc;
+ }
+ else
+ {
+ dchildren.push_back(dc);
+ }
+ }
+ return nm->mkNode(PLUS, dchildren);
+ }
+ else if (n.getKind() == MULT)
+ {
+ Assert(n[0].isConst());
+ Node dc = getDerivative(n[1], x);
+ if (!dc.isNull())
+ {
+ return nm->mkNode(MULT, n[0], dc);
+ }
+ }
+ else if (n.getKind() == NONLINEAR_MULT)
+ {
+ unsigned xcount = 0;
+ std::vector<Node> children;
+ unsigned xindex = 0;
+ for (unsigned i = 0, size = n.getNumChildren(); i < size; i++)
+ {
+ if (n[i] == x)
+ {
+ xcount++;
+ xindex = i;
+ }
+ children.push_back(n[i]);
+ }
+ if (xcount == 0)
+ {
+ return d_zero;
+ }
+ else
+ {
+ children[xindex] = nm->mkConst(Rational(xcount));
+ }
+ return nm->mkNode(MULT, children);
+ }
+ else if (n.isVar())
+ {
+ return n == x ? d_one : d_zero;
+ }
+ else if (n.isConst())
+ {
+ return d_zero;
+ }
+ Trace("nl-ext-debug") << "No derivative computed for " << n;
+ Trace("nl-ext-debug") << " for d/d{" << x << "}" << std::endl;
+ return Node::null();
+}
+
+std::pair<Node, Node> TranscendentalSolver::getTaylor(Node fa, unsigned n)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ Assert(n > 0);
+ Node fac; // what term we cache for fa
+ if (fa[0] == d_zero)
+ {
+ // optimization : simpler to compute (x-fa[0])^n if we are centered around 0
+ fac = fa;
+ }
+ else
+ {
+ // otherwise we use a standard factor a in (x-a)^n
+ fac = nm->mkNode(fa.getKind(), d_taylor_real_fv_base);
+ }
+ Node taylor_rem;
+ Node taylor_sum;
+ // check if we have already computed this Taylor series
+ std::unordered_map<unsigned, Node>::iterator itt = d_taylor_sum[fac].find(n);
+ if (itt == d_taylor_sum[fac].end())
+ {
+ Node i_exp_base;
+ if (fa[0] == d_zero)
+ {
+ i_exp_base = d_taylor_real_fv;
+ }
+ else
+ {
+ i_exp_base = Rewriter::rewrite(
+ nm->mkNode(MINUS, d_taylor_real_fv, d_taylor_real_fv_base));
+ }
+ Node i_derv = fac;
+ Node i_fact = d_one;
+ Node i_exp = d_one;
+ int i_derv_status = 0;
+ unsigned counter = 0;
+ std::vector<Node> sum;
+ do
+ {
+ counter++;
+ if (fa.getKind() == EXPONENTIAL)
+ {
+ // unchanged
+ }
+ else if (fa.getKind() == SINE)
+ {
+ if (i_derv_status % 2 == 1)
+ {
+ Node arg = nm->mkNode(PLUS, d_pi_2, d_taylor_real_fv_base);
+ i_derv = nm->mkNode(SINE, arg);
+ }
+ else
+ {
+ i_derv = fa;
+ }
+ if (i_derv_status >= 2)
+ {
+ i_derv = nm->mkNode(MINUS, d_zero, i_derv);
+ }
+ i_derv = Rewriter::rewrite(i_derv);
+ i_derv_status = i_derv_status == 3 ? 0 : i_derv_status + 1;
+ }
+ if (counter == (n + 1))
+ {
+ TNode x = d_taylor_real_fv_base;
+ i_derv = i_derv.substitute(x, d_taylor_real_fv_base_rem);
+ }
+ Node curr = nm->mkNode(MULT, nm->mkNode(DIVISION, i_derv, i_fact), i_exp);
+ if (counter == (n + 1))
+ {
+ taylor_rem = curr;
+ }
+ else
+ {
+ sum.push_back(curr);
+ i_fact = Rewriter::rewrite(
+ nm->mkNode(MULT, nm->mkConst(Rational(counter)), i_fact));
+ i_exp = Rewriter::rewrite(nm->mkNode(MULT, i_exp_base, i_exp));
+ }
+ } while (counter <= n);
+ taylor_sum = sum.size() == 1 ? sum[0] : nm->mkNode(PLUS, sum);
+
+ if (fac[0] != d_taylor_real_fv_base)
+ {
+ TNode x = d_taylor_real_fv_base;
+ taylor_sum = taylor_sum.substitute(x, fac[0]);
+ }
+
+ // cache
+ d_taylor_sum[fac][n] = taylor_sum;
+ d_taylor_rem[fac][n] = taylor_rem;
+ }
+ else
+ {
+ taylor_sum = itt->second;
+ Assert(d_taylor_rem[fac].find(n) != d_taylor_rem[fac].end());
+ taylor_rem = d_taylor_rem[fac][n];
+ }
+
+ // must substitute for the argument if we were using a different lookup
+ if (fa[0] != fac[0])
+ {
+ TNode x = d_taylor_real_fv_base;
+ taylor_sum = taylor_sum.substitute(x, fa[0]);
+ }
+ return std::pair<Node, Node>(taylor_sum, taylor_rem);
+}
+
+void TranscendentalSolver::getPolynomialApproximationBounds(
+ Kind k, unsigned d, std::vector<Node>& pbounds)
+{
+ if (d_poly_bounds[k][d].empty())
+ {
+ NodeManager* nm = NodeManager::currentNM();
+ Node tft = nm->mkNode(k, d_zero);
+ // n is the Taylor degree we are currently considering
+ unsigned n = 2 * d;
+ // n must be even
+ std::pair<Node, Node> taylor = getTaylor(tft, n);
+ Trace("nl-ext-tftp-debug2")
+ << "Taylor for " << k << " is : " << taylor.first << std::endl;
+ Node taylor_sum = Rewriter::rewrite(taylor.first);
+ Trace("nl-ext-tftp-debug2")
+ << "Taylor for " << k << " is (post-rewrite) : " << taylor_sum
+ << std::endl;
+ Assert(taylor.second.getKind() == MULT);
+ Assert(taylor.second.getNumChildren() == 2);
+ Assert(taylor.second[0].getKind() == DIVISION);
+ Trace("nl-ext-tftp-debug2")
+ << "Taylor remainder for " << k << " is " << taylor.second << std::endl;
+ // ru is x^{n+1}/(n+1)!
+ Node ru = nm->mkNode(DIVISION, taylor.second[1], taylor.second[0][1]);
+ ru = Rewriter::rewrite(ru);
+ Trace("nl-ext-tftp-debug2")
+ << "Taylor remainder factor is (post-rewrite) : " << ru << std::endl;
+ if (k == EXPONENTIAL)
+ {
+ pbounds.push_back(taylor_sum);
+ pbounds.push_back(taylor_sum);
+ pbounds.push_back(Rewriter::rewrite(
+ nm->mkNode(MULT, taylor_sum, nm->mkNode(PLUS, d_one, ru))));
+ pbounds.push_back(Rewriter::rewrite(nm->mkNode(PLUS, taylor_sum, ru)));
+ }
+ else
+ {
+ Assert(k == SINE);
+ Node l = Rewriter::rewrite(nm->mkNode(MINUS, taylor_sum, ru));
+ Node u = Rewriter::rewrite(nm->mkNode(PLUS, taylor_sum, ru));
+ pbounds.push_back(l);
+ pbounds.push_back(l);
+ pbounds.push_back(u);
+ pbounds.push_back(u);
+ }
+ Trace("nl-ext-tf-tplanes")
+ << "Polynomial approximation for " << k << " is: " << std::endl;
+ Trace("nl-ext-tf-tplanes") << " Lower (pos): " << pbounds[0] << std::endl;
+ Trace("nl-ext-tf-tplanes") << " Upper (pos): " << pbounds[2] << std::endl;
+ Trace("nl-ext-tf-tplanes") << " Lower (neg): " << pbounds[1] << std::endl;
+ Trace("nl-ext-tf-tplanes") << " Upper (neg): " << pbounds[3] << std::endl;
+ d_poly_bounds[k][d].insert(
+ d_poly_bounds[k][d].end(), pbounds.begin(), pbounds.end());
+ }
+ else
+ {
+ pbounds.insert(
+ pbounds.end(), d_poly_bounds[k][d].begin(), d_poly_bounds[k][d].end());
+ }
+}
+
+void TranscendentalSolver::getPolynomialApproximationBoundForArg(
+ Kind k, Node c, unsigned d, std::vector<Node>& pbounds)
+{
+ getPolynomialApproximationBounds(k, d, pbounds);
+ Assert(c.isConst());
+ if (k == EXPONENTIAL && c.getConst<Rational>().sgn() == 1)
+ {
+ NodeManager* nm = NodeManager::currentNM();
+ Node tft = nm->mkNode(k, d_zero);
+ bool success = false;
+ unsigned ds = d;
+ TNode ttrf = d_taylor_real_fv;
+ TNode tc = c;
+ do
+ {
+ success = true;
+ unsigned n = 2 * ds;
+ std::pair<Node, Node> taylor = getTaylor(tft, n);
+ // check that 1-c^{n+1}/(n+1)! > 0
+ Node ru = nm->mkNode(DIVISION, taylor.second[1], taylor.second[0][1]);
+ Node rus = ru.substitute(ttrf, tc);
+ rus = Rewriter::rewrite(rus);
+ Assert(rus.isConst());
+ if (rus.getConst<Rational>() > d_one.getConst<Rational>())
+ {
+ success = false;
+ ds = ds + 1;
+ }
+ } while (!success);
+ if (ds > d)
+ {
+ Trace("nl-ext-exp-taylor")
+ << "*** Increase Taylor bound to " << ds << " > " << d << " for ("
+ << k << " " << c << ")" << std::endl;
+ // must use sound upper bound
+ std::vector<Node> pboundss;
+ getPolynomialApproximationBounds(k, ds, pboundss);
+ pbounds[2] = pboundss[2];
+ }
+ }
+}
+
+std::pair<Node, Node> TranscendentalSolver::getTfModelBounds(Node tf,
+ unsigned d)
+{
+ // compute the model value of the argument
+ Node c = d_model.computeAbstractModelValue(tf[0]);
+ Assert(c.isConst());
+ int csign = c.getConst<Rational>().sgn();
+ Kind k = tf.getKind();
+ if (csign == 0)
+ {
+ // at zero, its trivial
+ if (k == SINE)
+ {
+ return std::pair<Node, Node>(d_zero, d_zero);
+ }
+ Assert(k == EXPONENTIAL);
+ return std::pair<Node, Node>(d_one, d_one);
+ }
+ bool isNeg = csign == -1;
+
+ std::vector<Node> pbounds;
+ getPolynomialApproximationBoundForArg(k, c, d, pbounds);
+
+ std::vector<Node> bounds;
+ TNode tfv = d_taylor_real_fv;
+ TNode tfs = tf[0];
+ for (unsigned d2 = 0; d2 < 2; d2++)
+ {
+ int index = d2 == 0 ? (isNeg ? 1 : 0) : (isNeg ? 3 : 2);
+ Node pab = pbounds[index];
+ if (!pab.isNull())
+ {
+ // { x -> tf[0] }
+ pab = pab.substitute(tfv, tfs);
+ pab = Rewriter::rewrite(pab);
+ Node v_pab = d_model.computeAbstractModelValue(pab);
+ bounds.push_back(v_pab);
+ }
+ else
+ {
+ bounds.push_back(Node::null());
+ }
+ }
+ return std::pair<Node, Node>(bounds[0], bounds[1]);
+}
+
+Node TranscendentalSolver::mkValidPhase(Node a, Node pi)
+{
+ return mkBounded(
+ NodeManager::currentNM()->mkNode(MULT, mkRationalNode(-1), pi), a, pi);
+}
+
+} // namespace nl
+} // namespace arith
+} // namespace theory
+} // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback