summaryrefslogtreecommitdiff
path: root/src/theory/arith/nl/nl_solver.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/theory/arith/nl/nl_solver.cpp')
-rw-r--r--src/theory/arith/nl/nl_solver.cpp1587
1 files changed, 1587 insertions, 0 deletions
diff --git a/src/theory/arith/nl/nl_solver.cpp b/src/theory/arith/nl/nl_solver.cpp
new file mode 100644
index 000000000..12cb02c70
--- /dev/null
+++ b/src/theory/arith/nl/nl_solver.cpp
@@ -0,0 +1,1587 @@
+/********************* */
+/*! \file nl_solver.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andrew Reynolds
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Implementation of non-linear solver
+ **/
+
+#include "theory/arith/nl/nl_solver.h"
+
+#include "options/arith_options.h"
+#include "theory/arith/arith_msum.h"
+#include "theory/arith/arith_utilities.h"
+#include "theory/arith/theory_arith.h"
+#include "theory/theory_model.h"
+
+using namespace CVC4::kind;
+
+namespace CVC4 {
+namespace theory {
+namespace arith {
+namespace nl {
+
+void debugPrintBound(const char* c, Node coeff, Node x, Kind type, Node rhs)
+{
+ Node t = ArithMSum::mkCoeffTerm(coeff, x);
+ Trace(c) << t << " " << type << " " << rhs;
+}
+
+bool hasNewMonomials(Node n, const std::vector<Node>& existing)
+{
+ std::set<Node> visited;
+
+ std::vector<Node> worklist;
+ worklist.push_back(n);
+ while (!worklist.empty())
+ {
+ Node current = worklist.back();
+ worklist.pop_back();
+ if (visited.find(current) == visited.end())
+ {
+ visited.insert(current);
+ if (current.getKind() == NONLINEAR_MULT)
+ {
+ if (std::find(existing.begin(), existing.end(), current)
+ == existing.end())
+ {
+ return true;
+ }
+ }
+ else
+ {
+ worklist.insert(worklist.end(), current.begin(), current.end());
+ }
+ }
+ }
+ return false;
+}
+
+NlSolver::NlSolver(TheoryArith& containing, NlModel& model)
+ : d_containing(containing),
+ d_model(model),
+ d_cdb(d_mdb),
+ d_zero_split(containing.getUserContext())
+{
+ NodeManager* nm = NodeManager::currentNM();
+ d_true = nm->mkConst(true);
+ d_false = nm->mkConst(false);
+ d_zero = nm->mkConst(Rational(0));
+ d_one = nm->mkConst(Rational(1));
+ d_neg_one = nm->mkConst(Rational(-1));
+ d_order_points.push_back(d_neg_one);
+ d_order_points.push_back(d_zero);
+ d_order_points.push_back(d_one);
+}
+
+NlSolver::~NlSolver() {}
+
+void NlSolver::initLastCall(const std::vector<Node>& assertions,
+ const std::vector<Node>& false_asserts,
+ const std::vector<Node>& xts)
+{
+ d_ms_vars.clear();
+ d_ms_proc.clear();
+ d_ms.clear();
+ d_mterms.clear();
+ d_m_nconst_factor.clear();
+ d_tplane_refine.clear();
+ d_ci.clear();
+ d_ci_exp.clear();
+ d_ci_max.clear();
+
+ Trace("nl-ext-mv") << "Extended terms : " << std::endl;
+ // for computing congruence
+ std::map<Kind, ArgTrie> argTrie;
+ for (unsigned i = 0, xsize = xts.size(); i < xsize; i++)
+ {
+ Node a = xts[i];
+ d_model.computeConcreteModelValue(a);
+ d_model.computeAbstractModelValue(a);
+ d_model.printModelValue("nl-ext-mv", a);
+ Kind ak = a.getKind();
+ if (ak == NONLINEAR_MULT)
+ {
+ d_ms.push_back(a);
+
+ // context-independent registration
+ d_mdb.registerMonomial(a);
+
+ const std::vector<Node>& varList = d_mdb.getVariableList(a);
+ for (const Node& v : varList)
+ {
+ if (std::find(d_ms_vars.begin(), d_ms_vars.end(), v) == d_ms_vars.end())
+ {
+ d_ms_vars.push_back(v);
+ }
+ Node mvk = d_model.computeAbstractModelValue(v);
+ if (!mvk.isConst())
+ {
+ d_m_nconst_factor[a] = true;
+ }
+ }
+ // mark processed if has a "one" factor (will look at reduced monomial)?
+ }
+ }
+
+ // register constants
+ d_mdb.registerMonomial(d_one);
+ for (unsigned j = 0; j < d_order_points.size(); j++)
+ {
+ Node c = d_order_points[j];
+ d_model.computeConcreteModelValue(c);
+ d_model.computeAbstractModelValue(c);
+ }
+
+ // register variables
+ Trace("nl-ext-mv") << "Variables in monomials : " << std::endl;
+ for (unsigned i = 0; i < d_ms_vars.size(); i++)
+ {
+ Node v = d_ms_vars[i];
+ d_mdb.registerMonomial(v);
+ d_model.computeConcreteModelValue(v);
+ d_model.computeAbstractModelValue(v);
+ d_model.printModelValue("nl-ext-mv", v);
+ }
+
+ Trace("nl-ext") << "We have " << d_ms.size() << " monomials." << std::endl;
+}
+
+void NlSolver::setMonomialFactor(Node a, Node b, const NodeMultiset& common)
+{
+ // Could not tell if this was being inserted intentionally or not.
+ std::map<Node, Node>& mono_diff_a = d_mono_diff[a];
+ if (mono_diff_a.find(b) == mono_diff_a.end())
+ {
+ Trace("nl-ext-mono-factor")
+ << "Set monomial factor for " << a << "/" << b << std::endl;
+ mono_diff_a[b] = d_mdb.mkMonomialRemFactor(a, common);
+ }
+}
+
+std::vector<Node> NlSolver::checkSplitZero()
+{
+ std::vector<Node> lemmas;
+ for (unsigned i = 0; i < d_ms_vars.size(); i++)
+ {
+ Node v = d_ms_vars[i];
+ if (d_zero_split.insert(v))
+ {
+ Node eq = v.eqNode(d_zero);
+ eq = Rewriter::rewrite(eq);
+ Node literal = d_containing.getValuation().ensureLiteral(eq);
+ d_containing.getOutputChannel().requirePhase(literal, true);
+ lemmas.push_back(literal.orNode(literal.negate()));
+ }
+ }
+ return lemmas;
+}
+
+void NlSolver::assignOrderIds(std::vector<Node>& vars,
+ NodeMultiset& order,
+ bool isConcrete,
+ bool isAbsolute)
+{
+ SortNlModel smv;
+ smv.d_nlm = &d_model;
+ smv.d_isConcrete = isConcrete;
+ smv.d_isAbsolute = isAbsolute;
+ smv.d_reverse_order = false;
+ std::sort(vars.begin(), vars.end(), smv);
+
+ order.clear();
+ // assign ordering id's
+ unsigned counter = 0;
+ unsigned order_index = isConcrete ? 0 : 1;
+ Node prev;
+ for (unsigned j = 0; j < vars.size(); j++)
+ {
+ Node x = vars[j];
+ Node v = d_model.computeModelValue(x, isConcrete);
+ if (!v.isConst())
+ {
+ Trace("nl-ext-mvo") << "..do not assign order to " << x << " : " << v
+ << std::endl;
+ // don't assign for non-constant values (transcendental function apps)
+ break;
+ }
+ Trace("nl-ext-mvo") << " order " << x << " : " << v << std::endl;
+ if (v != prev)
+ {
+ // builtin points
+ bool success;
+ do
+ {
+ success = false;
+ if (order_index < d_order_points.size())
+ {
+ Node vv = d_model.computeModelValue(d_order_points[order_index],
+ isConcrete);
+ if (d_model.compareValue(v, vv, isAbsolute) <= 0)
+ {
+ counter++;
+ Trace("nl-ext-mvo") << "O[" << d_order_points[order_index]
+ << "] = " << counter << std::endl;
+ order[d_order_points[order_index]] = counter;
+ prev = vv;
+ order_index++;
+ success = true;
+ }
+ }
+ } while (success);
+ }
+ if (prev.isNull() || d_model.compareValue(v, prev, isAbsolute) != 0)
+ {
+ counter++;
+ }
+ Trace("nl-ext-mvo") << "O[" << x << "] = " << counter << std::endl;
+ order[x] = counter;
+ prev = v;
+ }
+ while (order_index < d_order_points.size())
+ {
+ counter++;
+ Trace("nl-ext-mvo") << "O[" << d_order_points[order_index]
+ << "] = " << counter << std::endl;
+ order[d_order_points[order_index]] = counter;
+ order_index++;
+ }
+}
+
+// show a <> 0 by inequalities between variables in monomial a w.r.t 0
+int NlSolver::compareSign(Node oa,
+ Node a,
+ unsigned a_index,
+ int status,
+ std::vector<Node>& exp,
+ std::vector<Node>& lem)
+{
+ Trace("nl-ext-debug") << "Process " << a << " at index " << a_index
+ << ", status is " << status << std::endl;
+ NodeManager* nm = NodeManager::currentNM();
+ Node mvaoa = d_model.computeAbstractModelValue(oa);
+ const std::vector<Node>& vla = d_mdb.getVariableList(a);
+ if (a_index == vla.size())
+ {
+ if (mvaoa.getConst<Rational>().sgn() != status)
+ {
+ Node lemma =
+ safeConstructNary(AND, exp).impNode(mkLit(oa, d_zero, status * 2));
+ lem.push_back(lemma);
+ }
+ return status;
+ }
+ Assert(a_index < vla.size());
+ Node av = vla[a_index];
+ unsigned aexp = d_mdb.getExponent(a, av);
+ // take current sign in model
+ Node mvaav = d_model.computeAbstractModelValue(av);
+ int sgn = mvaav.getConst<Rational>().sgn();
+ Trace("nl-ext-debug") << "Process var " << av << "^" << aexp
+ << ", model sign = " << sgn << std::endl;
+ if (sgn == 0)
+ {
+ if (mvaoa.getConst<Rational>().sgn() != 0)
+ {
+ Node lemma = av.eqNode(d_zero).impNode(oa.eqNode(d_zero));
+ lem.push_back(lemma);
+ }
+ return 0;
+ }
+ if (aexp % 2 == 0)
+ {
+ exp.push_back(av.eqNode(d_zero).negate());
+ return compareSign(oa, a, a_index + 1, status, exp, lem);
+ }
+ exp.push_back(nm->mkNode(sgn == 1 ? GT : LT, av, d_zero));
+ return compareSign(oa, a, a_index + 1, status * sgn, exp, lem);
+}
+
+bool NlSolver::compareMonomial(
+ Node oa,
+ Node a,
+ NodeMultiset& a_exp_proc,
+ Node ob,
+ Node b,
+ NodeMultiset& b_exp_proc,
+ std::vector<Node>& exp,
+ std::vector<Node>& lem,
+ std::map<int, std::map<Node, std::map<Node, Node> > >& cmp_infers)
+{
+ Trace("nl-ext-comp-debug")
+ << "Check |" << a << "| >= |" << b << "|" << std::endl;
+ unsigned pexp_size = exp.size();
+ if (compareMonomial(
+ oa, a, 0, a_exp_proc, ob, b, 0, b_exp_proc, 0, exp, lem, cmp_infers))
+ {
+ return true;
+ }
+ exp.resize(pexp_size);
+ Trace("nl-ext-comp-debug")
+ << "Check |" << b << "| >= |" << a << "|" << std::endl;
+ if (compareMonomial(
+ ob, b, 0, b_exp_proc, oa, a, 0, a_exp_proc, 0, exp, lem, cmp_infers))
+ {
+ return true;
+ }
+ return false;
+}
+
+Node NlSolver::mkLit(Node a, Node b, int status, bool isAbsolute)
+{
+ if (status == 0)
+ {
+ Node a_eq_b = a.eqNode(b);
+ if (!isAbsolute)
+ {
+ return a_eq_b;
+ }
+ Node negate_b = NodeManager::currentNM()->mkNode(UMINUS, b);
+ return a_eq_b.orNode(a.eqNode(negate_b));
+ }
+ else if (status < 0)
+ {
+ return mkLit(b, a, -status);
+ }
+ Assert(status == 1 || status == 2);
+ NodeManager* nm = NodeManager::currentNM();
+ Kind greater_op = status == 1 ? GEQ : GT;
+ if (!isAbsolute)
+ {
+ return nm->mkNode(greater_op, a, b);
+ }
+ // return nm->mkNode( greater_op, mkAbs( a ), mkAbs( b ) );
+ Node zero = mkRationalNode(0);
+ Node a_is_nonnegative = nm->mkNode(GEQ, a, zero);
+ Node b_is_nonnegative = nm->mkNode(GEQ, b, zero);
+ Node negate_a = nm->mkNode(UMINUS, a);
+ Node negate_b = nm->mkNode(UMINUS, b);
+ return a_is_nonnegative.iteNode(
+ b_is_nonnegative.iteNode(nm->mkNode(greater_op, a, b),
+ nm->mkNode(greater_op, a, negate_b)),
+ b_is_nonnegative.iteNode(nm->mkNode(greater_op, negate_a, b),
+ nm->mkNode(greater_op, negate_a, negate_b)));
+}
+
+bool NlSolver::cmp_holds(Node x,
+ Node y,
+ std::map<Node, std::map<Node, Node> >& cmp_infers,
+ std::vector<Node>& exp,
+ std::map<Node, bool>& visited)
+{
+ if (x == y)
+ {
+ return true;
+ }
+ else if (visited.find(x) != visited.end())
+ {
+ return false;
+ }
+ visited[x] = true;
+ std::map<Node, std::map<Node, Node> >::iterator it = cmp_infers.find(x);
+ if (it != cmp_infers.end())
+ {
+ for (std::map<Node, Node>::iterator itc = it->second.begin();
+ itc != it->second.end();
+ ++itc)
+ {
+ exp.push_back(itc->second);
+ if (cmp_holds(itc->first, y, cmp_infers, exp, visited))
+ {
+ return true;
+ }
+ exp.pop_back();
+ }
+ }
+ return false;
+}
+
+// trying to show a ( >, = ) b by inequalities between variables in
+// monomials a,b
+bool NlSolver::compareMonomial(
+ Node oa,
+ Node a,
+ unsigned a_index,
+ NodeMultiset& a_exp_proc,
+ Node ob,
+ Node b,
+ unsigned b_index,
+ NodeMultiset& b_exp_proc,
+ int status,
+ std::vector<Node>& exp,
+ std::vector<Node>& lem,
+ std::map<int, std::map<Node, std::map<Node, Node> > >& cmp_infers)
+{
+ Trace("nl-ext-comp-debug")
+ << "compareMonomial " << oa << " and " << ob << ", indices = " << a_index
+ << " " << b_index << std::endl;
+ Assert(status == 0 || status == 2);
+ const std::vector<Node>& vla = d_mdb.getVariableList(a);
+ const std::vector<Node>& vlb = d_mdb.getVariableList(b);
+ if (a_index == vla.size() && b_index == vlb.size())
+ {
+ // finished, compare absolute value of abstract model values
+ int modelStatus = d_model.compare(oa, ob, false, true) * -2;
+ Trace("nl-ext-comp") << "...finished comparison with " << oa << " <"
+ << status << "> " << ob
+ << ", model status = " << modelStatus << std::endl;
+ if (status != modelStatus)
+ {
+ Trace("nl-ext-comp-infer")
+ << "infer : " << oa << " <" << status << "> " << ob << std::endl;
+ if (status == 2)
+ {
+ // must state that all variables are non-zero
+ for (unsigned j = 0; j < vla.size(); j++)
+ {
+ exp.push_back(vla[j].eqNode(d_zero).negate());
+ }
+ }
+ NodeManager* nm = NodeManager::currentNM();
+ Node clem = nm->mkNode(
+ IMPLIES, safeConstructNary(AND, exp), mkLit(oa, ob, status, true));
+ Trace("nl-ext-comp-lemma") << "comparison lemma : " << clem << std::endl;
+ lem.push_back(clem);
+ cmp_infers[status][oa][ob] = clem;
+ }
+ return true;
+ }
+ // get a/b variable information
+ Node av;
+ unsigned aexp = 0;
+ unsigned avo = 0;
+ if (a_index < vla.size())
+ {
+ av = vla[a_index];
+ unsigned aexpTotal = d_mdb.getExponent(a, av);
+ Assert(a_exp_proc[av] <= aexpTotal);
+ aexp = aexpTotal - a_exp_proc[av];
+ if (aexp == 0)
+ {
+ return compareMonomial(oa,
+ a,
+ a_index + 1,
+ a_exp_proc,
+ ob,
+ b,
+ b_index,
+ b_exp_proc,
+ status,
+ exp,
+ lem,
+ cmp_infers);
+ }
+ Assert(d_order_vars.find(av) != d_order_vars.end());
+ avo = d_order_vars[av];
+ }
+ Node bv;
+ unsigned bexp = 0;
+ unsigned bvo = 0;
+ if (b_index < vlb.size())
+ {
+ bv = vlb[b_index];
+ unsigned bexpTotal = d_mdb.getExponent(b, bv);
+ Assert(b_exp_proc[bv] <= bexpTotal);
+ bexp = bexpTotal - b_exp_proc[bv];
+ if (bexp == 0)
+ {
+ return compareMonomial(oa,
+ a,
+ a_index,
+ a_exp_proc,
+ ob,
+ b,
+ b_index + 1,
+ b_exp_proc,
+ status,
+ exp,
+ lem,
+ cmp_infers);
+ }
+ Assert(d_order_vars.find(bv) != d_order_vars.end());
+ bvo = d_order_vars[bv];
+ }
+ // get "one" information
+ Assert(d_order_vars.find(d_one) != d_order_vars.end());
+ unsigned ovo = d_order_vars[d_one];
+ Trace("nl-ext-comp-debug") << "....vars : " << av << "^" << aexp << " " << bv
+ << "^" << bexp << std::endl;
+
+ //--- cases
+ if (av.isNull())
+ {
+ if (bvo <= ovo)
+ {
+ Trace("nl-ext-comp-debug") << "...take leading " << bv << std::endl;
+ // can multiply b by <=1
+ exp.push_back(mkLit(d_one, bv, bvo == ovo ? 0 : 2, true));
+ return compareMonomial(oa,
+ a,
+ a_index,
+ a_exp_proc,
+ ob,
+ b,
+ b_index + 1,
+ b_exp_proc,
+ bvo == ovo ? status : 2,
+ exp,
+ lem,
+ cmp_infers);
+ }
+ Trace("nl-ext-comp-debug")
+ << "...failure, unmatched |b|>1 component." << std::endl;
+ return false;
+ }
+ else if (bv.isNull())
+ {
+ if (avo >= ovo)
+ {
+ Trace("nl-ext-comp-debug") << "...take leading " << av << std::endl;
+ // can multiply a by >=1
+ exp.push_back(mkLit(av, d_one, avo == ovo ? 0 : 2, true));
+ return compareMonomial(oa,
+ a,
+ a_index + 1,
+ a_exp_proc,
+ ob,
+ b,
+ b_index,
+ b_exp_proc,
+ avo == ovo ? status : 2,
+ exp,
+ lem,
+ cmp_infers);
+ }
+ Trace("nl-ext-comp-debug")
+ << "...failure, unmatched |a|<1 component." << std::endl;
+ return false;
+ }
+ Assert(!av.isNull() && !bv.isNull());
+ if (avo >= bvo)
+ {
+ if (bvo < ovo && avo >= ovo)
+ {
+ Trace("nl-ext-comp-debug") << "...take leading " << av << std::endl;
+ // do avo>=1 instead
+ exp.push_back(mkLit(av, d_one, avo == ovo ? 0 : 2, true));
+ return compareMonomial(oa,
+ a,
+ a_index + 1,
+ a_exp_proc,
+ ob,
+ b,
+ b_index,
+ b_exp_proc,
+ avo == ovo ? status : 2,
+ exp,
+ lem,
+ cmp_infers);
+ }
+ unsigned min_exp = aexp > bexp ? bexp : aexp;
+ a_exp_proc[av] += min_exp;
+ b_exp_proc[bv] += min_exp;
+ Trace("nl-ext-comp-debug") << "...take leading " << min_exp << " from "
+ << av << " and " << bv << std::endl;
+ exp.push_back(mkLit(av, bv, avo == bvo ? 0 : 2, true));
+ bool ret = compareMonomial(oa,
+ a,
+ a_index,
+ a_exp_proc,
+ ob,
+ b,
+ b_index,
+ b_exp_proc,
+ avo == bvo ? status : 2,
+ exp,
+ lem,
+ cmp_infers);
+ a_exp_proc[av] -= min_exp;
+ b_exp_proc[bv] -= min_exp;
+ return ret;
+ }
+ if (bvo <= ovo)
+ {
+ Trace("nl-ext-comp-debug") << "...take leading " << bv << std::endl;
+ // try multiply b <= 1
+ exp.push_back(mkLit(d_one, bv, bvo == ovo ? 0 : 2, true));
+ return compareMonomial(oa,
+ a,
+ a_index,
+ a_exp_proc,
+ ob,
+ b,
+ b_index + 1,
+ b_exp_proc,
+ bvo == ovo ? status : 2,
+ exp,
+ lem,
+ cmp_infers);
+ }
+ Trace("nl-ext-comp-debug")
+ << "...failure, leading |b|>|a|>1 component." << std::endl;
+ return false;
+}
+
+std::vector<Node> NlSolver::checkMonomialSign()
+{
+ std::vector<Node> lemmas;
+ std::map<Node, int> signs;
+ Trace("nl-ext") << "Get monomial sign lemmas..." << std::endl;
+ for (unsigned j = 0; j < d_ms.size(); j++)
+ {
+ Node a = d_ms[j];
+ if (d_ms_proc.find(a) == d_ms_proc.end())
+ {
+ std::vector<Node> exp;
+ if (Trace.isOn("nl-ext-debug"))
+ {
+ Node cmva = d_model.computeConcreteModelValue(a);
+ Trace("nl-ext-debug")
+ << " process " << a << ", mv=" << cmva << "..." << std::endl;
+ }
+ if (d_m_nconst_factor.find(a) == d_m_nconst_factor.end())
+ {
+ signs[a] = compareSign(a, a, 0, 1, exp, lemmas);
+ if (signs[a] == 0)
+ {
+ d_ms_proc[a] = true;
+ Trace("nl-ext-debug")
+ << "...mark " << a << " reduced since its value is 0."
+ << std::endl;
+ }
+ }
+ else
+ {
+ Trace("nl-ext-debug")
+ << "...can't conclude sign lemma for " << a
+ << " since model value of a factor is non-constant." << std::endl;
+ }
+ }
+ }
+ return lemmas;
+}
+
+std::vector<Node> NlSolver::checkMonomialMagnitude(unsigned c)
+{
+ // ensure information is setup
+ if (c == 0)
+ {
+ // sort by absolute values of abstract model values
+ assignOrderIds(d_ms_vars, d_order_vars, false, true);
+
+ // sort individual variable lists
+ Trace("nl-ext-proc") << "Assign order var lists..." << std::endl;
+ d_mdb.sortVariablesByModel(d_ms, d_model);
+ }
+
+ unsigned r = 1;
+ std::vector<Node> lemmas;
+ // if (x,y,L) in cmp_infers, then x > y inferred as conclusion of L
+ // in lemmas
+ std::map<int, std::map<Node, std::map<Node, Node> > > cmp_infers;
+ Trace("nl-ext") << "Get monomial comparison lemmas (order=" << r
+ << ", compare=" << c << ")..." << std::endl;
+ for (unsigned j = 0; j < d_ms.size(); j++)
+ {
+ Node a = d_ms[j];
+ if (d_ms_proc.find(a) == d_ms_proc.end()
+ && d_m_nconst_factor.find(a) == d_m_nconst_factor.end())
+ {
+ if (c == 0)
+ {
+ // compare magnitude against 1
+ std::vector<Node> exp;
+ NodeMultiset a_exp_proc;
+ NodeMultiset b_exp_proc;
+ compareMonomial(a,
+ a,
+ a_exp_proc,
+ d_one,
+ d_one,
+ b_exp_proc,
+ exp,
+ lemmas,
+ cmp_infers);
+ }
+ else
+ {
+ const NodeMultiset& mea = d_mdb.getMonomialExponentMap(a);
+ if (c == 1)
+ {
+ // could compare not just against containing variables?
+ // compare magnitude against variables
+ for (unsigned k = 0; k < d_ms_vars.size(); k++)
+ {
+ Node v = d_ms_vars[k];
+ Node mvcv = d_model.computeConcreteModelValue(v);
+ if (mvcv.isConst())
+ {
+ std::vector<Node> exp;
+ NodeMultiset a_exp_proc;
+ NodeMultiset b_exp_proc;
+ if (mea.find(v) != mea.end())
+ {
+ a_exp_proc[v] = 1;
+ b_exp_proc[v] = 1;
+ setMonomialFactor(a, v, a_exp_proc);
+ setMonomialFactor(v, a, b_exp_proc);
+ compareMonomial(a,
+ a,
+ a_exp_proc,
+ v,
+ v,
+ b_exp_proc,
+ exp,
+ lemmas,
+ cmp_infers);
+ }
+ }
+ }
+ }
+ else
+ {
+ // compare magnitude against other non-linear monomials
+ for (unsigned k = (j + 1); k < d_ms.size(); k++)
+ {
+ Node b = d_ms[k];
+ //(signs[a]==signs[b])==(r==0)
+ if (d_ms_proc.find(b) == d_ms_proc.end()
+ && d_m_nconst_factor.find(b) == d_m_nconst_factor.end())
+ {
+ const NodeMultiset& meb = d_mdb.getMonomialExponentMap(b);
+
+ std::vector<Node> exp;
+ // take common factors of monomials, set minimum of
+ // common exponents as processed
+ NodeMultiset a_exp_proc;
+ NodeMultiset b_exp_proc;
+ for (NodeMultiset::const_iterator itmea2 = mea.begin();
+ itmea2 != mea.end();
+ ++itmea2)
+ {
+ NodeMultiset::const_iterator itmeb2 = meb.find(itmea2->first);
+ if (itmeb2 != meb.end())
+ {
+ unsigned min_exp = itmea2->second > itmeb2->second
+ ? itmeb2->second
+ : itmea2->second;
+ a_exp_proc[itmea2->first] = min_exp;
+ b_exp_proc[itmea2->first] = min_exp;
+ Trace("nl-ext-comp") << "Common exponent : " << itmea2->first
+ << " : " << min_exp << std::endl;
+ }
+ }
+ if (!a_exp_proc.empty())
+ {
+ setMonomialFactor(a, b, a_exp_proc);
+ setMonomialFactor(b, a, b_exp_proc);
+ }
+ /*
+ if( !a_exp_proc.empty() ){
+ //reduction based on common exponents a > 0 => ( a * b
+ <> a * c <=> b <> c ), a < 0 => ( a * b <> a * c <=> b
+ !<> c ) ? }else{ compareMonomial( a, a, a_exp_proc, b,
+ b, b_exp_proc, exp, lemmas );
+ }
+ */
+ compareMonomial(
+ a, a, a_exp_proc, b, b, b_exp_proc, exp, lemmas, cmp_infers);
+ }
+ }
+ }
+ }
+ }
+ }
+ // remove redundant lemmas, e.g. if a > b, b > c, a > c were
+ // inferred, discard lemma with conclusion a > c
+ Trace("nl-ext-comp") << "Compute redundancies for " << lemmas.size()
+ << " lemmas." << std::endl;
+ // naive
+ std::vector<Node> r_lemmas;
+ for (std::map<int, std::map<Node, std::map<Node, Node> > >::iterator itb =
+ cmp_infers.begin();
+ itb != cmp_infers.end();
+ ++itb)
+ {
+ for (std::map<Node, std::map<Node, Node> >::iterator itc =
+ itb->second.begin();
+ itc != itb->second.end();
+ ++itc)
+ {
+ for (std::map<Node, Node>::iterator itc2 = itc->second.begin();
+ itc2 != itc->second.end();
+ ++itc2)
+ {
+ std::map<Node, bool> visited;
+ for (std::map<Node, Node>::iterator itc3 = itc->second.begin();
+ itc3 != itc->second.end();
+ ++itc3)
+ {
+ if (itc3->first != itc2->first)
+ {
+ std::vector<Node> exp;
+ if (cmp_holds(itc3->first, itc2->first, itb->second, exp, visited))
+ {
+ r_lemmas.push_back(itc2->second);
+ Trace("nl-ext-comp")
+ << "...inference of " << itc->first << " > " << itc2->first
+ << " was redundant." << std::endl;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ std::vector<Node> nr_lemmas;
+ for (unsigned i = 0; i < lemmas.size(); i++)
+ {
+ if (std::find(r_lemmas.begin(), r_lemmas.end(), lemmas[i])
+ == r_lemmas.end())
+ {
+ nr_lemmas.push_back(lemmas[i]);
+ }
+ }
+ // could only take maximal lower/minimial lower bounds?
+
+ Trace("nl-ext-comp") << nr_lemmas.size() << " / " << lemmas.size()
+ << " were non-redundant." << std::endl;
+ return nr_lemmas;
+}
+
+std::vector<Node> NlSolver::checkTangentPlanes()
+{
+ std::vector<Node> lemmas;
+ Trace("nl-ext") << "Get monomial tangent plane lemmas..." << std::endl;
+ NodeManager* nm = NodeManager::currentNM();
+ const std::map<Node, std::vector<Node> >& ccMap =
+ d_mdb.getContainsChildrenMap();
+ unsigned kstart = d_ms_vars.size();
+ for (unsigned k = kstart; k < d_mterms.size(); k++)
+ {
+ Node t = d_mterms[k];
+ // if this term requires a refinement
+ if (d_tplane_refine.find(t) == d_tplane_refine.end())
+ {
+ continue;
+ }
+ Trace("nl-ext-tplanes")
+ << "Look at monomial requiring refinement : " << t << std::endl;
+ // get a decomposition
+ std::map<Node, std::vector<Node> >::const_iterator it = ccMap.find(t);
+ if (it == ccMap.end())
+ {
+ continue;
+ }
+ std::map<Node, std::map<Node, bool> > dproc;
+ for (unsigned j = 0; j < it->second.size(); j++)
+ {
+ Node tc = it->second[j];
+ if (tc != d_one)
+ {
+ Node tc_diff = d_mdb.getContainsDiffNl(tc, t);
+ Assert(!tc_diff.isNull());
+ Node a = tc < tc_diff ? tc : tc_diff;
+ Node b = tc < tc_diff ? tc_diff : tc;
+ if (dproc[a].find(b) == dproc[a].end())
+ {
+ dproc[a][b] = true;
+ Trace("nl-ext-tplanes")
+ << " decomposable into : " << a << " * " << b << std::endl;
+ Node a_v_c = d_model.computeAbstractModelValue(a);
+ Node b_v_c = d_model.computeAbstractModelValue(b);
+ // points we will add tangent planes for
+ std::vector<Node> pts[2];
+ pts[0].push_back(a_v_c);
+ pts[1].push_back(b_v_c);
+ // if previously refined
+ bool prevRefine = d_tangent_val_bound[0][a].find(b)
+ != d_tangent_val_bound[0][a].end();
+ // a_min, a_max, b_min, b_max
+ for (unsigned p = 0; p < 4; p++)
+ {
+ Node curr_v = p <= 1 ? a_v_c : b_v_c;
+ if (prevRefine)
+ {
+ Node pt_v = d_tangent_val_bound[p][a][b];
+ Assert(!pt_v.isNull());
+ if (curr_v != pt_v)
+ {
+ Node do_extend =
+ nm->mkNode((p == 1 || p == 3) ? GT : LT, curr_v, pt_v);
+ do_extend = Rewriter::rewrite(do_extend);
+ if (do_extend == d_true)
+ {
+ for (unsigned q = 0; q < 2; q++)
+ {
+ pts[p <= 1 ? 0 : 1].push_back(curr_v);
+ pts[p <= 1 ? 1 : 0].push_back(
+ d_tangent_val_bound[p <= 1 ? 2 + q : q][a][b]);
+ }
+ }
+ }
+ }
+ else
+ {
+ d_tangent_val_bound[p][a][b] = curr_v;
+ }
+ }
+
+ for (unsigned p = 0; p < pts[0].size(); p++)
+ {
+ Node a_v = pts[0][p];
+ Node b_v = pts[1][p];
+
+ // tangent plane
+ Node tplane = nm->mkNode(
+ MINUS,
+ nm->mkNode(
+ PLUS, nm->mkNode(MULT, b_v, a), nm->mkNode(MULT, a_v, b)),
+ nm->mkNode(MULT, a_v, b_v));
+ for (unsigned d = 0; d < 4; d++)
+ {
+ Node aa = nm->mkNode(d == 0 || d == 3 ? GEQ : LEQ, a, a_v);
+ Node ab = nm->mkNode(d == 1 || d == 3 ? GEQ : LEQ, b, b_v);
+ Node conc = nm->mkNode(d <= 1 ? LEQ : GEQ, t, tplane);
+ Node tlem = nm->mkNode(OR, aa.negate(), ab.negate(), conc);
+ Trace("nl-ext-tplanes")
+ << "Tangent plane lemma : " << tlem << std::endl;
+ lemmas.push_back(tlem);
+ }
+
+ // tangent plane reverse implication
+
+ // t <= tplane -> ( (a <= a_v ^ b >= b_v) v
+ // (a >= a_v ^ b <= b_v) ).
+ // in clause form, the above becomes
+ // t <= tplane -> a <= a_v v b <= b_v.
+ // t <= tplane -> b >= b_v v a >= a_v.
+ Node a_leq_av = nm->mkNode(LEQ, a, a_v);
+ Node b_leq_bv = nm->mkNode(LEQ, b, b_v);
+ Node a_geq_av = nm->mkNode(GEQ, a, a_v);
+ Node b_geq_bv = nm->mkNode(GEQ, b, b_v);
+
+ Node t_leq_tplane = nm->mkNode(LEQ, t, tplane);
+ Node a_leq_av_or_b_leq_bv = nm->mkNode(OR, a_leq_av, b_leq_bv);
+ Node b_geq_bv_or_a_geq_av = nm->mkNode(OR, b_geq_bv, a_geq_av);
+ Node ub_reverse1 =
+ nm->mkNode(OR, t_leq_tplane.negate(), a_leq_av_or_b_leq_bv);
+ Trace("nl-ext-tplanes")
+ << "Tangent plane lemma (reverse) : " << ub_reverse1
+ << std::endl;
+ lemmas.push_back(ub_reverse1);
+ Node ub_reverse2 =
+ nm->mkNode(OR, t_leq_tplane.negate(), b_geq_bv_or_a_geq_av);
+ Trace("nl-ext-tplanes")
+ << "Tangent plane lemma (reverse) : " << ub_reverse2
+ << std::endl;
+ lemmas.push_back(ub_reverse2);
+
+ // t >= tplane -> ( (a <= a_v ^ b <= b_v) v
+ // (a >= a_v ^ b >= b_v) ).
+ // in clause form, the above becomes
+ // t >= tplane -> a <= a_v v b >= b_v.
+ // t >= tplane -> b >= b_v v a <= a_v
+ Node t_geq_tplane = nm->mkNode(GEQ, t, tplane);
+ Node a_leq_av_or_b_geq_bv = nm->mkNode(OR, a_leq_av, b_geq_bv);
+ Node a_geq_av_or_b_leq_bv = nm->mkNode(OR, a_geq_av, b_leq_bv);
+ Node lb_reverse1 =
+ nm->mkNode(OR, t_geq_tplane.negate(), a_leq_av_or_b_geq_bv);
+ Trace("nl-ext-tplanes")
+ << "Tangent plane lemma (reverse) : " << lb_reverse1
+ << std::endl;
+ lemmas.push_back(lb_reverse1);
+ Node lb_reverse2 =
+ nm->mkNode(OR, t_geq_tplane.negate(), a_geq_av_or_b_leq_bv);
+ Trace("nl-ext-tplanes")
+ << "Tangent plane lemma (reverse) : " << lb_reverse2
+ << std::endl;
+ lemmas.push_back(lb_reverse2);
+ }
+ }
+ }
+ }
+ }
+ Trace("nl-ext") << "...trying " << lemmas.size() << " tangent plane lemmas..."
+ << std::endl;
+ return lemmas;
+}
+
+std::vector<Node> NlSolver::checkMonomialInferBounds(
+ std::vector<Node>& nt_lemmas,
+ const std::vector<Node>& asserts,
+ const std::vector<Node>& false_asserts)
+{
+ // sort monomials by degree
+ Trace("nl-ext-proc") << "Sort monomials by degree..." << std::endl;
+ d_mdb.sortByDegree(d_ms);
+ // all monomials
+ d_mterms.insert(d_mterms.end(), d_ms_vars.begin(), d_ms_vars.end());
+ d_mterms.insert(d_mterms.end(), d_ms.begin(), d_ms.end());
+
+ const std::map<Node, std::map<Node, ConstraintInfo> >& cim =
+ d_cdb.getConstraints();
+
+ std::vector<Node> lemmas;
+ NodeManager* nm = NodeManager::currentNM();
+ // register constraints
+ Trace("nl-ext-debug") << "Register bound constraints..." << std::endl;
+ for (const Node& lit : asserts)
+ {
+ bool polarity = lit.getKind() != NOT;
+ Node atom = lit.getKind() == NOT ? lit[0] : lit;
+ d_cdb.registerConstraint(atom);
+ bool is_false_lit =
+ std::find(false_asserts.begin(), false_asserts.end(), lit)
+ != false_asserts.end();
+ // add information about bounds to variables
+ std::map<Node, std::map<Node, ConstraintInfo> >::const_iterator itc =
+ cim.find(atom);
+ if (itc == cim.end())
+ {
+ continue;
+ }
+ for (const std::pair<const Node, ConstraintInfo>& itcc : itc->second)
+ {
+ Node x = itcc.first;
+ Node coeff = itcc.second.d_coeff;
+ Node rhs = itcc.second.d_rhs;
+ Kind type = itcc.second.d_type;
+ Node exp = lit;
+ if (!polarity)
+ {
+ // reverse
+ if (type == EQUAL)
+ {
+ // we will take the strict inequality in the direction of the
+ // model
+ Node lhs = ArithMSum::mkCoeffTerm(coeff, x);
+ Node query = nm->mkNode(GT, lhs, rhs);
+ Node query_mv = d_model.computeAbstractModelValue(query);
+ if (query_mv == d_true)
+ {
+ exp = query;
+ type = GT;
+ }
+ else
+ {
+ Assert(query_mv == d_false);
+ exp = nm->mkNode(LT, lhs, rhs);
+ type = LT;
+ }
+ }
+ else
+ {
+ type = negateKind(type);
+ }
+ }
+ // add to status if maximal degree
+ d_ci_max[x][coeff][rhs] = d_cdb.isMaximal(atom, x);
+ if (Trace.isOn("nl-ext-bound-debug2"))
+ {
+ Node t = ArithMSum::mkCoeffTerm(coeff, x);
+ Trace("nl-ext-bound-debug2") << "Add Bound: " << t << " " << type << " "
+ << rhs << " by " << exp << std::endl;
+ }
+ bool updated = true;
+ std::map<Node, Kind>::iterator its = d_ci[x][coeff].find(rhs);
+ if (its == d_ci[x][coeff].end())
+ {
+ d_ci[x][coeff][rhs] = type;
+ d_ci_exp[x][coeff][rhs] = exp;
+ }
+ else if (type != its->second)
+ {
+ Trace("nl-ext-bound-debug2")
+ << "Joining kinds : " << type << " " << its->second << std::endl;
+ Kind jk = joinKinds(type, its->second);
+ if (jk == UNDEFINED_KIND)
+ {
+ updated = false;
+ }
+ else if (jk != its->second)
+ {
+ if (jk == type)
+ {
+ d_ci[x][coeff][rhs] = type;
+ d_ci_exp[x][coeff][rhs] = exp;
+ }
+ else
+ {
+ d_ci[x][coeff][rhs] = jk;
+ d_ci_exp[x][coeff][rhs] =
+ nm->mkNode(AND, d_ci_exp[x][coeff][rhs], exp);
+ }
+ }
+ else
+ {
+ updated = false;
+ }
+ }
+ if (Trace.isOn("nl-ext-bound"))
+ {
+ if (updated)
+ {
+ Trace("nl-ext-bound") << "Bound: ";
+ debugPrintBound("nl-ext-bound", coeff, x, d_ci[x][coeff][rhs], rhs);
+ Trace("nl-ext-bound") << " by " << d_ci_exp[x][coeff][rhs];
+ if (d_ci_max[x][coeff][rhs])
+ {
+ Trace("nl-ext-bound") << ", is max degree";
+ }
+ Trace("nl-ext-bound") << std::endl;
+ }
+ }
+ // compute if bound is not satisfied, and store what is required
+ // for a possible refinement
+ if (options::nlExtTangentPlanes())
+ {
+ if (is_false_lit)
+ {
+ d_tplane_refine.insert(x);
+ }
+ }
+ }
+ }
+ // reflexive constraints
+ Node null_coeff;
+ for (unsigned j = 0; j < d_mterms.size(); j++)
+ {
+ Node n = d_mterms[j];
+ d_ci[n][null_coeff][n] = EQUAL;
+ d_ci_exp[n][null_coeff][n] = d_true;
+ d_ci_max[n][null_coeff][n] = false;
+ }
+
+ Trace("nl-ext") << "Get inferred bound lemmas..." << std::endl;
+ const std::map<Node, std::vector<Node> >& cpMap =
+ d_mdb.getContainsParentMap();
+ for (unsigned k = 0; k < d_mterms.size(); k++)
+ {
+ Node x = d_mterms[k];
+ Trace("nl-ext-bound-debug")
+ << "Process bounds for " << x << " : " << std::endl;
+ std::map<Node, std::vector<Node> >::const_iterator itm = cpMap.find(x);
+ if (itm == cpMap.end())
+ {
+ Trace("nl-ext-bound-debug") << "...has no parent monomials." << std::endl;
+ continue;
+ }
+ Trace("nl-ext-bound-debug")
+ << "...has " << itm->second.size() << " parent monomials." << std::endl;
+ // check derived bounds
+ std::map<Node, std::map<Node, std::map<Node, Kind> > >::iterator itc =
+ d_ci.find(x);
+ if (itc == d_ci.end())
+ {
+ continue;
+ }
+ for (std::map<Node, std::map<Node, Kind> >::iterator itcc =
+ itc->second.begin();
+ itcc != itc->second.end();
+ ++itcc)
+ {
+ Node coeff = itcc->first;
+ Node t = ArithMSum::mkCoeffTerm(coeff, x);
+ for (std::map<Node, Kind>::iterator itcr = itcc->second.begin();
+ itcr != itcc->second.end();
+ ++itcr)
+ {
+ Node rhs = itcr->first;
+ // only consider this bound if maximal degree
+ if (!d_ci_max[x][coeff][rhs])
+ {
+ continue;
+ }
+ Kind type = itcr->second;
+ for (unsigned j = 0; j < itm->second.size(); j++)
+ {
+ Node y = itm->second[j];
+ Node mult = d_mdb.getContainsDiff(x, y);
+ // x <k> t => m*x <k'> t where y = m*x
+ // get the sign of mult
+ Node mmv = d_model.computeConcreteModelValue(mult);
+ Trace("nl-ext-bound-debug2")
+ << "Model value of " << mult << " is " << mmv << std::endl;
+ if (!mmv.isConst())
+ {
+ Trace("nl-ext-bound-debug")
+ << " ...coefficient " << mult
+ << " is non-constant (probably transcendental)." << std::endl;
+ continue;
+ }
+ int mmv_sign = mmv.getConst<Rational>().sgn();
+ Trace("nl-ext-bound-debug2")
+ << " sign of " << mmv << " is " << mmv_sign << std::endl;
+ if (mmv_sign == 0)
+ {
+ Trace("nl-ext-bound-debug")
+ << " ...coefficient " << mult << " is zero." << std::endl;
+ continue;
+ }
+ Trace("nl-ext-bound-debug")
+ << " from " << x << " * " << mult << " = " << y << " and " << t
+ << " " << type << " " << rhs << ", infer : " << std::endl;
+ Kind infer_type = mmv_sign == -1 ? reverseRelationKind(type) : type;
+ Node infer_lhs = nm->mkNode(MULT, mult, t);
+ Node infer_rhs = nm->mkNode(MULT, mult, rhs);
+ Node infer = nm->mkNode(infer_type, infer_lhs, infer_rhs);
+ Trace("nl-ext-bound-debug") << " " << infer << std::endl;
+ infer = Rewriter::rewrite(infer);
+ Trace("nl-ext-bound-debug2")
+ << " ...rewritten : " << infer << std::endl;
+ // check whether it is false in model for abstraction
+ Node infer_mv = d_model.computeAbstractModelValue(infer);
+ Trace("nl-ext-bound-debug")
+ << " ...infer model value is " << infer_mv << std::endl;
+ if (infer_mv == d_false)
+ {
+ Node exp =
+ nm->mkNode(AND,
+ nm->mkNode(mmv_sign == 1 ? GT : LT, mult, d_zero),
+ d_ci_exp[x][coeff][rhs]);
+ Node iblem = nm->mkNode(IMPLIES, exp, infer);
+ Node pr_iblem = iblem;
+ iblem = Rewriter::rewrite(iblem);
+ bool introNewTerms = hasNewMonomials(iblem, d_ms);
+ Trace("nl-ext-bound-lemma")
+ << "*** Bound inference lemma : " << iblem
+ << " (pre-rewrite : " << pr_iblem << ")" << std::endl;
+ // Trace("nl-ext-bound-lemma") << " intro new
+ // monomials = " << introNewTerms << std::endl;
+ if (!introNewTerms)
+ {
+ lemmas.push_back(iblem);
+ }
+ else
+ {
+ nt_lemmas.push_back(iblem);
+ }
+ }
+ }
+ }
+ }
+ }
+ return lemmas;
+}
+
+std::vector<Node> NlSolver::checkFactoring(
+ const std::vector<Node>& asserts, const std::vector<Node>& false_asserts)
+{
+ std::vector<Node> lemmas;
+ NodeManager* nm = NodeManager::currentNM();
+ Trace("nl-ext") << "Get factoring lemmas..." << std::endl;
+ for (const Node& lit : asserts)
+ {
+ bool polarity = lit.getKind() != NOT;
+ Node atom = lit.getKind() == NOT ? lit[0] : lit;
+ Node litv = d_model.computeConcreteModelValue(lit);
+ bool considerLit = false;
+ // Only consider literals that are in false_asserts.
+ considerLit = std::find(false_asserts.begin(), false_asserts.end(), lit)
+ != false_asserts.end();
+
+ if (considerLit)
+ {
+ std::map<Node, Node> msum;
+ if (ArithMSum::getMonomialSumLit(atom, msum))
+ {
+ Trace("nl-ext-factor") << "Factoring for literal " << lit
+ << ", monomial sum is : " << std::endl;
+ if (Trace.isOn("nl-ext-factor"))
+ {
+ ArithMSum::debugPrintMonomialSum(msum, "nl-ext-factor");
+ }
+ std::map<Node, std::vector<Node> > factor_to_mono;
+ std::map<Node, std::vector<Node> > factor_to_mono_orig;
+ for (std::map<Node, Node>::iterator itm = msum.begin();
+ itm != msum.end();
+ ++itm)
+ {
+ if (!itm->first.isNull())
+ {
+ if (itm->first.getKind() == NONLINEAR_MULT)
+ {
+ std::vector<Node> children;
+ for (unsigned i = 0; i < itm->first.getNumChildren(); i++)
+ {
+ children.push_back(itm->first[i]);
+ }
+ std::map<Node, bool> processed;
+ for (unsigned i = 0; i < itm->first.getNumChildren(); i++)
+ {
+ if (processed.find(itm->first[i]) == processed.end())
+ {
+ processed[itm->first[i]] = true;
+ children[i] = d_one;
+ if (!itm->second.isNull())
+ {
+ children.push_back(itm->second);
+ }
+ Node val = nm->mkNode(MULT, children);
+ if (!itm->second.isNull())
+ {
+ children.pop_back();
+ }
+ children[i] = itm->first[i];
+ val = Rewriter::rewrite(val);
+ factor_to_mono[itm->first[i]].push_back(val);
+ factor_to_mono_orig[itm->first[i]].push_back(itm->first);
+ }
+ }
+ }
+ }
+ }
+ for (std::map<Node, std::vector<Node> >::iterator itf =
+ factor_to_mono.begin();
+ itf != factor_to_mono.end();
+ ++itf)
+ {
+ Node x = itf->first;
+ if (itf->second.size() == 1)
+ {
+ std::map<Node, Node>::iterator itm = msum.find(x);
+ if (itm != msum.end())
+ {
+ itf->second.push_back(itm->second.isNull() ? d_one : itm->second);
+ factor_to_mono_orig[x].push_back(x);
+ }
+ }
+ if (itf->second.size() <= 1)
+ {
+ continue;
+ }
+ Node sum = nm->mkNode(PLUS, itf->second);
+ sum = Rewriter::rewrite(sum);
+ Trace("nl-ext-factor")
+ << "* Factored sum for " << x << " : " << sum << std::endl;
+ Node kf = getFactorSkolem(sum, lemmas);
+ std::vector<Node> poly;
+ poly.push_back(nm->mkNode(MULT, x, kf));
+ std::map<Node, std::vector<Node> >::iterator itfo =
+ factor_to_mono_orig.find(x);
+ Assert(itfo != factor_to_mono_orig.end());
+ for (std::map<Node, Node>::iterator itm = msum.begin();
+ itm != msum.end();
+ ++itm)
+ {
+ if (std::find(itfo->second.begin(), itfo->second.end(), itm->first)
+ == itfo->second.end())
+ {
+ poly.push_back(ArithMSum::mkCoeffTerm(
+ itm->second, itm->first.isNull() ? d_one : itm->first));
+ }
+ }
+ Node polyn = poly.size() == 1 ? poly[0] : nm->mkNode(PLUS, poly);
+ Trace("nl-ext-factor")
+ << "...factored polynomial : " << polyn << std::endl;
+ Node conc_lit = nm->mkNode(atom.getKind(), polyn, d_zero);
+ conc_lit = Rewriter::rewrite(conc_lit);
+ if (!polarity)
+ {
+ conc_lit = conc_lit.negate();
+ }
+
+ std::vector<Node> lemma_disj;
+ lemma_disj.push_back(lit.negate());
+ lemma_disj.push_back(conc_lit);
+ Node flem = nm->mkNode(OR, lemma_disj);
+ Trace("nl-ext-factor") << "...lemma is " << flem << std::endl;
+ lemmas.push_back(flem);
+ }
+ }
+ }
+ }
+ return lemmas;
+}
+
+Node NlSolver::getFactorSkolem(Node n, std::vector<Node>& lemmas)
+{
+ std::map<Node, Node>::iterator itf = d_factor_skolem.find(n);
+ if (itf == d_factor_skolem.end())
+ {
+ NodeManager* nm = NodeManager::currentNM();
+ Node k = nm->mkSkolem("kf", n.getType());
+ Node k_eq = Rewriter::rewrite(k.eqNode(n));
+ lemmas.push_back(k_eq);
+ d_factor_skolem[n] = k;
+ return k;
+ }
+ return itf->second;
+}
+
+std::vector<Node> NlSolver::checkMonomialInferResBounds()
+{
+ std::vector<Node> lemmas;
+ NodeManager* nm = NodeManager::currentNM();
+ Trace("nl-ext") << "Get monomial resolution inferred bound lemmas..."
+ << std::endl;
+ size_t nmterms = d_mterms.size();
+ for (unsigned j = 0; j < nmterms; j++)
+ {
+ Node a = d_mterms[j];
+ std::map<Node, std::map<Node, std::map<Node, Kind> > >::iterator itca =
+ d_ci.find(a);
+ if (itca == d_ci.end())
+ {
+ continue;
+ }
+ for (unsigned k = (j + 1); k < nmterms; k++)
+ {
+ Node b = d_mterms[k];
+ std::map<Node, std::map<Node, std::map<Node, Kind> > >::iterator itcb =
+ d_ci.find(b);
+ if (itcb == d_ci.end())
+ {
+ continue;
+ }
+ Trace("nl-ext-rbound-debug") << "resolution inferences : compare " << a
+ << " and " << b << std::endl;
+ // if they have common factors
+ std::map<Node, Node>::iterator ita = d_mono_diff[a].find(b);
+ if (ita == d_mono_diff[a].end())
+ {
+ continue;
+ }
+ Trace("nl-ext-rbound") << "Get resolution inferences for [a] " << a
+ << " vs [b] " << b << std::endl;
+ std::map<Node, Node>::iterator itb = d_mono_diff[b].find(a);
+ Assert(itb != d_mono_diff[b].end());
+ Node mv_a = d_model.computeAbstractModelValue(ita->second);
+ Assert(mv_a.isConst());
+ int mv_a_sgn = mv_a.getConst<Rational>().sgn();
+ if (mv_a_sgn == 0)
+ {
+ // we don't compare monomials whose current model value is zero
+ continue;
+ }
+ Node mv_b = d_model.computeAbstractModelValue(itb->second);
+ Assert(mv_b.isConst());
+ int mv_b_sgn = mv_b.getConst<Rational>().sgn();
+ if (mv_b_sgn == 0)
+ {
+ // we don't compare monomials whose current model value is zero
+ continue;
+ }
+ Trace("nl-ext-rbound") << " [a] factor is " << ita->second
+ << ", sign in model = " << mv_a_sgn << std::endl;
+ Trace("nl-ext-rbound") << " [b] factor is " << itb->second
+ << ", sign in model = " << mv_b_sgn << std::endl;
+
+ std::vector<Node> exp;
+ // bounds of a
+ for (std::map<Node, std::map<Node, Kind> >::iterator itcac =
+ itca->second.begin();
+ itcac != itca->second.end();
+ ++itcac)
+ {
+ Node coeff_a = itcac->first;
+ for (std::map<Node, Kind>::iterator itcar = itcac->second.begin();
+ itcar != itcac->second.end();
+ ++itcar)
+ {
+ Node rhs_a = itcar->first;
+ Node rhs_a_res_base = nm->mkNode(MULT, itb->second, rhs_a);
+ rhs_a_res_base = Rewriter::rewrite(rhs_a_res_base);
+ if (hasNewMonomials(rhs_a_res_base, d_ms))
+ {
+ continue;
+ }
+ Kind type_a = itcar->second;
+ exp.push_back(d_ci_exp[a][coeff_a][rhs_a]);
+
+ // bounds of b
+ for (std::map<Node, std::map<Node, Kind> >::iterator itcbc =
+ itcb->second.begin();
+ itcbc != itcb->second.end();
+ ++itcbc)
+ {
+ Node coeff_b = itcbc->first;
+ Node rhs_a_res = ArithMSum::mkCoeffTerm(coeff_b, rhs_a_res_base);
+ for (std::map<Node, Kind>::iterator itcbr = itcbc->second.begin();
+ itcbr != itcbc->second.end();
+ ++itcbr)
+ {
+ Node rhs_b = itcbr->first;
+ Node rhs_b_res = nm->mkNode(MULT, ita->second, rhs_b);
+ rhs_b_res = ArithMSum::mkCoeffTerm(coeff_a, rhs_b_res);
+ rhs_b_res = Rewriter::rewrite(rhs_b_res);
+ if (hasNewMonomials(rhs_b_res, d_ms))
+ {
+ continue;
+ }
+ Kind type_b = itcbr->second;
+ exp.push_back(d_ci_exp[b][coeff_b][rhs_b]);
+ if (Trace.isOn("nl-ext-rbound"))
+ {
+ Trace("nl-ext-rbound") << "* try bounds : ";
+ debugPrintBound("nl-ext-rbound", coeff_a, a, type_a, rhs_a);
+ Trace("nl-ext-rbound") << std::endl;
+ Trace("nl-ext-rbound") << " ";
+ debugPrintBound("nl-ext-rbound", coeff_b, b, type_b, rhs_b);
+ Trace("nl-ext-rbound") << std::endl;
+ }
+ Kind types[2];
+ for (unsigned r = 0; r < 2; r++)
+ {
+ Node pivot_factor = r == 0 ? itb->second : ita->second;
+ int pivot_factor_sign = r == 0 ? mv_b_sgn : mv_a_sgn;
+ types[r] = r == 0 ? type_a : type_b;
+ if (pivot_factor_sign == (r == 0 ? 1 : -1))
+ {
+ types[r] = reverseRelationKind(types[r]);
+ }
+ if (pivot_factor_sign == 1)
+ {
+ exp.push_back(nm->mkNode(GT, pivot_factor, d_zero));
+ }
+ else
+ {
+ exp.push_back(nm->mkNode(LT, pivot_factor, d_zero));
+ }
+ }
+ Kind jk = transKinds(types[0], types[1]);
+ Trace("nl-ext-rbound-debug")
+ << "trans kind : " << types[0] << " + " << types[1] << " = "
+ << jk << std::endl;
+ if (jk != UNDEFINED_KIND)
+ {
+ Node conc = nm->mkNode(jk, rhs_a_res, rhs_b_res);
+ Node conc_mv = d_model.computeAbstractModelValue(conc);
+ if (conc_mv == d_false)
+ {
+ Node rblem = nm->mkNode(IMPLIES, nm->mkNode(AND, exp), conc);
+ Trace("nl-ext-rbound-lemma-debug")
+ << "Resolution bound lemma "
+ "(pre-rewrite) "
+ ": "
+ << rblem << std::endl;
+ rblem = Rewriter::rewrite(rblem);
+ Trace("nl-ext-rbound-lemma")
+ << "Resolution bound lemma : " << rblem << std::endl;
+ lemmas.push_back(rblem);
+ }
+ }
+ exp.pop_back();
+ exp.pop_back();
+ exp.pop_back();
+ }
+ }
+ exp.pop_back();
+ }
+ }
+ }
+ }
+ return lemmas;
+}
+
+} // namespace nl
+} // namespace arith
+} // namespace theory
+} // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback