summaryrefslogtreecommitdiff
path: root/src/theory/theory_model_builder.cpp
diff options
context:
space:
mode:
authorAndrew Reynolds <andrew.j.reynolds@gmail.com>2017-11-01 10:08:19 -0500
committerGitHub <noreply@github.com>2017-11-01 10:08:19 -0500
commitbdcc170e1bf5bb62904c4a3ebbdc9902096799ba (patch)
treeae8e7ea4eb10d94cfdc1dac3c9d49a00e7baa0a2 /src/theory/theory_model_builder.cpp
parent5b6551c529506592da7c66e39a911d9299944eb8 (diff)
(Move-only) Refactor and document theory model part 2 (#1305)
* Move type set to its own file and document. * Move theory engine model builder to its own class. * Working on documentation. * Document Theory Model. * Minor * Document theory model builder. * Clang format * Address review.
Diffstat (limited to 'src/theory/theory_model_builder.cpp')
-rw-r--r--src/theory/theory_model_builder.cpp1144
1 files changed, 1144 insertions, 0 deletions
diff --git a/src/theory/theory_model_builder.cpp b/src/theory/theory_model_builder.cpp
new file mode 100644
index 000000000..b08c8f1ca
--- /dev/null
+++ b/src/theory/theory_model_builder.cpp
@@ -0,0 +1,1144 @@
+/********************* */
+/*! \file theory_model_builder.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Clark Barrett, Andrew Reynolds, Morgan Deters
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2017 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Implementation of theory model buidler class
+ **/
+#include "theory/theory_model_builder.h"
+
+#include "options/quantifiers_options.h"
+#include "options/smt_options.h"
+#include "options/uf_options.h"
+#include "theory/theory_engine.h"
+#include "theory/uf/theory_uf_model.h"
+
+using namespace std;
+using namespace CVC4::kind;
+using namespace CVC4::context;
+
+namespace CVC4 {
+namespace theory {
+
+TheoryEngineModelBuilder::TheoryEngineModelBuilder(TheoryEngine* te) : d_te(te)
+{
+}
+
+bool TheoryEngineModelBuilder::isAssignable(TNode n)
+{
+ if (n.getKind() == kind::SELECT || n.getKind() == kind::APPLY_SELECTOR_TOTAL)
+ {
+ // selectors are always assignable (where we guarantee that they are not
+ // evaluatable here)
+ if (!options::ufHo())
+ {
+ Assert(!n.getType().isFunction());
+ return true;
+ }
+ else
+ {
+ // might be a function field
+ return !n.getType().isFunction();
+ }
+ }
+ else
+ {
+ // non-function variables, and fully applied functions
+ if (!options::ufHo())
+ {
+ // no functions exist, all functions are fully applied
+ Assert(n.getKind() != kind::HO_APPLY);
+ Assert(!n.getType().isFunction());
+ return n.isVar() || n.getKind() == kind::APPLY_UF;
+ }
+ else
+ {
+ // Assert( n.getKind() != kind::APPLY_UF );
+ return (n.isVar() && !n.getType().isFunction())
+ || n.getKind() == kind::APPLY_UF
+ || (n.getKind() == kind::HO_APPLY
+ && n[0].getType().getNumChildren() == 2);
+ }
+ }
+}
+
+void TheoryEngineModelBuilder::addAssignableSubterms(TNode n,
+ TheoryModel* tm,
+ NodeSet& cache)
+{
+ if (n.getKind() == FORALL || n.getKind() == EXISTS)
+ {
+ return;
+ }
+ if (cache.find(n) != cache.end())
+ {
+ return;
+ }
+ if (isAssignable(n))
+ {
+ tm->d_equalityEngine->addTerm(n);
+ }
+ for (TNode::iterator child_it = n.begin(); child_it != n.end(); ++child_it)
+ {
+ addAssignableSubterms(*child_it, tm, cache);
+ }
+ cache.insert(n);
+}
+
+void TheoryEngineModelBuilder::assignConstantRep(TheoryModel* tm,
+ Node eqc,
+ Node const_rep)
+{
+ d_constantReps[eqc] = const_rep;
+ Trace("model-builder") << " Assign: Setting constant rep of " << eqc
+ << " to " << const_rep << endl;
+ tm->d_rep_set.setTermForRepresentative(const_rep, eqc);
+}
+
+bool TheoryEngineModelBuilder::isExcludedCdtValue(
+ Node val,
+ std::set<Node>* repSet,
+ std::map<Node, Node>& assertedReps,
+ Node eqc)
+{
+ Trace("model-builder-debug")
+ << "Is " << val << " and excluded codatatype value for " << eqc << "? "
+ << std::endl;
+ for (set<Node>::iterator i = repSet->begin(); i != repSet->end(); ++i)
+ {
+ Assert(assertedReps.find(*i) != assertedReps.end());
+ Node rep = assertedReps[*i];
+ Trace("model-builder-debug") << " Rep : " << rep << std::endl;
+ // check matching val to rep with eqc as a free variable
+ Node eqc_m;
+ if (isCdtValueMatch(val, rep, eqc, eqc_m))
+ {
+ Trace("model-builder-debug") << " ...matches with " << eqc << " -> "
+ << eqc_m << std::endl;
+ if (eqc_m.getKind() == kind::UNINTERPRETED_CONSTANT)
+ {
+ Trace("model-builder-debug") << "*** " << val
+ << " is excluded datatype for " << eqc
+ << std::endl;
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+bool TheoryEngineModelBuilder::isCdtValueMatch(Node v,
+ Node r,
+ Node eqc,
+ Node& eqc_m)
+{
+ if (r == v)
+ {
+ return true;
+ }
+ else if (r == eqc)
+ {
+ if (eqc_m.isNull())
+ {
+ // only if an uninterpreted constant?
+ eqc_m = v;
+ return true;
+ }
+ else
+ {
+ return v == eqc_m;
+ }
+ }
+ else if (v.getKind() == kind::APPLY_CONSTRUCTOR
+ && r.getKind() == kind::APPLY_CONSTRUCTOR)
+ {
+ if (v.getOperator() == r.getOperator())
+ {
+ for (unsigned i = 0; i < v.getNumChildren(); i++)
+ {
+ if (!isCdtValueMatch(v[i], r[i], eqc, eqc_m))
+ {
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+ return false;
+}
+
+bool TheoryEngineModelBuilder::involvesUSort(TypeNode tn)
+{
+ if (tn.isSort())
+ {
+ return true;
+ }
+ else if (tn.isArray())
+ {
+ return involvesUSort(tn.getArrayIndexType())
+ || involvesUSort(tn.getArrayConstituentType());
+ }
+ else if (tn.isSet())
+ {
+ return involvesUSort(tn.getSetElementType());
+ }
+ else if (tn.isDatatype())
+ {
+ const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
+ return dt.involvesUninterpretedType();
+ }
+ else
+ {
+ return false;
+ }
+}
+
+bool TheoryEngineModelBuilder::isExcludedUSortValue(
+ std::map<TypeNode, unsigned>& eqc_usort_count,
+ Node v,
+ std::map<Node, bool>& visited)
+{
+ Assert(v.isConst());
+ if (visited.find(v) == visited.end())
+ {
+ visited[v] = true;
+ TypeNode tn = v.getType();
+ if (tn.isSort())
+ {
+ Trace("model-builder-debug") << "Is excluded usort value : " << v << " "
+ << tn << std::endl;
+ unsigned card = eqc_usort_count[tn];
+ Trace("model-builder-debug") << " Cardinality is " << card << std::endl;
+ unsigned index =
+ v.getConst<UninterpretedConstant>().getIndex().toUnsignedInt();
+ Trace("model-builder-debug") << " Index is " << index << std::endl;
+ return index > 0 && index >= card;
+ }
+ for (unsigned i = 0; i < v.getNumChildren(); i++)
+ {
+ if (isExcludedUSortValue(eqc_usort_count, v[i], visited))
+ {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+void TheoryEngineModelBuilder::addToTypeList(
+ TypeNode tn,
+ std::vector<TypeNode>& type_list,
+ std::unordered_set<TypeNode, TypeNodeHashFunction>& visiting)
+{
+ if (std::find(type_list.begin(), type_list.end(), tn) == type_list.end())
+ {
+ if (visiting.find(tn) == visiting.end())
+ {
+ visiting.insert(tn);
+ /* This must make a recursive call on all types that are subterms of
+ * values of the current type.
+ * Note that recursive traversal here is over enumerated expressions
+ * (very low expression depth). */
+ if (tn.isArray())
+ {
+ addToTypeList(tn.getArrayIndexType(), type_list, visiting);
+ addToTypeList(tn.getArrayConstituentType(), type_list, visiting);
+ }
+ else if (tn.isSet())
+ {
+ addToTypeList(tn.getSetElementType(), type_list, visiting);
+ }
+ else if (tn.isDatatype())
+ {
+ const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
+ for (unsigned i = 0; i < dt.getNumConstructors(); i++)
+ {
+ for (unsigned j = 0; j < dt[i].getNumArgs(); j++)
+ {
+ TypeNode ctn = TypeNode::fromType(dt[i][j].getRangeType());
+ addToTypeList(ctn, type_list, visiting);
+ }
+ }
+ }
+ Assert(std::find(type_list.begin(), type_list.end(), tn)
+ == type_list.end());
+ type_list.push_back(tn);
+ }
+ }
+}
+
+bool TheoryEngineModelBuilder::buildModel(Model* m)
+{
+ Trace("model-builder") << "TheoryEngineModelBuilder: buildModel" << std::endl;
+ TheoryModel* tm = (TheoryModel*)m;
+
+ // buildModel should only be called once per check
+ Assert(!tm->isBuilt());
+
+ // Reset model
+ tm->reset();
+
+ // mark as built
+ tm->d_modelBuilt = true;
+
+ // Collect model info from the theories
+ Trace("model-builder") << "TheoryEngineModelBuilder: Collect model info..."
+ << std::endl;
+ d_te->collectModelInfo(tm);
+
+ // model-builder specific initialization
+ if (!preProcessBuildModel(tm))
+ {
+ return false;
+ }
+
+ // Loop through all terms and make sure that assignable sub-terms are in the
+ // equality engine
+ // Also, record #eqc per type (for finite model finding)
+ std::map<TypeNode, unsigned> eqc_usort_count;
+ eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
+ {
+ NodeSet cache;
+ for (; !eqcs_i.isFinished(); ++eqcs_i)
+ {
+ eq::EqClassIterator eqc_i =
+ eq::EqClassIterator((*eqcs_i), tm->d_equalityEngine);
+ for (; !eqc_i.isFinished(); ++eqc_i)
+ {
+ addAssignableSubterms(*eqc_i, tm, cache);
+ }
+ TypeNode tn = (*eqcs_i).getType();
+ if (tn.isSort())
+ {
+ if (eqc_usort_count.find(tn) == eqc_usort_count.end())
+ {
+ eqc_usort_count[tn] = 1;
+ }
+ else
+ {
+ eqc_usort_count[tn]++;
+ }
+ }
+ }
+ }
+
+ Trace("model-builder") << "Collect representatives..." << std::endl;
+
+ // Process all terms in the equality engine, store representatives for each EC
+ d_constantReps.clear();
+ std::map<Node, Node> assertedReps;
+ TypeSet typeConstSet, typeRepSet, typeNoRepSet;
+ TypeEnumeratorProperties tep;
+ if (options::finiteModelFind())
+ {
+ tep.d_fixed_usort_card = true;
+ for (std::map<TypeNode, unsigned>::iterator it = eqc_usort_count.begin();
+ it != eqc_usort_count.end();
+ ++it)
+ {
+ Trace("model-builder") << "Fixed bound (#eqc) for " << it->first << " : "
+ << it->second << std::endl;
+ tep.d_fixed_card[it->first] = Integer(it->second);
+ }
+ typeConstSet.setTypeEnumeratorProperties(&tep);
+ }
+ // AJR: build ordered list of types that ensures that base types are
+ // enumerated first.
+ // (I think) this is only strictly necessary for finite model finding +
+ // parametric types
+ // instantiated with uninterpreted sorts, but is probably a good idea to do
+ // in general
+ // since it leads to models with smaller term sizes.
+ std::vector<TypeNode> type_list;
+ eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
+ for (; !eqcs_i.isFinished(); ++eqcs_i)
+ {
+ // eqc is the equivalence class representative
+ Node eqc = (*eqcs_i);
+ Trace("model-builder") << "Processing EC: " << eqc << endl;
+ Assert(tm->d_equalityEngine->getRepresentative(eqc) == eqc);
+ TypeNode eqct = eqc.getType();
+ Assert(assertedReps.find(eqc) == assertedReps.end());
+ Assert(d_constantReps.find(eqc) == d_constantReps.end());
+
+ // Loop through terms in this EC
+ Node rep, const_rep;
+ eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
+ for (; !eqc_i.isFinished(); ++eqc_i)
+ {
+ Node n = *eqc_i;
+ Trace("model-builder") << " Processing Term: " << n << endl;
+ // Record as rep if this node was specified as a representative
+ if (tm->d_reps.find(n) != tm->d_reps.end())
+ {
+ // AJR: I believe this assertion is too strict,
+ // e.g. datatypes may assert representative for two constructor terms
+ // that are not in the care graph and are merged during
+ // collectModelInfo.
+ // Assert(rep.isNull());
+ rep = tm->d_reps[n];
+ Assert(!rep.isNull());
+ Trace("model-builder") << " Rep( " << eqc << " ) = " << rep
+ << std::endl;
+ }
+ // Record as const_rep if this node is constant
+ if (n.isConst())
+ {
+ Assert(const_rep.isNull());
+ const_rep = n;
+ Trace("model-builder") << " ConstRep( " << eqc << " ) = " << const_rep
+ << std::endl;
+ }
+ // model-specific processing of the term
+ tm->addTerm(n);
+ }
+
+ // Assign representative for this EC
+ if (!const_rep.isNull())
+ {
+ // Theories should not specify a rep if there is already a constant in the
+ // EC
+ // AJR: I believe this assertion is too strict, eqc with asserted reps may
+ // merge with constant eqc
+ // Assert(rep.isNull() || rep == const_rep);
+ assignConstantRep(tm, eqc, const_rep);
+ typeConstSet.add(eqct.getBaseType(), const_rep);
+ }
+ else if (!rep.isNull())
+ {
+ assertedReps[eqc] = rep;
+ typeRepSet.add(eqct.getBaseType(), eqc);
+ std::unordered_set<TypeNode, TypeNodeHashFunction> visiting;
+ addToTypeList(eqct.getBaseType(), type_list, visiting);
+ }
+ else
+ {
+ typeNoRepSet.add(eqct, eqc);
+ std::unordered_set<TypeNode, TypeNodeHashFunction> visiting;
+ addToTypeList(eqct, type_list, visiting);
+ }
+ }
+
+ // Need to ensure that each EC has a constant representative.
+
+ Trace("model-builder") << "Processing EC's..." << std::endl;
+
+ TypeSet::iterator it;
+ vector<TypeNode>::iterator type_it;
+ set<Node>::iterator i, i2;
+ bool changed, unassignedAssignable, assignOne = false;
+ set<TypeNode> evaluableSet;
+
+ // Double-fixed-point loop
+ // Outer loop handles a special corner case (see code at end of loop for
+ // details)
+ for (;;)
+ {
+ // Inner fixed-point loop: we are trying to learn constant values for every
+ // EC. Each time through this loop, we process all of the
+ // types by type and may learn some new EC values. EC's in one type may
+ // depend on EC's in another type, so we need a fixed-point loop
+ // to ensure that we learn as many EC values as possible
+ do
+ {
+ changed = false;
+ unassignedAssignable = false;
+ evaluableSet.clear();
+
+ // Iterate over all types we've seen
+ for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it)
+ {
+ TypeNode t = *type_it;
+ TypeNode tb = t.getBaseType();
+ set<Node>* noRepSet = typeNoRepSet.getSet(t);
+
+ // 1. Try to evaluate the EC's in this type
+ if (noRepSet != NULL && !noRepSet->empty())
+ {
+ Trace("model-builder") << " Eval phase, working on type: " << t
+ << endl;
+ bool assignable, evaluable, evaluated;
+ d_normalizedCache.clear();
+ for (i = noRepSet->begin(); i != noRepSet->end();)
+ {
+ i2 = i;
+ ++i;
+ assignable = false;
+ evaluable = false;
+ evaluated = false;
+ Trace("model-builder-debug") << "Look at eqc : " << (*i2)
+ << std::endl;
+ eq::EqClassIterator eqc_i =
+ eq::EqClassIterator(*i2, tm->d_equalityEngine);
+ for (; !eqc_i.isFinished(); ++eqc_i)
+ {
+ Node n = *eqc_i;
+ Trace("model-builder-debug") << "Look at term : " << n
+ << std::endl;
+ if (isAssignable(n))
+ {
+ assignable = true;
+ Trace("model-builder-debug") << "...assignable" << std::endl;
+ }
+ else
+ {
+ evaluable = true;
+ Trace("model-builder-debug") << "...try to normalize"
+ << std::endl;
+ Node normalized = normalize(tm, n, true);
+ if (normalized.isConst())
+ {
+ typeConstSet.add(tb, normalized);
+ assignConstantRep(tm, *i2, normalized);
+ Trace("model-builder") << " Eval: Setting constant rep of "
+ << (*i2) << " to " << normalized
+ << endl;
+ changed = true;
+ evaluated = true;
+ noRepSet->erase(i2);
+ break;
+ }
+ }
+ }
+ if (!evaluated)
+ {
+ if (evaluable)
+ {
+ evaluableSet.insert(tb);
+ }
+ if (assignable)
+ {
+ unassignedAssignable = true;
+ }
+ }
+ }
+ }
+
+ // 2. Normalize any non-const representative terms for this type
+ set<Node>* repSet = typeRepSet.getSet(t);
+ if (repSet != NULL && !repSet->empty())
+ {
+ Trace("model-builder")
+ << " Normalization phase, working on type: " << t << endl;
+ d_normalizedCache.clear();
+ for (i = repSet->begin(); i != repSet->end();)
+ {
+ Assert(assertedReps.find(*i) != assertedReps.end());
+ Node rep = assertedReps[*i];
+ Node normalized = normalize(tm, rep, false);
+ Trace("model-builder") << " Normalizing rep (" << rep
+ << "), normalized to (" << normalized << ")"
+ << endl;
+ if (normalized.isConst())
+ {
+ changed = true;
+ typeConstSet.add(tb, normalized);
+ assignConstantRep(tm, *i, normalized);
+ assertedReps.erase(*i);
+ i2 = i;
+ ++i;
+ repSet->erase(i2);
+ }
+ else
+ {
+ if (normalized != rep)
+ {
+ assertedReps[*i] = normalized;
+ changed = true;
+ }
+ ++i;
+ }
+ }
+ }
+ }
+ } while (changed);
+
+ if (!unassignedAssignable)
+ {
+ break;
+ }
+
+ // 3. Assign unassigned assignable EC's using type enumeration - assign a
+ // value *different* from all other EC's if the type is infinite
+ // Assign first value from type enumerator otherwise - for finite types, we
+ // rely on polite framework to ensure that EC's that have to be
+ // different are different.
+
+ // Only make assignments on a type if:
+ // 1. there are no terms that share the same base type with un-normalized
+ // representatives
+ // 2. there are no terms that share teh same base type that are unevaluated
+ // evaluable terms
+ // Alternatively, if 2 or 3 don't hold but we are in a special
+ // deadlock-breaking mode where assignOne is true, go ahead and make one
+ // assignment
+ changed = false;
+ // must iterate over the ordered type list to ensure that we do not
+ // enumerate values with subterms
+ // having types that we are currently enumerating (when possible)
+ // for example, this ensures we enumerate uninterpreted sort U before (List
+ // of U) and (Array U U)
+ // however, it does not break cyclic type dependencies for mutually
+ // recursive datatypes, but this is handled
+ // by recording all subterms of enumerated values in TypeSet::addSubTerms.
+ for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it)
+ {
+ TypeNode t = *type_it;
+ // continue if there are no more equivalence classes of this type to
+ // assign
+ std::set<Node>* noRepSetPtr = typeNoRepSet.getSet(t);
+ if (noRepSetPtr == NULL)
+ {
+ continue;
+ }
+ set<Node>& noRepSet = *noRepSetPtr;
+ if (noRepSet.empty())
+ {
+ continue;
+ }
+
+ // get properties of this type
+ bool isCorecursive = false;
+ if (t.isDatatype())
+ {
+ const Datatype& dt = ((DatatypeType)(t).toType()).getDatatype();
+ isCorecursive =
+ dt.isCodatatype() && (!dt.isFinite(t.toType())
+ || dt.isRecursiveSingleton(t.toType()));
+ }
+#ifdef CVC4_ASSERTIONS
+ bool isUSortFiniteRestricted = false;
+ if (options::finiteModelFind())
+ {
+ isUSortFiniteRestricted = !t.isSort() && involvesUSort(t);
+ }
+#endif
+
+ set<Node>* repSet = typeRepSet.getSet(t);
+ TypeNode tb = t.getBaseType();
+ if (!assignOne)
+ {
+ set<Node>* repSet = typeRepSet.getSet(tb);
+ if (repSet != NULL && !repSet->empty())
+ {
+ continue;
+ }
+ if (evaluableSet.find(tb) != evaluableSet.end())
+ {
+ continue;
+ }
+ }
+ Trace("model-builder") << " Assign phase, working on type: " << t
+ << endl;
+ bool assignable, evaluable CVC4_UNUSED;
+ for (i = noRepSet.begin(); i != noRepSet.end();)
+ {
+ i2 = i;
+ ++i;
+ eq::EqClassIterator eqc_i =
+ eq::EqClassIterator(*i2, tm->d_equalityEngine);
+ assignable = false;
+ evaluable = false;
+ for (; !eqc_i.isFinished(); ++eqc_i)
+ {
+ Node n = *eqc_i;
+ if (isAssignable(n))
+ {
+ assignable = true;
+ }
+ else
+ {
+ evaluable = true;
+ }
+ }
+ Trace("model-builder-debug")
+ << " eqc " << *i2 << " is assignable=" << assignable
+ << ", evaluable=" << evaluable << std::endl;
+ if (assignable)
+ {
+ Assert(!evaluable || assignOne);
+ Assert(!t.isBoolean() || (*i2).getKind() == kind::APPLY_UF);
+ Node n;
+ if (t.getCardinality().isInfinite())
+ {
+ // if (!t.isInterpretedFinite()) {
+ bool success;
+ do
+ {
+ Trace("model-builder-debug") << "Enumerate term of type " << t
+ << std::endl;
+ n = typeConstSet.nextTypeEnum(t, true);
+ //--- AJR: this code checks whether n is a legal value
+ Assert(!n.isNull());
+ success = true;
+ Trace("model-builder-debug") << "Check if excluded : " << n
+ << std::endl;
+#ifdef CVC4_ASSERTIONS
+ if (isUSortFiniteRestricted)
+ {
+ // must not involve uninterpreted constants beyond cardinality
+ // bound (which assumed to coincide with #eqc)
+ // this is just an assertion now, since TypeEnumeratorProperties
+ // should ensure that only legal values are enumerated wrt this
+ // constraint.
+ std::map<Node, bool> visited;
+ success = !isExcludedUSortValue(eqc_usort_count, n, visited);
+ if (!success)
+ {
+ Trace("model-builder")
+ << "Excluded value for " << t << " : " << n
+ << " due to out of range uninterpreted constant."
+ << std::endl;
+ }
+ Assert(success);
+ }
+#endif
+ if (success && isCorecursive)
+ {
+ if (repSet != NULL && !repSet->empty())
+ {
+ // in the case of codatatypes, check if it is in the set of
+ // values that we cannot assign
+ success = !isExcludedCdtValue(n, repSet, assertedReps, *i2);
+ if (!success)
+ {
+ Trace("model-builder")
+ << "Excluded value : " << n
+ << " due to alpha-equivalent codatatype expression."
+ << std::endl;
+ }
+ }
+ }
+ //---
+ } while (!success);
+ }
+ else
+ {
+ TypeEnumerator te(t);
+ n = *te;
+ }
+ Assert(!n.isNull());
+ assignConstantRep(tm, *i2, n);
+ changed = true;
+ noRepSet.erase(i2);
+ if (assignOne)
+ {
+ assignOne = false;
+ break;
+ }
+ }
+ }
+ }
+
+ // Corner case - I'm not sure this can even happen - but it's theoretically
+ // possible to have a cyclical dependency
+ // in EC assignment/evaluation, e.g. EC1 = {a, b + 1}; EC2 = {b, a - 1}. In
+ // this case, neither one will get assigned because we are waiting
+ // to be able to evaluate. But we will never be able to evaluate because
+ // the variables that need to be assigned are in
+ // these same EC's. In this case, repeat the whole fixed-point computation
+ // with the difference that the first EC
+ // that has both assignable and evaluable expressions will get assigned.
+ if (!changed)
+ {
+ Assert(!assignOne); // check for infinite loop!
+ assignOne = true;
+ }
+ }
+
+#ifdef CVC4_ASSERTIONS
+ // Assert that all representatives have been converted to constants
+ for (it = typeRepSet.begin(); it != typeRepSet.end(); ++it)
+ {
+ set<Node>& repSet = TypeSet::getSet(it);
+ if (!repSet.empty())
+ {
+ Trace("model-builder") << "***Non-empty repSet, size = " << repSet.size()
+ << ", first = " << *(repSet.begin()) << endl;
+ Assert(false);
+ }
+ }
+#endif /* CVC4_ASSERTIONS */
+
+ Trace("model-builder") << "Copy representatives to model..." << std::endl;
+ tm->d_reps.clear();
+ std::map<Node, Node>::iterator itMap;
+ for (itMap = d_constantReps.begin(); itMap != d_constantReps.end(); ++itMap)
+ {
+ tm->d_reps[itMap->first] = itMap->second;
+ tm->d_rep_set.add(itMap->second.getType(), itMap->second);
+ }
+
+ Trace("model-builder") << "Make sure ECs have reps..." << std::endl;
+ // Make sure every EC has a rep
+ for (itMap = assertedReps.begin(); itMap != assertedReps.end(); ++itMap)
+ {
+ tm->d_reps[itMap->first] = itMap->second;
+ tm->d_rep_set.add(itMap->second.getType(), itMap->second);
+ }
+ for (it = typeNoRepSet.begin(); it != typeNoRepSet.end(); ++it)
+ {
+ set<Node>& noRepSet = TypeSet::getSet(it);
+ set<Node>::iterator i;
+ for (i = noRepSet.begin(); i != noRepSet.end(); ++i)
+ {
+ tm->d_reps[*i] = *i;
+ tm->d_rep_set.add((*i).getType(), *i);
+ }
+ }
+
+ // modelBuilder-specific initialization
+ if (!processBuildModel(tm))
+ {
+ return false;
+ }
+ else
+ {
+ return true;
+ }
+}
+
+void TheoryEngineModelBuilder::debugCheckModel(Model* m)
+{
+ TheoryModel* tm = (TheoryModel*)m;
+#ifdef CVC4_ASSERTIONS
+ Assert(tm->isBuilt());
+ eq::EqClassesIterator eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
+ std::map<Node, Node>::iterator itMap;
+ // Check that every term evaluates to its representative in the model
+ for (eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
+ !eqcs_i.isFinished();
+ ++eqcs_i)
+ {
+ // eqc is the equivalence class representative
+ Node eqc = (*eqcs_i);
+ // get the representative
+ Node rep = tm->getRepresentative(eqc);
+ if (!rep.isConst() && eqc.getType().isBoolean())
+ {
+ // if Boolean, it does not necessarily have a constant representative, use
+ // get value instead
+ rep = tm->getValue(eqc);
+ Assert(rep.isConst());
+ }
+ eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
+ for (; !eqc_i.isFinished(); ++eqc_i)
+ {
+ Node n = *eqc_i;
+ static int repCheckInstance = 0;
+ ++repCheckInstance;
+
+ // non-linear mult is not necessarily accurate wrt getValue
+ if (n.getKind() != kind::NONLINEAR_MULT)
+ {
+ Debug("check-model::rep-checking") << "( " << repCheckInstance << ") "
+ << "n: " << n << endl
+ << "getValue(n): " << tm->getValue(n)
+ << endl
+ << "rep: " << rep << endl;
+ Assert(tm->getValue(*eqc_i) == rep,
+ "run with -d check-model::rep-checking for details");
+ }
+ }
+ }
+#endif /* CVC4_ASSERTIONS */
+
+ // builder-specific debugging
+ debugModel(tm);
+}
+
+Node TheoryEngineModelBuilder::normalize(TheoryModel* m, TNode r, bool evalOnly)
+{
+ std::map<Node, Node>::iterator itMap = d_constantReps.find(r);
+ if (itMap != d_constantReps.end())
+ {
+ return (*itMap).second;
+ }
+ NodeMap::iterator it = d_normalizedCache.find(r);
+ if (it != d_normalizedCache.end())
+ {
+ return (*it).second;
+ }
+ Trace("model-builder-debug") << "do normalize on " << r << std::endl;
+ Node retNode = r;
+ if (r.getNumChildren() > 0)
+ {
+ std::vector<Node> children;
+ if (r.getMetaKind() == kind::metakind::PARAMETERIZED)
+ {
+ children.push_back(r.getOperator());
+ }
+ bool childrenConst = true;
+ for (size_t i = 0; i < r.getNumChildren(); ++i)
+ {
+ Node ri = r[i];
+ bool recurse = true;
+ if (!ri.isConst())
+ {
+ if (m->d_equalityEngine->hasTerm(ri))
+ {
+ itMap =
+ d_constantReps.find(m->d_equalityEngine->getRepresentative(ri));
+ if (itMap != d_constantReps.end())
+ {
+ ri = (*itMap).second;
+ recurse = false;
+ }
+ else if (!evalOnly)
+ {
+ recurse = false;
+ }
+ }
+ if (recurse)
+ {
+ ri = normalize(m, ri, evalOnly);
+ }
+ if (!ri.isConst())
+ {
+ childrenConst = false;
+ }
+ }
+ children.push_back(ri);
+ }
+ retNode = NodeManager::currentNM()->mkNode(r.getKind(), children);
+ if (childrenConst)
+ {
+ retNode = Rewriter::rewrite(retNode);
+ Assert(retNode.getKind() == kind::APPLY_UF
+ || !retNode.getType().isFirstClass()
+ || retNode.isConst());
+ }
+ }
+ d_normalizedCache[r] = retNode;
+ return retNode;
+}
+
+bool TheoryEngineModelBuilder::preProcessBuildModel(TheoryModel* m)
+{
+ return true;
+}
+
+bool TheoryEngineModelBuilder::processBuildModel(TheoryModel* m)
+{
+ assignFunctions(m);
+ return true;
+}
+
+void TheoryEngineModelBuilder::assignFunction(TheoryModel* m, Node f)
+{
+ Assert(!options::ufHo());
+ uf::UfModelTree ufmt(f);
+ Node default_v;
+ for (size_t i = 0; i < m->d_uf_terms[f].size(); i++)
+ {
+ Node un = m->d_uf_terms[f][i];
+ vector<TNode> children;
+ children.push_back(f);
+ Trace("model-builder-debug") << " process term : " << un << std::endl;
+ for (size_t j = 0; j < un.getNumChildren(); ++j)
+ {
+ Node rc = m->getRepresentative(un[j]);
+ Trace("model-builder-debug2") << " get rep : " << un[j] << " returned "
+ << rc << std::endl;
+ Assert(rc.isConst());
+ children.push_back(rc);
+ }
+ Node simp = NodeManager::currentNM()->mkNode(un.getKind(), children);
+ Node v = m->getRepresentative(un);
+ Trace("model-builder") << " Setting (" << simp << ") to (" << v << ")"
+ << endl;
+ ufmt.setValue(m, simp, v);
+ default_v = v;
+ }
+ if (default_v.isNull())
+ {
+ // choose default value from model if none exists
+ TypeEnumerator te(f.getType().getRangeType());
+ default_v = (*te);
+ }
+ ufmt.setDefaultValue(m, default_v);
+ bool condenseFuncValues = options::condenseFunctionValues();
+ if (condenseFuncValues)
+ {
+ ufmt.simplify();
+ }
+ std::stringstream ss;
+ ss << "_arg_" << f << "_";
+ Node val = ufmt.getFunctionValue(ss.str().c_str(), condenseFuncValues);
+ m->assignFunctionDefinition(f, val);
+ // ufmt.debugPrint( std::cout, m );
+}
+
+void TheoryEngineModelBuilder::assignHoFunction(TheoryModel* m, Node f)
+{
+ Assert(options::ufHo());
+ TypeNode type = f.getType();
+ std::vector<TypeNode> argTypes = type.getArgTypes();
+ std::vector<Node> args;
+ std::vector<TNode> apply_args;
+ for (unsigned i = 0; i < argTypes.size(); i++)
+ {
+ Node v = NodeManager::currentNM()->mkBoundVar(argTypes[i]);
+ args.push_back(v);
+ if (i > 0)
+ {
+ apply_args.push_back(v);
+ }
+ }
+ // start with the base return value (currently we use the same default value
+ // for all functions)
+ TypeEnumerator te(type.getRangeType());
+ Node curr = (*te);
+ std::map<Node, std::vector<Node> >::iterator itht = m->d_ho_uf_terms.find(f);
+ if (itht != m->d_ho_uf_terms.end())
+ {
+ for (size_t i = 0; i < itht->second.size(); i++)
+ {
+ Node hn = itht->second[i];
+ Trace("model-builder-debug") << " process : " << hn << std::endl;
+ Assert(hn.getKind() == kind::HO_APPLY);
+ Assert(m->areEqual(hn[0], f));
+ Node hni = m->getRepresentative(hn[1]);
+ Trace("model-builder-debug2") << " get rep : " << hn[0]
+ << " returned " << hni << std::endl;
+ Assert(hni.isConst());
+ Assert(hni.getType().isSubtypeOf(args[0].getType()));
+ hni = Rewriter::rewrite(args[0].eqNode(hni));
+ Node hnv = m->getRepresentative(hn);
+ Trace("model-builder-debug2") << " get rep val : " << hn
+ << " returned " << hnv << std::endl;
+ Assert(hnv.isConst());
+ if (!apply_args.empty())
+ {
+ Assert(hnv.getKind() == kind::LAMBDA
+ && hnv[0].getNumChildren() + 1 == args.size());
+ std::vector<TNode> largs;
+ for (unsigned j = 0; j < hnv[0].getNumChildren(); j++)
+ {
+ largs.push_back(hnv[0][j]);
+ }
+ Assert(largs.size() == apply_args.size());
+ hnv = hnv[1].substitute(
+ largs.begin(), largs.end(), apply_args.begin(), apply_args.end());
+ hnv = Rewriter::rewrite(hnv);
+ }
+ Assert(!TypeNode::leastCommonTypeNode(hnv.getType(), curr.getType())
+ .isNull());
+ curr = NodeManager::currentNM()->mkNode(kind::ITE, hni, hnv, curr);
+ }
+ }
+ Node val = NodeManager::currentNM()->mkNode(
+ kind::LAMBDA,
+ NodeManager::currentNM()->mkNode(kind::BOUND_VAR_LIST, args),
+ curr);
+ m->assignFunctionDefinition(f, val);
+}
+
+// This struct is used to sort terms by the "size" of their type
+// The size of the type is the number of nodes in the type, for example
+// size of Int is 1
+// size of Function( Int, Int ) is 3
+// size of Function( Function( Bool, Int ), Int ) is 5
+struct sortTypeSize
+{
+ // stores the size of the type
+ std::map<TypeNode, unsigned> d_type_size;
+ // get the size of type tn
+ unsigned getTypeSize(TypeNode tn)
+ {
+ std::map<TypeNode, unsigned>::iterator it = d_type_size.find(tn);
+ if (it != d_type_size.end())
+ {
+ return it->second;
+ }
+ else
+ {
+ unsigned sum = 1;
+ for (unsigned i = 0; i < tn.getNumChildren(); i++)
+ {
+ sum += getTypeSize(tn[i]);
+ }
+ d_type_size[tn] = sum;
+ return sum;
+ }
+ }
+
+ public:
+ // compares the type size of i and j
+ // returns true iff the size of i is less than that of j
+ // tiebreaks are determined by node value
+ bool operator()(Node i, Node j)
+ {
+ int si = getTypeSize(i.getType());
+ int sj = getTypeSize(j.getType());
+ if (si < sj)
+ {
+ return true;
+ }
+ else if (si == sj)
+ {
+ return i < j;
+ }
+ else
+ {
+ return false;
+ }
+ }
+};
+
+void TheoryEngineModelBuilder::assignFunctions(TheoryModel* m)
+{
+ Trace("model-builder") << "Assigning function values..." << std::endl;
+ std::vector<Node> funcs_to_assign = m->getFunctionsToAssign();
+
+ if (options::ufHo())
+ {
+ // sort based on type size if higher-order
+ Trace("model-builder") << "Sort functions by type..." << std::endl;
+ sortTypeSize sts;
+ std::sort(funcs_to_assign.begin(), funcs_to_assign.end(), sts);
+ }
+
+ if (Trace.isOn("model-builder"))
+ {
+ Trace("model-builder") << "...have " << funcs_to_assign.size()
+ << " functions to assign:" << std::endl;
+ for (unsigned k = 0; k < funcs_to_assign.size(); k++)
+ {
+ Node f = funcs_to_assign[k];
+ Trace("model-builder") << " [" << k << "] : " << f << " : "
+ << f.getType() << std::endl;
+ }
+ }
+
+ // construct function values
+ for (unsigned k = 0; k < funcs_to_assign.size(); k++)
+ {
+ Node f = funcs_to_assign[k];
+ Trace("model-builder") << " Function #" << k << " is " << f << std::endl;
+ // std::map< Node, std::vector< Node > >::iterator itht =
+ // m->d_ho_uf_terms.find( f );
+ if (!options::ufHo())
+ {
+ Trace("model-builder") << " Assign function value for " << f
+ << " based on APPLY_UF" << std::endl;
+ assignFunction(m, f);
+ }
+ else
+ {
+ Trace("model-builder") << " Assign function value for " << f
+ << " based on curried HO_APPLY" << std::endl;
+ assignHoFunction(m, f);
+ }
+ }
+ Trace("model-builder") << "Finished assigning function values." << std::endl;
+}
+
+} /* namespace CVC4::theory */
+} /* namespace CVC4 */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback