summaryrefslogtreecommitdiff
path: root/src/theory/theory_model.cpp
diff options
context:
space:
mode:
authorAndrew Reynolds <andrew.j.reynolds@gmail.com>2017-11-01 10:08:19 -0500
committerGitHub <noreply@github.com>2017-11-01 10:08:19 -0500
commitbdcc170e1bf5bb62904c4a3ebbdc9902096799ba (patch)
treeae8e7ea4eb10d94cfdc1dac3c9d49a00e7baa0a2 /src/theory/theory_model.cpp
parent5b6551c529506592da7c66e39a911d9299944eb8 (diff)
(Move-only) Refactor and document theory model part 2 (#1305)
* Move type set to its own file and document. * Move theory engine model builder to its own class. * Working on documentation. * Document Theory Model. * Minor * Document theory model builder. * Clang format * Address review.
Diffstat (limited to 'src/theory/theory_model.cpp')
-rw-r--r--src/theory/theory_model.cpp841
1 files changed, 2 insertions, 839 deletions
diff --git a/src/theory/theory_model.cpp b/src/theory/theory_model.cpp
index 490ed45c9..65810109c 100644
--- a/src/theory/theory_model.cpp
+++ b/src/theory/theory_model.cpp
@@ -13,14 +13,10 @@
**/
#include "theory/theory_model.h"
+#include "options/quantifiers_options.h"
#include "options/smt_options.h"
#include "options/uf_options.h"
-#include "options/quantifiers_options.h"
#include "smt/smt_engine.h"
-#include "theory/quantifiers_engine.h"
-#include "theory/theory_engine.h"
-#include "theory/type_enumerator.h"
-#include "theory/uf/theory_uf_model.h"
using namespace std;
using namespace CVC4::kind;
@@ -56,6 +52,7 @@ TheoryModel::~TheoryModel() throw() {
}
void TheoryModel::reset(){
+ d_modelBuilt = false;
d_modelCache.clear();
d_comment_str.clear();
d_sep_heap = Node::null();
@@ -577,839 +574,5 @@ std::vector< Node > TheoryModel::getFunctionsToAssign() {
return funcs_to_assign;
}
-TheoryEngineModelBuilder::TheoryEngineModelBuilder( TheoryEngine* te ) : d_te( te ){
-
-}
-
-
-bool TheoryEngineModelBuilder::isAssignable(TNode n)
-{
- if( n.getKind() == kind::SELECT || n.getKind() == kind::APPLY_SELECTOR_TOTAL ){
- // selectors are always assignable (where we guarantee that they are not evaluatable here)
- if( !options::ufHo() ){
- Assert( !n.getType().isFunction() );
- return true;
- }else{
- // might be a function field
- return !n.getType().isFunction();
- }
- }else{
- // non-function variables, and fully applied functions
- if( !options::ufHo() ){
- // no functions exist, all functions are fully applied
- Assert( n.getKind() != kind::HO_APPLY );
- Assert( !n.getType().isFunction() );
- return n.isVar() || n.getKind() == kind::APPLY_UF;
- }else{
- //Assert( n.getKind() != kind::APPLY_UF );
- return ( n.isVar() && !n.getType().isFunction() ) || n.getKind() == kind::APPLY_UF ||
- ( n.getKind() == kind::HO_APPLY && n[0].getType().getNumChildren()==2 );
- }
- }
-}
-
-
-void TheoryEngineModelBuilder::checkTerms(TNode n, TheoryModel* tm, NodeSet& cache)
-{
- if (n.getKind()==FORALL || n.getKind()==EXISTS) {
- return;
- }
- if (cache.find(n) != cache.end()) {
- return;
- }
- if (isAssignable(n)) {
- tm->d_equalityEngine->addTerm(n);
- }
- for(TNode::iterator child_it = n.begin(); child_it != n.end(); ++child_it) {
- checkTerms(*child_it, tm, cache);
- }
- cache.insert(n);
-}
-
-void TheoryEngineModelBuilder::assignConstantRep( TheoryModel* tm, Node eqc, Node const_rep ) {
- d_constantReps[eqc] = const_rep;
- Trace("model-builder") << " Assign: Setting constant rep of " << eqc << " to " << const_rep << endl;
- tm->d_rep_set.setTermForRepresentative(const_rep, eqc);
-}
-
-bool TheoryEngineModelBuilder::isExcludedCdtValue( Node val, std::set<Node>* repSet, std::map< Node, Node >& assertedReps, Node eqc ) {
- Trace("model-builder-debug") << "Is " << val << " and excluded codatatype value for " << eqc << "? " << std::endl;
- for (set<Node>::iterator i = repSet->begin(); i != repSet->end(); ++i ) {
- Assert(assertedReps.find(*i) != assertedReps.end());
- Node rep = assertedReps[*i];
- Trace("model-builder-debug") << " Rep : " << rep << std::endl;
- //check matching val to rep with eqc as a free variable
- Node eqc_m;
- if( isCdtValueMatch( val, rep, eqc, eqc_m ) ){
- Trace("model-builder-debug") << " ...matches with " << eqc << " -> " << eqc_m << std::endl;
- if( eqc_m.getKind()==kind::UNINTERPRETED_CONSTANT ){
- Trace("model-builder-debug") << "*** " << val << " is excluded datatype for " << eqc << std::endl;
- return true;
- }
- }
- }
- return false;
-}
-
-bool TheoryEngineModelBuilder::isCdtValueMatch( Node v, Node r, Node eqc, Node& eqc_m ) {
- if( r==v ){
- return true;
- }else if( r==eqc ){
- if( eqc_m.isNull() ){
- //only if an uninterpreted constant?
- eqc_m = v;
- return true;
- }else{
- return v==eqc_m;
- }
- }else if( v.getKind()==kind::APPLY_CONSTRUCTOR && r.getKind()==kind::APPLY_CONSTRUCTOR ){
- if( v.getOperator()==r.getOperator() ){
- for( unsigned i=0; i<v.getNumChildren(); i++ ){
- if( !isCdtValueMatch( v[i], r[i], eqc, eqc_m ) ){
- return false;
- }
- }
- return true;
- }
- }
- return false;
-}
-
-bool TheoryEngineModelBuilder::involvesUSort( TypeNode tn ) {
- if( tn.isSort() ){
- return true;
- }else if( tn.isArray() ){
- return involvesUSort( tn.getArrayIndexType() ) || involvesUSort( tn.getArrayConstituentType() );
- }else if( tn.isSet() ){
- return involvesUSort( tn.getSetElementType() );
- }else if( tn.isDatatype() ){
- const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
- return dt.involvesUninterpretedType();
- }else{
- return false;
- }
-}
-
-bool TheoryEngineModelBuilder::isExcludedUSortValue( std::map< TypeNode, unsigned >& eqc_usort_count, Node v, std::map< Node, bool >& visited ) {
- Assert( v.isConst() );
- if( visited.find( v )==visited.end() ){
- visited[v] = true;
- TypeNode tn = v.getType();
- if( tn.isSort() ){
- Trace("model-builder-debug") << "Is excluded usort value : " << v << " " << tn << std::endl;
- unsigned card = eqc_usort_count[tn];
- Trace("model-builder-debug") << " Cardinality is " << card << std::endl;
- unsigned index = v.getConst<UninterpretedConstant>().getIndex().toUnsignedInt();
- Trace("model-builder-debug") << " Index is " << index << std::endl;
- return index>0 && index>=card;
- }
- for( unsigned i=0; i<v.getNumChildren(); i++ ){
- if( isExcludedUSortValue( eqc_usort_count, v[i], visited ) ){
- return true;
- }
- }
- }
- return false;
-}
-
-
-void TheoryEngineModelBuilder::addToTypeList( TypeNode tn, std::vector< TypeNode >& type_list,
- std::map< TypeNode, bool >& visiting ){
- if( std::find( type_list.begin(), type_list.end(), tn )==type_list.end() ){
- if( visiting.find( tn )==visiting.end() ){
- visiting[tn] = true;
- /* This must make a recursive call on all types that are subterms of
- * values of the current type.
- * Note that recursive traversal here is over enumerated expressions
- * (very low expression depth). */
- if( tn.isArray() ){
- addToTypeList( tn.getArrayIndexType(), type_list, visiting );
- addToTypeList( tn.getArrayConstituentType(), type_list, visiting );
- }else if( tn.isSet() ){
- addToTypeList( tn.getSetElementType(), type_list, visiting );
- }else if( tn.isDatatype() ){
- const Datatype& dt = ((DatatypeType)(tn).toType()).getDatatype();
- for( unsigned i=0; i<dt.getNumConstructors(); i++ ){
- for( unsigned j=0; j<dt[i].getNumArgs(); j++ ){
- TypeNode ctn = TypeNode::fromType( dt[i][j].getRangeType() );
- addToTypeList( ctn, type_list, visiting );
- }
- }
- }
- Assert( std::find( type_list.begin(), type_list.end(), tn )==type_list.end() );
- type_list.push_back( tn );
- }
- }
-}
-
-bool TheoryEngineModelBuilder::buildModel(Model* m)
-{
- Trace("model-builder") << "TheoryEngineModelBuilder: buildModel" << std::endl;
- TheoryModel* tm = (TheoryModel*)m;
-
- // buildModel should only be called once per check
- Assert(!tm->isBuilt());
- tm->d_modelBuilt = true;
-
- // Reset model
- tm->reset();
-
- // Collect model info from the theories
- Trace("model-builder") << "TheoryEngineModelBuilder: Collect model info..." << std::endl;
- d_te->collectModelInfo(tm);
-
- // model-builder specific initialization
- if( !preProcessBuildModel(tm) ){
- return false;
- }
-
- // Loop through all terms and make sure that assignable sub-terms are in the equality engine
- // Also, record #eqc per type (for finite model finding)
- std::map< TypeNode, unsigned > eqc_usort_count;
- eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( tm->d_equalityEngine );
- {
- NodeSet cache;
- for ( ; !eqcs_i.isFinished(); ++eqcs_i) {
- eq::EqClassIterator eqc_i = eq::EqClassIterator((*eqcs_i),tm->d_equalityEngine);
- for ( ; !eqc_i.isFinished(); ++eqc_i) {
- checkTerms(*eqc_i, tm, cache);
- }
- TypeNode tn = (*eqcs_i).getType();
- if( tn.isSort() ){
- if( eqc_usort_count.find( tn )==eqc_usort_count.end() ){
- eqc_usort_count[tn] = 1;
- }else{
- eqc_usort_count[tn]++;
- }
- }
- }
- }
-
- Trace("model-builder") << "Collect representatives..." << std::endl;
-
- // Process all terms in the equality engine, store representatives for each EC
- d_constantReps.clear();
- std::map< Node, Node > assertedReps;
- TypeSet typeConstSet, typeRepSet, typeNoRepSet;
- TypeEnumeratorProperties tep;
- if( options::finiteModelFind() ){
- tep.d_fixed_usort_card = true;
- for( std::map< TypeNode, unsigned >::iterator it = eqc_usort_count.begin(); it != eqc_usort_count.end(); ++it ){
- Trace("model-builder") << "Fixed bound (#eqc) for " << it->first << " : " << it->second << std::endl;
- tep.d_fixed_card[it->first] = Integer(it->second);
- }
- typeConstSet.setTypeEnumeratorProperties( &tep );
- }
- // AJR: build ordered list of types that ensures that base types are enumerated first.
- // (I think) this is only strictly necessary for finite model finding + parametric types
- // instantiated with uninterpreted sorts, but is probably a good idea to do in general
- // since it leads to models with smaller term sizes.
- std::vector< TypeNode > type_list;
- eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine);
- for ( ; !eqcs_i.isFinished(); ++eqcs_i) {
-
- // eqc is the equivalence class representative
- Node eqc = (*eqcs_i);
- Trace("model-builder") << "Processing EC: " << eqc << endl;
- Assert(tm->d_equalityEngine->getRepresentative(eqc) == eqc);
- TypeNode eqct = eqc.getType();
- Assert(assertedReps.find(eqc) == assertedReps.end());
- Assert(d_constantReps.find(eqc) == d_constantReps.end());
-
- // Loop through terms in this EC
- Node rep, const_rep;
- eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
- for ( ; !eqc_i.isFinished(); ++eqc_i) {
- Node n = *eqc_i;
- Trace("model-builder") << " Processing Term: " << n << endl;
- // Record as rep if this node was specified as a representative
- if (tm->d_reps.find(n) != tm->d_reps.end()){
- //AJR: I believe this assertion is too strict,
- // e.g. datatypes may assert representative for two constructor terms that are not in the care graph and are merged during collectModelInfo.
- //Assert(rep.isNull());
- rep = tm->d_reps[n];
- Assert(!rep.isNull() );
- Trace("model-builder") << " Rep( " << eqc << " ) = " << rep << std::endl;
- }
- // Record as const_rep if this node is constant
- if (n.isConst()) {
- Assert(const_rep.isNull());
- const_rep = n;
- Trace("model-builder") << " ConstRep( " << eqc << " ) = " << const_rep << std::endl;
- }
- //model-specific processing of the term
- tm->addTerm(n);
- }
-
- // Assign representative for this EC
- if (!const_rep.isNull()) {
- // Theories should not specify a rep if there is already a constant in the EC
- //AJR: I believe this assertion is too strict, eqc with asserted reps may merge with constant eqc
- //Assert(rep.isNull() || rep == const_rep);
- assignConstantRep( tm, eqc, const_rep );
- typeConstSet.add(eqct.getBaseType(), const_rep);
- }
- else if (!rep.isNull()) {
- assertedReps[eqc] = rep;
- typeRepSet.add(eqct.getBaseType(), eqc);
- std::map< TypeNode, bool > visiting;
- addToTypeList(eqct.getBaseType(), type_list, visiting);
- }
- else {
- typeNoRepSet.add(eqct, eqc);
- std::map< TypeNode, bool > visiting;
- addToTypeList(eqct, type_list, visiting);
- }
- }
-
- // Need to ensure that each EC has a constant representative.
-
- Trace("model-builder") << "Processing EC's..." << std::endl;
-
- TypeSet::iterator it;
- vector<TypeNode>::iterator type_it;
- set<Node>::iterator i, i2;
- bool changed, unassignedAssignable, assignOne = false;
- set<TypeNode> evaluableSet;
-
- // Double-fixed-point loop
- // Outer loop handles a special corner case (see code at end of loop for details)
- for (;;) {
-
- // Inner fixed-point loop: we are trying to learn constant values for every EC. Each time through this loop, we process all of the
- // types by type and may learn some new EC values. EC's in one type may depend on EC's in another type, so we need a fixed-point loop
- // to ensure that we learn as many EC values as possible
- do {
- changed = false;
- unassignedAssignable = false;
- evaluableSet.clear();
-
- // Iterate over all types we've seen
- for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it) {
- TypeNode t = *type_it;
- TypeNode tb = t.getBaseType();
- set<Node>* noRepSet = typeNoRepSet.getSet(t);
-
- // 1. Try to evaluate the EC's in this type
- if (noRepSet != NULL && !noRepSet->empty()) {
- Trace("model-builder") << " Eval phase, working on type: " << t << endl;
- bool assignable, evaluable, evaluated;
- d_normalizedCache.clear();
- for (i = noRepSet->begin(); i != noRepSet->end(); ) {
- i2 = i;
- ++i;
- assignable = false;
- evaluable = false;
- evaluated = false;
- Trace("model-builder-debug") << "Look at eqc : " << (*i2) << std::endl;
- eq::EqClassIterator eqc_i = eq::EqClassIterator(*i2, tm->d_equalityEngine);
- for ( ; !eqc_i.isFinished(); ++eqc_i) {
- Node n = *eqc_i;
- Trace("model-builder-debug") << "Look at term : " << n << std::endl;
- if (isAssignable(n)) {
- assignable = true;
- Trace("model-builder-debug") << "...assignable" << std::endl;
- }
- else {
- evaluable = true;
- Trace("model-builder-debug") << "...try to normalize" << std::endl;
- Node normalized = normalize(tm, n, true);
- if (normalized.isConst()) {
- typeConstSet.add(tb, normalized);
- assignConstantRep( tm, *i2, normalized);
- Trace("model-builder") << " Eval: Setting constant rep of " << (*i2) << " to " << normalized << endl;
- changed = true;
- evaluated = true;
- noRepSet->erase(i2);
- break;
- }
- }
- }
- if (!evaluated) {
- if (evaluable) {
- evaluableSet.insert(tb);
- }
- if (assignable) {
- unassignedAssignable = true;
- }
- }
- }
- }
-
- // 2. Normalize any non-const representative terms for this type
- set<Node>* repSet = typeRepSet.getSet(t);
- if (repSet != NULL && !repSet->empty()) {
- Trace("model-builder") << " Normalization phase, working on type: " << t << endl;
- d_normalizedCache.clear();
- for (i = repSet->begin(); i != repSet->end(); ) {
- Assert(assertedReps.find(*i) != assertedReps.end());
- Node rep = assertedReps[*i];
- Node normalized = normalize(tm, rep, false);
- Trace("model-builder") << " Normalizing rep (" << rep << "), normalized to (" << normalized << ")" << endl;
- if (normalized.isConst()) {
- changed = true;
- typeConstSet.add(tb, normalized);
- assignConstantRep( tm, *i, normalized);
- assertedReps.erase(*i);
- i2 = i;
- ++i;
- repSet->erase(i2);
- }
- else {
- if (normalized != rep) {
- assertedReps[*i] = normalized;
- changed = true;
- }
- ++i;
- }
- }
- }
- }
- } while (changed);
-
- if (!unassignedAssignable) {
- break;
- }
-
- // 3. Assign unassigned assignable EC's using type enumeration - assign a value *different* from all other EC's if the type is infinite
- // Assign first value from type enumerator otherwise - for finite types, we rely on polite framework to ensure that EC's that have to be
- // different are different.
-
- // Only make assignments on a type if:
- // 1. there are no terms that share the same base type with un-normalized representatives
- // 2. there are no terms that share teh same base type that are unevaluated evaluable terms
- // Alternatively, if 2 or 3 don't hold but we are in a special deadlock-breaking mode where assignOne is true, go ahead and make one assignment
- changed = false;
- //must iterate over the ordered type list to ensure that we do not enumerate values with subterms
- // having types that we are currently enumerating (when possible)
- // for example, this ensures we enumerate uninterpreted sort U before (List of U) and (Array U U)
- // however, it does not break cyclic type dependencies for mutually recursive datatypes, but this is handled
- // by recording all subterms of enumerated values in TypeSet::addSubTerms.
- for (type_it = type_list.begin(); type_it != type_list.end(); ++type_it) {
- TypeNode t = *type_it;
- // continue if there are no more equivalence classes of this type to assign
- std::set<Node>* noRepSetPtr = typeNoRepSet.getSet( t );
- if( noRepSetPtr==NULL ){
- continue;
- }
- set<Node>& noRepSet = *noRepSetPtr;
- if (noRepSet.empty()) {
- continue;
- }
-
- //get properties of this type
- bool isCorecursive = false;
- if( t.isDatatype() ){
- const Datatype& dt = ((DatatypeType)(t).toType()).getDatatype();
- isCorecursive = dt.isCodatatype() && ( !dt.isFinite( t.toType() ) || dt.isRecursiveSingleton( t.toType() ) );
- }
-#ifdef CVC4_ASSERTIONS
- bool isUSortFiniteRestricted = false;
- if( options::finiteModelFind() ){
- isUSortFiniteRestricted = !t.isSort() && involvesUSort( t );
- }
-#endif
-
- set<Node>* repSet = typeRepSet.getSet(t);
- TypeNode tb = t.getBaseType();
- if (!assignOne) {
- set<Node>* repSet = typeRepSet.getSet(tb);
- if (repSet != NULL && !repSet->empty()) {
- continue;
- }
- if (evaluableSet.find(tb) != evaluableSet.end()) {
- continue;
- }
- }
- Trace("model-builder") << " Assign phase, working on type: " << t << endl;
- bool assignable, evaluable CVC4_UNUSED;
- for (i = noRepSet.begin(); i != noRepSet.end(); ) {
- i2 = i;
- ++i;
- eq::EqClassIterator eqc_i = eq::EqClassIterator(*i2, tm->d_equalityEngine);
- assignable = false;
- evaluable = false;
- for ( ; !eqc_i.isFinished(); ++eqc_i) {
- Node n = *eqc_i;
- if (isAssignable(n)) {
- assignable = true;
- }
- else {
- evaluable = true;
- }
- }
- Trace("model-builder-debug") << " eqc " << *i2 << " is assignable=" << assignable << ", evaluable=" << evaluable << std::endl;
- if (assignable) {
- Assert(!evaluable || assignOne);
- Assert(!t.isBoolean() || (*i2).getKind() == kind::APPLY_UF);
- Node n;
- if (t.getCardinality().isInfinite()) {
- // if (!t.isInterpretedFinite()) {
- bool success;
- do{
- Trace("model-builder-debug") << "Enumerate term of type " << t << std::endl;
- n = typeConstSet.nextTypeEnum(t, true);
- //--- AJR: this code checks whether n is a legal value
- Assert( !n.isNull() );
- success = true;
- Trace("model-builder-debug") << "Check if excluded : " << n << std::endl;
-#ifdef CVC4_ASSERTIONS
- if( isUSortFiniteRestricted ){
- //must not involve uninterpreted constants beyond cardinality bound (which assumed to coincide with #eqc)
- //this is just an assertion now, since TypeEnumeratorProperties should ensure that only legal values are enumerated wrt this constraint.
- std::map< Node, bool > visited;
- success = !isExcludedUSortValue( eqc_usort_count, n, visited );
- if( !success ){
- Trace("model-builder") << "Excluded value for " << t << " : " << n << " due to out of range uninterpreted constant." << std::endl;
- }
- Assert( success );
- }
-#endif
- if( success && isCorecursive ){
- if (repSet != NULL && !repSet->empty()) {
- // in the case of codatatypes, check if it is in the set of values that we cannot assign
- // this will check whether n \not\in V^x_I from page 9 of Reynolds/Blanchette CADE 2015
- success = !isExcludedCdtValue( n, repSet, assertedReps, *i2 );
- if( !success ){
- Trace("model-builder") << "Excluded value : " << n << " due to alpha-equivalent codatatype expression." << std::endl;
- }
- }
- }
- //---
- }while( !success );
- }
- else {
- TypeEnumerator te(t);
- n = *te;
- }
- Assert(!n.isNull());
- assignConstantRep( tm, *i2, n);
- changed = true;
- noRepSet.erase(i2);
- if (assignOne) {
- assignOne = false;
- break;
- }
- }
- }
- }
-
- // Corner case - I'm not sure this can even happen - but it's theoretically possible to have a cyclical dependency
- // in EC assignment/evaluation, e.g. EC1 = {a, b + 1}; EC2 = {b, a - 1}. In this case, neither one will get assigned because we are waiting
- // to be able to evaluate. But we will never be able to evaluate because the variables that need to be assigned are in
- // these same EC's. In this case, repeat the whole fixed-point computation with the difference that the first EC
- // that has both assignable and evaluable expressions will get assigned.
- if (!changed) {
- Assert(!assignOne); // check for infinite loop!
- assignOne = true;
- }
- }
-
-#ifdef CVC4_ASSERTIONS
- // Assert that all representatives have been converted to constants
- for (it = typeRepSet.begin(); it != typeRepSet.end(); ++it) {
- set<Node>& repSet = TypeSet::getSet(it);
- if (!repSet.empty()) {
- Trace("model-builder") << "***Non-empty repSet, size = " << repSet.size() << ", first = " << *(repSet.begin()) << endl;
- Assert(false);
- }
- }
-#endif /* CVC4_ASSERTIONS */
-
- Trace("model-builder") << "Copy representatives to model..." << std::endl;
- tm->d_reps.clear();
- std::map< Node, Node >::iterator itMap;
- for (itMap = d_constantReps.begin(); itMap != d_constantReps.end(); ++itMap) {
- tm->d_reps[itMap->first] = itMap->second;
- tm->d_rep_set.add(itMap->second.getType(), itMap->second);
- }
-
- Trace("model-builder") << "Make sure ECs have reps..." << std::endl;
- // Make sure every EC has a rep
- for (itMap = assertedReps.begin(); itMap != assertedReps.end(); ++itMap ) {
- tm->d_reps[itMap->first] = itMap->second;
- tm->d_rep_set.add(itMap->second.getType(), itMap->second);
- }
- for (it = typeNoRepSet.begin(); it != typeNoRepSet.end(); ++it) {
- set<Node>& noRepSet = TypeSet::getSet(it);
- set<Node>::iterator i;
- for (i = noRepSet.begin(); i != noRepSet.end(); ++i) {
- tm->d_reps[*i] = *i;
- tm->d_rep_set.add((*i).getType(), *i);
- }
- }
-
- //modelBuilder-specific initialization
- if( !processBuildModel( tm ) ){
- return false;
- }else{
- return true;
- }
-}
-
-void TheoryEngineModelBuilder::debugCheckModel(Model* m){
- TheoryModel* tm = (TheoryModel*)m;
-#ifdef CVC4_ASSERTIONS
- Assert(tm->isBuilt());
- eq::EqClassesIterator eqcs_i = eq::EqClassesIterator( tm->d_equalityEngine );
- std::map< Node, Node >::iterator itMap;
- // Check that every term evaluates to its representative in the model
- for (eqcs_i = eq::EqClassesIterator(tm->d_equalityEngine); !eqcs_i.isFinished(); ++eqcs_i) {
- // eqc is the equivalence class representative
- Node eqc = (*eqcs_i);
- // get the representative
- Node rep = tm->getRepresentative( eqc );
- if( !rep.isConst() && eqc.getType().isBoolean() ){
- // if Boolean, it does not necessarily have a constant representative, use get value instead
- rep = tm->getValue(eqc);
- Assert(rep.isConst());
- }
- eq::EqClassIterator eqc_i = eq::EqClassIterator(eqc, tm->d_equalityEngine);
- for ( ; !eqc_i.isFinished(); ++eqc_i) {
- Node n = *eqc_i;
- static int repCheckInstance = 0;
- ++repCheckInstance;
-
- // non-linear mult is not necessarily accurate wrt getValue
- if( n.getKind()!=kind::NONLINEAR_MULT ){
- Debug("check-model::rep-checking")
- << "( " << repCheckInstance <<") "
- << "n: " << n << endl
- << "getValue(n): " << tm->getValue(n) << endl
- << "rep: " << rep << endl;
- Assert(tm->getValue(*eqc_i) == rep, "run with -d check-model::rep-checking for details");
- }
- }
- }
-#endif /* CVC4_ASSERTIONS */
-
- // builder-specific debugging
- debugModel( tm );
-}
-
-Node TheoryEngineModelBuilder::normalize(TheoryModel* m, TNode r, bool evalOnly)
-{
- std::map<Node, Node>::iterator itMap = d_constantReps.find(r);
- if (itMap != d_constantReps.end()) {
- return (*itMap).second;
- }
- NodeMap::iterator it = d_normalizedCache.find(r);
- if (it != d_normalizedCache.end()) {
- return (*it).second;
- }
- Trace("model-builder-debug") << "do normalize on " << r << std::endl;
- Node retNode = r;
- if (r.getNumChildren() > 0) {
- std::vector<Node> children;
- if (r.getMetaKind() == kind::metakind::PARAMETERIZED) {
- children.push_back(r.getOperator());
- }
- bool childrenConst = true;
- for (size_t i=0; i < r.getNumChildren(); ++i) {
- Node ri = r[i];
- bool recurse = true;
- if (!ri.isConst()) {
- if (m->d_equalityEngine->hasTerm(ri)) {
- itMap = d_constantReps.find(m->d_equalityEngine->getRepresentative(ri));
- if (itMap != d_constantReps.end()) {
- ri = (*itMap).second;
- recurse = false;
- }
- else if (!evalOnly) {
- recurse = false;
- }
- }
- if (recurse) {
- ri = normalize(m, ri, evalOnly);
- }
- if (!ri.isConst()) {
- childrenConst = false;
- }
- }
- children.push_back(ri);
- }
- retNode = NodeManager::currentNM()->mkNode( r.getKind(), children );
- if (childrenConst) {
- retNode = Rewriter::rewrite(retNode);
- Assert(retNode.getKind() == kind::APPLY_UF
- || !retNode.getType().isFirstClass()
- || retNode.isConst());
- }
- }
- d_normalizedCache[r] = retNode;
- return retNode;
-}
-
-bool TheoryEngineModelBuilder::preProcessBuildModel(TheoryModel* m) {
- return true;
-}
-
-bool TheoryEngineModelBuilder::processBuildModel(TheoryModel* m){
- assignFunctions(m);
- return true;
-}
-
-void TheoryEngineModelBuilder::assignFunction(TheoryModel* m, Node f) {
- Assert( !options::ufHo() );
- uf::UfModelTree ufmt( f );
- Node default_v;
- for( size_t i=0; i<m->d_uf_terms[f].size(); i++ ){
- Node un = m->d_uf_terms[f][i];
- vector<TNode> children;
- children.push_back(f);
- Trace("model-builder-debug") << " process term : " << un << std::endl;
- for (size_t j = 0; j < un.getNumChildren(); ++j) {
- Node rc = m->getRepresentative(un[j]);
- Trace("model-builder-debug2") << " get rep : " << un[j] << " returned " << rc << std::endl;
- Assert( rc.isConst() );
- children.push_back(rc);
- }
- Node simp = NodeManager::currentNM()->mkNode(un.getKind(), children);
- Node v = m->getRepresentative(un);
- Trace("model-builder") << " Setting (" << simp << ") to (" << v << ")" << endl;
- ufmt.setValue(m, simp, v);
- default_v = v;
- }
- if( default_v.isNull() ){
- //choose default value from model if none exists
- TypeEnumerator te(f.getType().getRangeType());
- default_v = (*te);
- }
- ufmt.setDefaultValue( m, default_v );
- bool condenseFuncValues = options::condenseFunctionValues();
- if(condenseFuncValues) {
- ufmt.simplify();
- }
- std::stringstream ss;
- ss << "_arg_" << f << "_";
- Node val = ufmt.getFunctionValue( ss.str().c_str(), condenseFuncValues );
- m->assignFunctionDefinition( f, val );
- //ufmt.debugPrint( std::cout, m );
-}
-
-void TheoryEngineModelBuilder::assignHoFunction(TheoryModel* m, Node f) {
- Assert( options::ufHo() );
- TypeNode type = f.getType();
- std::vector< TypeNode > argTypes = type.getArgTypes();
- std::vector< Node > args;
- std::vector< TNode > apply_args;
- for( unsigned i=0; i<argTypes.size(); i++ ){
- Node v = NodeManager::currentNM()->mkBoundVar( argTypes[i] );
- args.push_back( v );
- if( i>0 ){
- apply_args.push_back( v );
- }
- }
- //start with the base return value (currently we use the same default value for all functions)
- TypeEnumerator te(type.getRangeType());
- Node curr = (*te);
- std::map< Node, std::vector< Node > >::iterator itht = m->d_ho_uf_terms.find( f );
- if( itht!=m->d_ho_uf_terms.end() ){
- for( size_t i=0; i<itht->second.size(); i++ ){
- Node hn = itht->second[i];
- Trace("model-builder-debug") << " process : " << hn << std::endl;
- Assert( hn.getKind()==kind::HO_APPLY );
- Assert( m->areEqual( hn[0], f ) );
- Node hni = m->getRepresentative(hn[1]);
- Trace("model-builder-debug2") << " get rep : " << hn[0] << " returned " << hni << std::endl;
- Assert( hni.isConst() );
- Assert( hni.getType().isSubtypeOf( args[0].getType() ) );
- hni = Rewriter::rewrite( args[0].eqNode( hni ) );
- Node hnv = m->getRepresentative(hn);
- Trace("model-builder-debug2") << " get rep val : " << hn << " returned " << hnv << std::endl;
- Assert( hnv.isConst() );
- if( !apply_args.empty() ){
- Assert( hnv.getKind()==kind::LAMBDA && hnv[0].getNumChildren()+1==args.size() );
- std::vector< TNode > largs;
- for( unsigned j=0; j<hnv[0].getNumChildren(); j++ ){
- largs.push_back( hnv[0][j] );
- }
- Assert( largs.size()==apply_args.size() );
- hnv = hnv[1].substitute( largs.begin(), largs.end(), apply_args.begin(), apply_args.end() );
- hnv = Rewriter::rewrite( hnv );
- }
- Assert( !TypeNode::leastCommonTypeNode( hnv.getType(), curr.getType() ).isNull() );
- curr = NodeManager::currentNM()->mkNode( kind::ITE, hni, hnv, curr );
- }
- }
- Node val = NodeManager::currentNM()->mkNode( kind::LAMBDA,
- NodeManager::currentNM()->mkNode( kind::BOUND_VAR_LIST, args ), curr );
- m->assignFunctionDefinition( f, val );
-}
-
-// This struct is used to sort terms by the "size" of their type
-// The size of the type is the number of nodes in the type, for example
-// size of Int is 1
-// size of Function( Int, Int ) is 3
-// size of Function( Function( Bool, Int ), Int ) is 5
-struct sortTypeSize {
- // stores the size of the type
- std::map< TypeNode, unsigned > d_type_size;
- // get the size of type tn
- unsigned getTypeSize( TypeNode tn ) {
- std::map< TypeNode, unsigned >::iterator it = d_type_size.find( tn );
- if( it!=d_type_size.end() ){
- return it->second;
- }else{
- unsigned sum = 1;
- for( unsigned i=0; i<tn.getNumChildren(); i++ ){
- sum += getTypeSize( tn[i] );
- }
- d_type_size[tn] = sum;
- return sum;
- }
- }
-public:
- // compares the type size of i and j
- // returns true iff the size of i is less than that of j
- // tiebreaks are determined by node value
- bool operator() (Node i, Node j) {
- int si = getTypeSize( i.getType() );
- int sj = getTypeSize( j.getType() );
- if( si<sj ){
- return true;
- }else if( si==sj ){
- return i<j;
- }else{
- return false;
- }
- }
-};
-
-void TheoryEngineModelBuilder::assignFunctions(TheoryModel* m) {
- Trace("model-builder") << "Assigning function values..." << std::endl;
- std::vector< Node > funcs_to_assign = m->getFunctionsToAssign();
-
- if( options::ufHo() ){
- // sort based on type size if higher-order
- Trace("model-builder") << "Sort functions by type..." << std::endl;
- sortTypeSize sts;
- std::sort( funcs_to_assign.begin(), funcs_to_assign.end(), sts );
- }
-
- if( Trace.isOn("model-builder") ){
- Trace("model-builder") << "...have " << funcs_to_assign.size() << " functions to assign:" << std::endl;
- for( unsigned k=0; k<funcs_to_assign.size(); k++ ){
- Node f = funcs_to_assign[k];
- Trace("model-builder") << " [" << k << "] : " << f << " : " << f.getType() << std::endl;
- }
- }
-
- // construct function values
- for( unsigned k=0; k<funcs_to_assign.size(); k++ ){
- Node f = funcs_to_assign[k];
- Trace("model-builder") << " Function #" << k << " is " << f << std::endl;
- //std::map< Node, std::vector< Node > >::iterator itht = m->d_ho_uf_terms.find( f );
- if( !options::ufHo() ){
- Trace("model-builder") << " Assign function value for " << f << " based on APPLY_UF" << std::endl;
- assignFunction( m, f );
- }else{
- Trace("model-builder") << " Assign function value for " << f << " based on curried HO_APPLY" << std::endl;
- assignHoFunction( m, f );
- }
- }
- Trace("model-builder") << "Finished assigning function values." << std::endl;
-}
-
} /* namespace CVC4::theory */
} /* namespace CVC4 */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback