summaryrefslogtreecommitdiff
path: root/src/theory/booleans/circuit_propagator.cpp
diff options
context:
space:
mode:
authorDejan Jovanović <dejan.jovanovic@gmail.com>2011-07-05 16:21:50 +0000
committerDejan Jovanović <dejan.jovanovic@gmail.com>2011-07-05 16:21:50 +0000
commit7342d1ca87397f3d5beb2c04b819243303e69a7c (patch)
tree9e166f1884275be7d4b33b13b8bcfe9418e61033 /src/theory/booleans/circuit_propagator.cpp
parentaf25c3f8498198dd6dd114c3b4ef39af54611e1e (diff)
updated preprocessing and rewriting input equalities into inequalities for LRA
Diffstat (limited to 'src/theory/booleans/circuit_propagator.cpp')
-rw-r--r--src/theory/booleans/circuit_propagator.cpp619
1 files changed, 315 insertions, 304 deletions
diff --git a/src/theory/booleans/circuit_propagator.cpp b/src/theory/booleans/circuit_propagator.cpp
index e5055c164..fd44ec13b 100644
--- a/src/theory/booleans/circuit_propagator.cpp
+++ b/src/theory/booleans/circuit_propagator.cpp
@@ -19,6 +19,7 @@
#include "theory/booleans/circuit_propagator.h"
#include "util/utility.h"
+#include <stack>
#include <vector>
#include <algorithm>
@@ -28,353 +29,363 @@ namespace CVC4 {
namespace theory {
namespace booleans {
-void CircuitPropagator::propagateBackward(TNode in, bool polarity, vector<TNode>& changed) {
- if(!isPropagatedBackward(in)) {
- Debug("circuit-prop") << push << "propagateBackward(" << polarity << "): " << in << endl;
- setPropagatedBackward(in);
- // backward rules
- switch(Kind k = in.getKind()) {
+void CircuitPropagator::assert(TNode assertion)
+{
+ if (assertion.getKind() == kind::AND) {
+ for (unsigned i = 0; i < assertion.getNumChildren(); ++ i) {
+ assert(assertion[i]);
+ }
+ } else {
+ // Analyze the assertion for back-edges and all that
+ computeBackEdges(assertion);
+ // Assign the given assertion to true
+ assignAndEnqueue(assertion, true);
+ }
+}
+
+void CircuitPropagator::computeBackEdges(TNode node) {
+
+ Debug("circuit-prop") << "CircuitPropagator::computeBackEdges(" << node << ")" << endl;
+
+ // Vector of nodes to visit
+ vector<TNode> toVisit;
+
+ // Start with the top node
+ if (d_seen.find(node) == d_seen.end()) {
+ toVisit.push_back(node);
+ d_seen.insert(node);
+ }
+
+ // Initialize the back-edges for the root, so we don't have a special case
+ d_backEdges[node];
+
+ // Go through the visit list
+ for (unsigned i = 0; i < toVisit.size(); ++ i) {
+ // Node we need to visit
+ TNode current = toVisit[i];
+ Debug("circuit-prop") << "CircuitPropagator::computeBackEdges(): processing " << current << endl;
+ Assert(d_seen.find(current) != d_seen.end());
+
+ // If this not an atom visit all the children and compute the back edges
+ if (Theory::theoryOf(current) == THEORY_BOOL) {
+ for (unsigned child = 0, child_end = current.getNumChildren(); child < child_end; ++ child) {
+ TNode childNode = current[child];
+ // Add the back edge
+ d_backEdges[childNode].push_back(current);
+ // Add to the queue if not seen yet
+ if (d_seen.find(childNode) == d_seen.end()) {
+ toVisit.push_back(childNode);
+ d_seen.insert(childNode);
+ }
+ }
+ }
+ }
+}
+
+void CircuitPropagator::propagateBackward(TNode parent, bool parentAssignment) {
+
+ Debug("circuit-prop") << "CircuitPropagator::propagateBackward(" << parent << ", " << parentAssignment << ")" << endl;
+
+ // backward rules
+ switch(parent.getKind()) {
+ case kind::AND:
+ if (parentAssignment) {
+ // AND = TRUE: forall children c, assign(c = TRUE)
+ for(TNode::iterator i = parent.begin(), i_end = parent.end(); i != i_end; ++i) {
+ assignAndEnqueue(*i, true);
+ }
+ } else {
+ // AND = FALSE: if all children BUT ONE == TRUE, assign(c = FALSE)
+ TNode::iterator holdout = find_if_unique(parent.begin(), parent.end(), not1(IsAssignedTo(*this, true)));
+ if (holdout != parent.end()) {
+ assignAndEnqueue(*holdout, false);
+ }
+ }
+ break;
+ case kind::OR:
+ if (parentAssignment) {
+ // OR = TRUE: if all children BUT ONE == FALSE, assign(c = TRUE)
+ TNode::iterator holdout = find_if_unique(parent.begin(), parent.end(), not1(IsAssignedTo(*this, false)));
+ if (holdout != parent.end()) {
+ assignAndEnqueue(*holdout, true);
+ }
+ } else {
+ // OR = FALSE: forall children c, assign(c = FALSE)
+ for(TNode::iterator i = parent.begin(), i_end = parent.end(); i != i_end; ++i) {
+ assignAndEnqueue(*i, false);
+ }
+ }
+ break;
+ case kind::NOT:
+ // NOT = b: assign(c = !b)
+ assignAndEnqueue(parent[0], !parentAssignment);
+ break;
+ case kind::ITE:
+ if (isAssignedTo(parent[0], true)) {
+ // ITE c x y = v: if c is assigned and TRUE, assign(x = v)
+ assignAndEnqueue(parent[1], parentAssignment);
+ } else if (isAssignedTo(parent[0], false)) {
+ // ITE c x y = v: if c is assigned and FALSE, assign(y = v)
+ assignAndEnqueue(parent[2], parentAssignment);
+ } else if (isAssigned(parent[1]) && isAssigned(parent[2])) {
+ if (getAssignment(parent[1]) == parentAssignment && getAssignment(parent[2]) != parentAssignment) {
+ // ITE c x y = v: if c is unassigned, x and y are assigned, x==v and y!=v, assign(c = TRUE)
+ assignAndEnqueue(parent[0], true);
+ } else if (getAssignment(parent[1]) != parentAssignment && getAssignment(parent[2]) == parentAssignment) {
+ // ITE c x y = v: if c is unassigned, x and y are assigned, x!=v and y==v, assign(c = FALSE)
+ assignAndEnqueue(parent[0], false);
+ }
+ }
+ break;
+ case kind::IFF:
+ if (parentAssignment) {
+ // IFF x y = TRUE: if x [resp y] is assigned, assign(y = x.assignment [resp x = y.assignment])
+ if (isAssigned(parent[0])) {
+ assignAndEnqueue(parent[1], getAssignment(parent[0]));
+ } else if (isAssigned(parent[1])) {
+ assignAndEnqueue(parent[0], getAssignment(parent[1]));
+ }
+ } else {
+ // IFF x y = FALSE: if x [resp y] is assigned, assign(y = !x.assignment [resp x = !y.assignment])
+ if (isAssigned(parent[0])) {
+ assignAndEnqueue(parent[1], !getAssignment(parent[0]));
+ } else if (isAssigned(parent[1])) {
+ assignAndEnqueue(parent[0], !getAssignment(parent[1]));
+ }
+ }
+ break;
+ case kind::IMPLIES:
+ if (parentAssignment) {
+ if (isAssignedTo(parent[0], true)) {
+ // IMPLIES x y = TRUE, and x == TRUE: assign(y = TRUE)
+ assignAndEnqueue(parent[1], true);
+ }
+ if (isAssignedTo(parent[1], false)) {
+ // IMPLIES x y = TRUE, and y == FALSE: assign(x = FALSE)
+ assignAndEnqueue(parent[0], false);
+ }
+ } else {
+ // IMPLIES x y = FALSE: assign(x = TRUE) and assign(y = FALSE)
+ assignAndEnqueue(parent[0], true);
+ assignAndEnqueue(parent[1], false);
+ }
+ break;
+ case kind::XOR:
+ if (parentAssignment) {
+ if (isAssigned(parent[0])) {
+ // XOR x y = TRUE, and x assigned, assign(y = !assignment(x))
+ assignAndEnqueue(parent[1], !getAssignment(parent[0]));
+ } else if (isAssigned(parent[1])) {
+ // XOR x y = TRUE, and y assigned, assign(x = !assignment(y))
+ assignAndEnqueue(parent[0], !getAssignment(parent[1]));
+ }
+ } else {
+ if (isAssigned(parent[0])) {
+ // XOR x y = FALSE, and x assigned, assign(y = assignment(x))
+ assignAndEnqueue(parent[1], getAssignment(parent[0]));
+ } else if (isAssigned(parent[1])) {
+ // XOR x y = FALSE, and y assigned, assign(x = assignment(y))
+ assignAndEnqueue(parent[0], getAssignment(parent[1]));
+ }
+ }
+ break;
+ default:
+ Unhandled();
+ }
+}
+
+
+void CircuitPropagator::propagateForward(TNode child, bool childAssignment) {
+
+ // The assignment we have
+ Debug("circuit-prop") << "CircuitPropagator::propagateForward(" << child << ", " << childAssignment << ")" << endl;
+
+ // Get the back any nodes where this is child
+ const vector<TNode>& parents = d_backEdges.find(child)->second;
+
+ // Go through the parents and see if there is anything to propagate
+ vector<TNode>::const_iterator parent_it = parents.begin();
+ vector<TNode>::const_iterator parent_it_end = parents.end();
+ for(; parent_it != parent_it_end && !d_conflict; ++ parent_it) {
+ // The current parent of the child
+ TNode parent = *parent_it;
+ Assert(parent.hasSubterm(child));
+
+ // Forward rules
+ switch(parent.getKind()) {
case kind::AND:
- if(polarity) {
- // AND = TRUE: forall children c, assign(c = TRUE)
- for(TNode::iterator i = in.begin(), i_end = in.end(); i != i_end; ++i) {
- Debug("circuit-prop") << "bAND1" << endl;
- assign(*i, true, changed);
+ if (childAssignment) {
+ TNode::iterator holdout;
+ holdout = find_if (parent.begin(), parent.end(), not1(IsAssignedTo(*this, true)));
+ if (holdout == parent.end()) { // all children are assigned TRUE
+ // AND ...(x=TRUE)...: if all children now assigned to TRUE, assign(AND = TRUE)
+ assignAndEnqueue(parent, true);
+ } else if (isAssignedTo(parent, false)) {// the AND is FALSE
+ // is the holdout unique ?
+ TNode::iterator other = find_if (holdout + 1, parent.end(), not1(IsAssignedTo(*this, true)));
+ if (other == parent.end()) { // the holdout is unique
+ // AND ...(x=TRUE)...: if all children BUT ONE now assigned to TRUE, and AND == FALSE, assign(last_holdout = FALSE)
+ assignAndEnqueue(*holdout, false);
+ }
}
} else {
- // AND = FALSE: if all children BUT ONE == TRUE, assign(c = FALSE)
- TNode::iterator holdout = find_if_unique(in.begin(), in.end(), not1(IsAssignedTo(*this, true)));
- if(holdout != in.end()) {
- Debug("circuit-prop") << "bAND2" << endl;
- assign(*holdout, false, changed);
- }
+ // AND ...(x=FALSE)...: assign(AND = FALSE)
+ assignAndEnqueue(parent, false);
}
break;
case kind::OR:
- if(polarity) {
- // OR = TRUE: if all children BUT ONE == FALSE, assign(c = TRUE)
- TNode::iterator holdout = find_if_unique(in.begin(), in.end(), not1(IsAssignedTo(*this, false)));
- if(holdout != in.end()) {
- Debug("circuit-prop") << "bOR1" << endl;
- assign(*holdout, true, changed);
- }
+ if (childAssignment) {
+ // OR ...(x=TRUE)...: assign(OR = TRUE)
+ assignAndEnqueue(parent, true);
} else {
- // OR = FALSE: forall children c, assign(c = FALSE)
- for(TNode::iterator i = in.begin(), i_end = in.end(); i != i_end; ++i) {
- Debug("circuit-prop") << "bOR2" << endl;
- assign(*i, false, changed);
+ TNode::iterator holdout;
+ holdout = find_if (parent.begin(), parent.end(), not1(IsAssignedTo(*this, false)));
+ if (holdout == parent.end()) { // all children are assigned FALSE
+ // OR ...(x=FALSE)...: if all children now assigned to FALSE, assign(OR = FALSE)
+ assignAndEnqueue(parent, false);
+ } else if (isAssignedTo(parent, true)) {// the OR is TRUE
+ // is the holdout unique ?
+ TNode::iterator other = find_if (holdout + 1, parent.end(), not1(IsAssignedTo(*this, false)));
+ if (other == parent.end()) { // the holdout is unique
+ // OR ...(x=FALSE)...: if all children BUT ONE now assigned to FALSE, and OR == TRUE, assign(last_holdout = TRUE)
+ assignAndEnqueue(*holdout, true);
+ }
}
}
break;
+
case kind::NOT:
- // NOT = b: assign(c = !b)
- Debug("circuit-prop") << "bNOT" << endl;
- assign(in[0], !polarity, changed);
+ // NOT (x=b): assign(NOT = !b)
+ assignAndEnqueue(parent, !childAssignment);
break;
+
case kind::ITE:
- if(isAssignedTo(in[0], true)) {
- // ITE c x y = v: if c is assigned and TRUE, assign(x = v)
- Debug("circuit-prop") << "bITE1" << endl;
- assign(in[1], polarity, changed);
- } else if(isAssignedTo(in[0], false)) {
- // ITE c x y = v: if c is assigned and FALSE, assign(y = v)
- Debug("circuit-prop") << "bITE2" << endl;
- assign(in[2], polarity, changed);
- } else if(isAssigned(in[1]) && isAssigned(in[2])) {
- if(assignment(in[1]) == polarity && assignment(in[2]) != polarity) {
- // ITE c x y = v: if c is unassigned, x and y are assigned, x==v and y!=v, assign(c = TRUE)
- Debug("circuit-prop") << "bITE3" << endl;
- assign(in[0], true, changed);
- } else if(assignment(in[1]) == !polarity && assignment(in[2]) == polarity) {
- // ITE c x y = v: if c is unassigned, x and y are assigned, x!=v and y==v, assign(c = FALSE)
- Debug("circuit-prop") << "bITE4" << endl;
- assign(in[0], true, changed);
+ if (child == parent[0]) {
+ if (childAssignment) {
+ if (isAssigned(parent[1])) {
+ // ITE (c=TRUE) x y: if x is assigned, assign(ITE = x.assignment)
+ assignAndEnqueue(parent, getAssignment(parent[1]));
+ }
+ } else {
+ if (isAssigned(parent[2])) {
+ // ITE (c=FALSE) x y: if y is assigned, assign(ITE = y.assignment)
+ assignAndEnqueue(parent, getAssignment(parent[2]));
+ }
+ }
+ }
+ if (child == parent[1]) {
+ if (isAssignedTo(parent[0], true)) {
+ // ITE c (x=v) y: if c is assigned and TRUE, assign(ITE = v)
+ assignAndEnqueue(parent, childAssignment);
+ }
+ }
+ if (child == parent[2]) {
+ Assert(child == parent[2]);
+ if (isAssignedTo(parent[0], false)) {
+ // ITE c x (y=v): if c is assigned and FALSE, assign(ITE = v)
+ assignAndEnqueue(parent, childAssignment);
}
}
break;
case kind::IFF:
- if(polarity) {
- // IFF x y = TRUE: if x [resp y] is assigned, assign(y = x.assignment [resp x = y.assignment])
- if(isAssigned(in[0])) {
- assign(in[1], assignment(in[0]), changed);
- Debug("circuit-prop") << "bIFF1" << endl;
- } else if(isAssigned(in[1])) {
- Debug("circuit-prop") << "bIFF2" << endl;
- assign(in[0], assignment(in[1]), changed);
- }
+ if (isAssigned(parent[0]) && isAssigned(parent[1])) {
+ // IFF x y: if x or y is assigned, assign(IFF = (x.assignment <=> y.assignment))
+ assignAndEnqueue(parent, getAssignment(parent[0]) == getAssignment(parent[1]));
} else {
- // IFF x y = FALSE: if x [resp y] is assigned, assign(y = !x.assignment [resp x = !y.assignment])
- if(isAssigned(in[0])) {
- Debug("circuit-prop") << "bIFF3" << endl;
- assign(in[1], !assignment(in[0]), changed);
- } else if(isAssigned(in[1])) {
- Debug("circuit-prop") << "bIFF4" << endl;
- assign(in[0], !assignment(in[1]), changed);
+ if (isAssigned(parent)) {
+ if (child == parent[0]) {
+ if (getAssignment(parent)) {
+ // IFF (x = b) y: if IFF is assigned to TRUE, assign(y = b)
+ assignAndEnqueue(parent[1], childAssignment);
+ } else {
+ // IFF (x = b) y: if IFF is assigned to FALSE, assign(y = !b)
+ assignAndEnqueue(parent[1], !childAssignment);
+ }
+ } else {
+ Assert(child == parent[1]);
+ if (getAssignment(parent)) {
+ // IFF x y = b: if IFF is assigned to TRUE, assign(x = b)
+ assignAndEnqueue(parent[0], childAssignment);
+ } else {
+ // IFF x y = b y: if IFF is assigned to TRUE, assign(x = !b)
+ assignAndEnqueue(parent[0], !childAssignment);
+ }
+ }
}
}
break;
case kind::IMPLIES:
- if(polarity) {
- if(isAssignedTo(in[0], true)) {
- // IMPLIES x y = TRUE, and x == TRUE: assign(y = TRUE)
- Debug("circuit-prop") << "bIMPLIES1" << endl;
- assign(in[1], true, changed);
+ if (isAssigned(parent[0]) && isAssigned(parent[1])) {
+ // IMPLIES (x=v1) (y=v2): assign(IMPLIES = (!v1 || v2))
+ assignAndEnqueue(parent, !getAssignment(parent[0]) || getAssignment(parent[1]));
+ } else {
+ if (child == parent[0] && childAssignment && isAssignedTo(parent, true)) {
+ // IMPLIES (x=TRUE) y [with IMPLIES == TRUE]: assign(y = TRUE)
+ assignAndEnqueue(parent[1], true);
}
- if(isAssignedTo(in[1], false)) {
- // IMPLIES x y = TRUE, and y == FALSE: assign(x = FALSE)
- Debug("circuit-prop") << "bIMPLIES2" << endl;
- assign(in[0], false, changed);
+ if (child == parent[1] && !childAssignment && isAssignedTo(parent, true)) {
+ // IMPLIES x (y=FALSE) [with IMPLIES == TRUE]: assign(x = FALSE)
+ assignAndEnqueue(parent[0], false);
}
- } else {
- // IMPLIES x y = FALSE: assign(x = TRUE) and assign(y = FALSE)
- Debug("circuit-prop") << "bIMPLIES3" << endl;
- assign(in[0], true, changed);
- assign(in[1], false, changed);
+ // Note that IMPLIES == FALSE doesn't need any cases here
+ // because if that assignment has been done, we've already
+ // propagated all the children (in back-propagation).
}
break;
case kind::XOR:
- if(polarity) {
- if(isAssigned(in[0])) {
- // XOR x y = TRUE, and x assigned, assign(y = !assignment(x))
- Debug("circuit-prop") << "bXOR1" << endl;
- assign(in[1], !assignment(in[0]), changed);
- } else if(isAssigned(in[1])) {
- // XOR x y = TRUE, and y assigned, assign(x = !assignment(y))
- Debug("circuit-prop") << "bXOR2" << endl;
- assign(in[0], !assignment(in[1]), changed);
- }
- } else {
- if(isAssigned(in[0])) {
- // XOR x y = FALSE, and x assigned, assign(y = assignment(x))
- Debug("circuit-prop") << "bXOR3" << endl;
- assign(in[1], assignment(in[0]), changed);
- } else if(isAssigned(in[1])) {
- // XOR x y = FALSE, and y assigned, assign(x = assignment(y))
- Debug("circuit-prop") << "bXOR4" << endl;
- assign(in[0], assignment(in[1]), changed);
+ if (isAssigned(parent)) {
+ if (child == parent[0]) {
+ // XOR (x=v) y [with XOR assigned], assign(y = (v ^ XOR)
+ assignAndEnqueue(parent[1], childAssignment != getAssignment(parent));
+ } else {
+ Assert(child == parent[1]);
+ // XOR x (y=v) [with XOR assigned], assign(x = (v ^ XOR))
+ assignAndEnqueue(parent[0], childAssignment != getAssignment(parent));
}
}
- break;
- case kind::CONST_BOOLEAN:
- // nothing to do
+ if (isAssigned(parent[0]) && isAssigned(parent[1])) {
+ assignAndEnqueue(parent, getAssignment(parent[0]) != getAssignment(parent[1]));
+ }
break;
default:
- Unhandled(k);
+ Unhandled();
}
- Debug("circuit-prop") << pop;
}
}
+bool CircuitPropagator::propagate() {
-void CircuitPropagator::propagateForward(TNode child, bool polarity, vector<TNode>& changed) {
- if(!isPropagatedForward(child)) {
- IndentedScope(Debug("circuit-prop"));
- Debug("circuit-prop") << "propagateForward (" << polarity << "): " << child << endl;
- std::hash_map<TNode, std::vector<TNode>, TNodeHashFunction>::const_iterator iter = d_backEdges.find(child);
- if(d_backEdges.find(child) == d_backEdges.end()) {
- Debug("circuit-prop") << "no backedges, must be ROOT?: " << child << endl;
- return;
- }
- const vector<TNode>& uses = (*iter).second;
- setPropagatedForward(child);
- for(vector<TNode>::const_iterator useIter = uses.begin(), useIter_end = uses.end(); useIter != useIter_end; ++useIter) {
- TNode in = *useIter; // this is the outer node
- Debug("circuit-prop") << "considering use: " << in << endl;
- IndentedScope(Debug("circuit-prop"));
- // forward rules
- switch(Kind k = in.getKind()) {
- case kind::AND:
- if(polarity) {
- TNode::iterator holdout;
- holdout = find_if(in.begin(), in.end(), not1(IsAssignedTo(*this, true)));
- if(holdout == in.end()) { // all children are assigned TRUE
- // AND ...(x=TRUE)...: if all children now assigned to TRUE, assign(AND = TRUE)
- Debug("circuit-prop") << "fAND1" << endl;
- assign(in, true, changed);
- } else if(isAssignedTo(in, false)) {// the AND is FALSE
- // is the holdout unique ?
- TNode::iterator other = find_if(holdout, in.end(), not1(IsAssignedTo(*this, true)));
- if(other == in.end()) { // the holdout is unique
- // AND ...(x=TRUE)...: if all children BUT ONE now assigned to TRUE, and AND == FALSE, assign(last_holdout = FALSE)
- Debug("circuit-prop") << "fAND2" << endl;
- assign(*holdout, false, changed);
- }
- }
- } else {
- // AND ...(x=FALSE)...: assign(AND = FALSE)
- Debug("circuit-prop") << "fAND3" << endl;
- assign(in, false, changed);
- }
- break;
- case kind::OR:
- if(polarity) {
- // OR ...(x=TRUE)...: assign(OR = TRUE)
- Debug("circuit-prop") << "fOR1" << endl;
- assign(in, true, changed);
- } else {
- TNode::iterator holdout;
- holdout = find_if(in.begin(), in.end(), not1(IsAssignedTo(*this, false)));
- if(holdout == in.end()) { // all children are assigned FALSE
- // OR ...(x=FALSE)...: if all children now assigned to FALSE, assign(OR = FALSE)
- Debug("circuit-prop") << "fOR2" << endl;
- assign(in, false, changed);
- } else if(isAssignedTo(in, true)) {// the OR is TRUE
- // is the holdout unique ?
- TNode::iterator other = find_if(holdout, in.end(), not1(IsAssignedTo(*this, false)));
- if(other == in.end()) { // the holdout is unique
- // OR ...(x=FALSE)...: if all children BUT ONE now assigned to FALSE, and OR == TRUE, assign(last_holdout = TRUE)
- Debug("circuit-prop") << "fOR3" << endl;
- assign(*holdout, true, changed);
- }
- }
- }
- break;
-
- case kind::NOT:
- // NOT (x=b): assign(NOT = !b)
- Debug("circuit-prop") << "fNOT" << endl;
- assign(in, !polarity, changed);
- break;
- case kind::ITE:
- if(child == in[0]) {
- if(polarity) {
- if(isAssigned(in[1])) {
- // ITE (c=TRUE) x y: if x is assigned, assign(ITE = x.assignment)
- Debug("circuit-prop") << "fITE1" << endl;
- assign(in, assignment(in[1]), changed);
- }
- } else {
- if(isAssigned(in[2])) {
- // ITE (c=FALSE) x y: if y is assigned, assign(ITE = y.assignment)
- Debug("circuit-prop") << "fITE2" << endl;
- assign(in, assignment(in[2]), changed);
- }
- }
- } else if(child == in[1]) {
- if(isAssignedTo(in[0], true)) {
- // ITE c (x=v) y: if c is assigned and TRUE, assign(ITE = v)
- Debug("circuit-prop") << "fITE3" << endl;
- assign(in, assignment(in[1]), changed);
- }
- } else {
- Assert(child == in[2]);
- if(isAssignedTo(in[0], false)) {
- // ITE c x (y=v): if c is assigned and FALSE, assign(ITE = v)
- Debug("circuit-prop") << "fITE4" << endl;
- assign(in, assignment(in[2]), changed);
- }
- }
- break;
- case kind::IFF:
- if(child == in[0]) {
- if(isAssigned(in[1])) {
- // IFF (x=b) y: if y is assigned, assign(IFF = (x.assignment <=> y.assignment))
- Debug("circuit-prop") << "fIFF1" << endl;
- assign(in, assignment(in[0]) == assignment(in[1]), changed);
- } else if(isAssigned(in)) {
- // IFF (x=b) y: if IFF is assigned, assign(y = (b <=> IFF.assignment))
- Debug("circuit-prop") << "fIFF2" << endl;
- assign(in[1], polarity == assignment(in), changed);
- }
- } else {
- Assert(child == in[1]);
- if(isAssigned(in[0])) {
- // IFF x (y=b): if x is assigned, assign(IFF = (x.assignment <=> y.assignment))
- Debug("circuit-prop") << "fIFF3" << endl;
- assign(in, assignment(in[0]) == assignment(in[1]), changed);
- } else if(isAssigned(in)) {
- // IFF x (y=b): if IFF is assigned, assign(x = (b <=> IFF.assignment))
- Debug("circuit-prop") << "fIFF4" << endl;
- assign(in[0], polarity == assignment(in), changed);
- }
- }
- break;
- case kind::IMPLIES:
- if(isAssigned(in[0]) && isAssigned(in[1])) {
- // IMPLIES (x=v1) (y=v2): assign(IMPLIES = (!v1 || v2))
- assign(in, !assignment(in[0]) || assignment(in[1]), changed);
- Debug("circuit-prop") << "fIMPLIES1" << endl;
- } else {
- if(child == in[0] && assignment(in[0]) && isAssignedTo(in, true)) {
- // IMPLIES (x=TRUE) y [with IMPLIES == TRUE]: assign(y = TRUE)
- Debug("circuit-prop") << "fIMPLIES2" << endl;
- assign(in[1], true, changed);
- }
- if(child == in[1] && !assignment(in[1]) && isAssignedTo(in, true)) {
- // IMPLIES x (y=FALSE) [with IMPLIES == TRUE]: assign(x = FALSE)
- Debug("circuit-prop") << "fIMPLIES3" << endl;
- assign(in[0], false, changed);
- }
- // Note that IMPLIES == FALSE doesn't need any cases here
- // because if that assignment has been done, we've already
- // propagated all the children (in back-propagation).
- }
- break;
- case kind::XOR:
- if(isAssigned(in)) {
- if(child == in[0]) {
- // XOR (x=v) y [with XOR assigned], assign(y = (v ^ XOR)
- Debug("circuit-prop") << "fXOR1" << endl;
- assign(in[1], polarity ^ assignment(in), changed);
- } else {
- Assert(child == in[1]);
- // XOR x (y=v) [with XOR assigned], assign(x = (v ^ XOR))
- Debug("circuit-prop") << "fXOR2" << endl;
- assign(in[0], polarity ^ assignment(in), changed);
- }
- }
- if( (child == in[0] && isAssigned(in[1])) ||
- (child == in[1] && isAssigned(in[0])) ) {
- // XOR (x=v) y [with y assigned], assign(XOR = (v ^ assignment(y))
- // XOR x (y=v) [with x assigned], assign(XOR = (assignment(x) ^ v)
- Debug("circuit-prop") << "fXOR3" << endl;
- assign(in, assignment(in[0]) ^ assignment(in[1]), changed);
- }
- break;
- case kind::CONST_BOOLEAN:
- InternalError("Forward-propagating a constant Boolean value makes no sense");
- default:
- Unhandled(k);
- }
- }
- }
-}
+ Debug("circuit-prop") << "CircuitPropagator::propagate()" << std::endl;
+ for(unsigned i = 0; i < d_propagationQueue.size() && !d_conflict; ++ i) {
-bool CircuitPropagator::propagate(TNode in, bool polarity, vector<Node>& newFacts) {
- try {
- vector<TNode> changed;
+ // The current node we are propagating
+ TNode current = d_propagationQueue[i];
+ Debug("circuit-prop") << "CircuitPropagator::propagate(): processing " << current << std::endl;
+ bool assignment = getAssignment(current);
+ Debug("circuit-prop") << "CircuitPropagator::propagate(): assigned to " << (assignment ? "true" : "false") << std::endl;
- Assert(kindToTheoryId(in.getKind()) == THEORY_BOOL);
+ // Is this an atom
+ bool atom = Theory::theoryOf(current) != THEORY_BOOL || current.getMetaKind() == kind::metakind::VARIABLE;
- Debug("circuit-prop") << "B: " << (polarity ? "" : "~") << in << endl;
- propagateBackward(in, polarity, changed);
- Debug("circuit-prop") << "F: " << (polarity ? "" : "~") << in << endl;
- propagateForward(in, polarity, changed);
-
- while(!changed.empty()) {
- vector<TNode> worklist;
- worklist.swap(changed);
+ // If an atom, add to the list for simplification
+ if (atom) {
+ Debug("circuit-prop") << "CircuitPropagator::propagate(): adding to learned: " << (assignment ? (Node)current : current.notNode()) << std::endl;
+ d_learnedLiterals.push_back(assignment ? (Node)current : current.notNode());
+ }
- for(vector<TNode>::iterator i = worklist.begin(), i_end = worklist.end(); i != i_end; ++i) {
- if(kindToTheoryId((*i).getKind()) != THEORY_BOOL) {
- if(assignment(*i)) {
- newFacts.push_back(*i);
- } else {
- newFacts.push_back((*i).notNode());
- }
- } else {
- Debug("circuit-prop") << "B: " << (isAssignedTo(*i, true) ? "" : "~") << *i << endl;
- propagateBackward(*i, assignment(*i), changed);
- Debug("circuit-prop") << "F: " << (isAssignedTo(*i, true) ? "" : "~") << *i << endl;
- propagateForward(*i, assignment(*i), changed);
- }
- }
+ // Propagate this value to the children (if not an atom or a constant)
+ if (d_backwardPropagation && !atom && !current.isConst()) {
+ propagateBackward(current, assignment);
+ }
+ // Propagate this value to the parents
+ if (d_forwardPropagation) {
+ propagateForward(current, assignment);
}
- } catch(ConflictException& ce) {
- return true;
}
- return false;
+
+ // No conflict
+ return d_conflict;
}
}/* CVC4::theory::booleans namespace */
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback