summaryrefslogtreecommitdiff
path: root/src/theory/arith/operator_elim.cpp
diff options
context:
space:
mode:
authorAndrew Reynolds <andrew.j.reynolds@gmail.com>2020-07-01 08:46:30 -0500
committerGitHub <noreply@github.com>2020-07-01 08:46:30 -0500
commit12af221551c34a4bffc0282e7b3fa8dea661190c (patch)
tree40a384f74915e2c009bb2a66bd0295e62edcfc2e /src/theory/arith/operator_elim.cpp
parentc62980dab74b3db795961f90a4c49c463437a8eb (diff)
parent04154c08c1af81bb751376ae9379c071a95c5a3f (diff)
Merge branch 'master' into lfscTestslfscTests
Diffstat (limited to 'src/theory/arith/operator_elim.cpp')
-rw-r--r--src/theory/arith/operator_elim.cpp508
1 files changed, 508 insertions, 0 deletions
diff --git a/src/theory/arith/operator_elim.cpp b/src/theory/arith/operator_elim.cpp
new file mode 100644
index 000000000..593fbd584
--- /dev/null
+++ b/src/theory/arith/operator_elim.cpp
@@ -0,0 +1,508 @@
+/********************* */
+/*! \file operator_elim.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Tim King, Andrew Reynolds, Morgan Deters
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Implementation of operator elimination for arithmetic
+ **/
+
+#include "theory/arith/operator_elim.h"
+
+#include "expr/skolem_manager.h"
+#include "options/arith_options.h"
+#include "smt/logic_exception.h"
+#include "theory/arith/arith_utilities.h"
+#include "theory/rewriter.h"
+#include "theory/theory.h"
+
+using namespace CVC4::kind;
+
+namespace CVC4 {
+namespace theory {
+namespace arith {
+
+OperatorElim::OperatorElim(const LogicInfo& info) : d_info(info) {}
+
+void OperatorElim::checkNonLinearLogic(Node term)
+{
+ if (d_info.isLinear())
+ {
+ Trace("arith-logic") << "ERROR: Non-linear term in linear logic: " << term
+ << std::endl;
+ std::stringstream serr;
+ serr << "A non-linear fact was asserted to arithmetic in a linear logic."
+ << std::endl;
+ serr << "The fact in question: " << term << std::endl;
+ throw LogicException(serr.str());
+ }
+}
+
+Node OperatorElim::eliminateOperatorsRec(Node n)
+{
+ Trace("arith-elim") << "Begin elim: " << n << std::endl;
+ NodeManager* nm = NodeManager::currentNM();
+ std::unordered_map<Node, Node, TNodeHashFunction> visited;
+ std::unordered_map<Node, Node, TNodeHashFunction>::iterator it;
+ std::vector<Node> visit;
+ Node cur;
+ visit.push_back(n);
+ do
+ {
+ cur = visit.back();
+ visit.pop_back();
+ it = visited.find(cur);
+ if (Theory::theoryOf(cur) != THEORY_ARITH)
+ {
+ visited[cur] = cur;
+ }
+ else if (it == visited.end())
+ {
+ visited[cur] = Node::null();
+ visit.push_back(cur);
+ for (const Node& cn : cur)
+ {
+ visit.push_back(cn);
+ }
+ }
+ else if (it->second.isNull())
+ {
+ Node ret = cur;
+ bool childChanged = false;
+ std::vector<Node> children;
+ if (cur.getMetaKind() == metakind::PARAMETERIZED)
+ {
+ children.push_back(cur.getOperator());
+ }
+ for (const Node& cn : cur)
+ {
+ it = visited.find(cn);
+ Assert(it != visited.end());
+ Assert(!it->second.isNull());
+ childChanged = childChanged || cn != it->second;
+ children.push_back(it->second);
+ }
+ if (childChanged)
+ {
+ ret = nm->mkNode(cur.getKind(), children);
+ }
+ Node retElim = eliminateOperators(ret);
+ if (retElim != ret)
+ {
+ // recursively eliminate operators in result, since some eliminations
+ // are defined in terms of other non-standard operators.
+ ret = eliminateOperatorsRec(retElim);
+ }
+ visited[cur] = ret;
+ }
+ } while (!visit.empty());
+ Assert(visited.find(n) != visited.end());
+ Assert(!visited.find(n)->second.isNull());
+ return visited[n];
+}
+
+Node OperatorElim::eliminateOperators(Node node)
+{
+ NodeManager* nm = NodeManager::currentNM();
+ SkolemManager* sm = nm->getSkolemManager();
+
+ Kind k = node.getKind();
+ switch (k)
+ {
+ case TANGENT:
+ case COSECANT:
+ case SECANT:
+ case COTANGENT:
+ {
+ // these are eliminated by rewriting
+ return Rewriter::rewrite(node);
+ break;
+ }
+ case TO_INTEGER:
+ case IS_INTEGER:
+ {
+ Node toIntSkolem;
+ std::map<Node, Node>::const_iterator it = d_to_int_skolem.find(node[0]);
+ if (it == d_to_int_skolem.end())
+ {
+ // node[0] - 1 < toIntSkolem <= node[0]
+ // -1 < toIntSkolem - node[0] <= 0
+ // 0 <= node[0] - toIntSkolem < 1
+ Node v = nm->mkBoundVar(nm->integerType());
+ Node one = mkRationalNode(1);
+ Node zero = mkRationalNode(0);
+ Node diff = nm->mkNode(MINUS, node[0], v);
+ Node lem = mkInRange(diff, zero, one);
+ toIntSkolem = sm->mkSkolem(
+ v, lem, "toInt", "a conversion of a Real term to its Integer part");
+ toIntSkolem = SkolemManager::getWitnessForm(toIntSkolem);
+ d_to_int_skolem[node[0]] = toIntSkolem;
+ }
+ else
+ {
+ toIntSkolem = (*it).second;
+ }
+ if (k == IS_INTEGER)
+ {
+ return nm->mkNode(EQUAL, node[0], toIntSkolem);
+ }
+ Assert(k == TO_INTEGER);
+ return toIntSkolem;
+ }
+
+ case INTS_DIVISION_TOTAL:
+ case INTS_MODULUS_TOTAL:
+ {
+ Node den = Rewriter::rewrite(node[1]);
+ Node num = Rewriter::rewrite(node[0]);
+ Node intVar;
+ Node rw = nm->mkNode(k, num, den);
+ std::map<Node, Node>::const_iterator it = d_int_div_skolem.find(rw);
+ if (it == d_int_div_skolem.end())
+ {
+ Node v = nm->mkBoundVar(nm->integerType());
+ Node lem;
+ Node leqNum = nm->mkNode(LEQ, nm->mkNode(MULT, den, v), num);
+ if (den.isConst())
+ {
+ const Rational& rat = den.getConst<Rational>();
+ if (num.isConst() || rat == 0)
+ {
+ // just rewrite
+ return Rewriter::rewrite(node);
+ }
+ if (rat > 0)
+ {
+ lem = nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(MULT,
+ den,
+ nm->mkNode(PLUS, v, nm->mkConst(Rational(1))))));
+ }
+ else
+ {
+ lem = nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(
+ MULT,
+ den,
+ nm->mkNode(PLUS, v, nm->mkConst(Rational(-1))))));
+ }
+ }
+ else
+ {
+ checkNonLinearLogic(node);
+ lem = nm->mkNode(
+ AND,
+ nm->mkNode(
+ IMPLIES,
+ nm->mkNode(GT, den, nm->mkConst(Rational(0))),
+ nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(
+ MULT,
+ den,
+ nm->mkNode(PLUS, v, nm->mkConst(Rational(1))))))),
+ nm->mkNode(
+ IMPLIES,
+ nm->mkNode(LT, den, nm->mkConst(Rational(0))),
+ nm->mkNode(
+ AND,
+ leqNum,
+ nm->mkNode(
+ LT,
+ num,
+ nm->mkNode(
+ MULT,
+ den,
+ nm->mkNode(
+ PLUS, v, nm->mkConst(Rational(-1))))))));
+ }
+ intVar = sm->mkSkolem(
+ v, lem, "linearIntDiv", "the result of an intdiv-by-k term");
+ intVar = SkolemManager::getWitnessForm(intVar);
+ d_int_div_skolem[rw] = intVar;
+ }
+ else
+ {
+ intVar = (*it).second;
+ }
+ if (k == INTS_MODULUS_TOTAL)
+ {
+ Node nn = nm->mkNode(MINUS, num, nm->mkNode(MULT, den, intVar));
+ return nn;
+ }
+ else
+ {
+ return intVar;
+ }
+ break;
+ }
+ case DIVISION_TOTAL:
+ {
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ if (den.isConst())
+ {
+ // No need to eliminate here, can eliminate via rewriting later.
+ // Moreover, rewriting may change the type of this node from real to
+ // int, which impacts certain issues with subtyping.
+ return node;
+ }
+ checkNonLinearLogic(node);
+ Node var;
+ Node rw = nm->mkNode(k, num, den);
+ std::map<Node, Node>::const_iterator it = d_div_skolem.find(rw);
+ if (it == d_div_skolem.end())
+ {
+ Node v = nm->mkBoundVar(nm->realType());
+ Node lem = nm->mkNode(IMPLIES,
+ den.eqNode(nm->mkConst(Rational(0))).negate(),
+ nm->mkNode(MULT, den, v).eqNode(num));
+ var = sm->mkSkolem(
+ v, lem, "nonlinearDiv", "the result of a non-linear div term");
+ var = SkolemManager::getWitnessForm(var);
+ d_div_skolem[rw] = var;
+ }
+ else
+ {
+ var = (*it).second;
+ }
+ return var;
+ break;
+ }
+ case DIVISION:
+ {
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ Node ret = nm->mkNode(DIVISION_TOTAL, num, den);
+ if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
+ {
+ checkNonLinearLogic(node);
+ Node divByZeroNum = getArithSkolemApp(num, ArithSkolemId::DIV_BY_ZERO);
+ Node denEq0 = nm->mkNode(EQUAL, den, nm->mkConst(Rational(0)));
+ ret = nm->mkNode(ITE, denEq0, divByZeroNum, ret);
+ }
+ return ret;
+ break;
+ }
+
+ case INTS_DIVISION:
+ {
+ // partial function: integer div
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ Node ret = nm->mkNode(INTS_DIVISION_TOTAL, num, den);
+ if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
+ {
+ checkNonLinearLogic(node);
+ Node intDivByZeroNum =
+ getArithSkolemApp(num, ArithSkolemId::INT_DIV_BY_ZERO);
+ Node denEq0 = nm->mkNode(EQUAL, den, nm->mkConst(Rational(0)));
+ ret = nm->mkNode(ITE, denEq0, intDivByZeroNum, ret);
+ }
+ return ret;
+ break;
+ }
+
+ case INTS_MODULUS:
+ {
+ // partial function: mod
+ Node num = Rewriter::rewrite(node[0]);
+ Node den = Rewriter::rewrite(node[1]);
+ Node ret = nm->mkNode(INTS_MODULUS_TOTAL, num, den);
+ if (!den.isConst() || den.getConst<Rational>().sgn() == 0)
+ {
+ checkNonLinearLogic(node);
+ Node modZeroNum = getArithSkolemApp(num, ArithSkolemId::MOD_BY_ZERO);
+ Node denEq0 = nm->mkNode(EQUAL, den, nm->mkConst(Rational(0)));
+ ret = nm->mkNode(ITE, denEq0, modZeroNum, ret);
+ }
+ return ret;
+ break;
+ }
+
+ case ABS:
+ {
+ return nm->mkNode(ITE,
+ nm->mkNode(LT, node[0], nm->mkConst(Rational(0))),
+ nm->mkNode(UMINUS, node[0]),
+ node[0]);
+ break;
+ }
+ case SQRT:
+ case ARCSINE:
+ case ARCCOSINE:
+ case ARCTANGENT:
+ case ARCCOSECANT:
+ case ARCSECANT:
+ case ARCCOTANGENT:
+ {
+ checkNonLinearLogic(node);
+ // eliminate inverse functions here
+ std::map<Node, Node>::const_iterator it =
+ d_nlin_inverse_skolem.find(node);
+ if (it == d_nlin_inverse_skolem.end())
+ {
+ Node var = nm->mkBoundVar(nm->realType());
+ Node lem;
+ if (k == SQRT)
+ {
+ Node skolemApp = getArithSkolemApp(node[0], ArithSkolemId::SQRT);
+ Node uf = skolemApp.eqNode(var);
+ Node nonNeg =
+ nm->mkNode(AND, nm->mkNode(MULT, var, var).eqNode(node[0]), uf);
+
+ // sqrt(x) reduces to:
+ // witness y. ite(x >= 0.0, y * y = x ^ y = Uf(x), y = Uf(x))
+ //
+ // Uf(x) makes sure that the reduction still behaves like a function,
+ // otherwise the reduction of (x = 1) ^ (sqrt(x) != sqrt(1)) would be
+ // satisfiable. On the original formula, this would require that we
+ // simultaneously interpret sqrt(1) as 1 and -1, which is not a valid
+ // model.
+ lem = nm->mkNode(ITE,
+ nm->mkNode(GEQ, node[0], nm->mkConst(Rational(0))),
+ nonNeg,
+ uf);
+ }
+ else
+ {
+ Node pi = mkPi();
+
+ // range of the skolem
+ Node rlem;
+ if (k == ARCSINE || k == ARCTANGENT || k == ARCCOSECANT)
+ {
+ Node half = nm->mkConst(Rational(1) / Rational(2));
+ Node pi2 = nm->mkNode(MULT, half, pi);
+ Node npi2 = nm->mkNode(MULT, nm->mkConst(Rational(-1)), pi2);
+ // -pi/2 < var <= pi/2
+ rlem = nm->mkNode(
+ AND, nm->mkNode(LT, npi2, var), nm->mkNode(LEQ, var, pi2));
+ }
+ else
+ {
+ // 0 <= var < pi
+ rlem = nm->mkNode(AND,
+ nm->mkNode(LEQ, nm->mkConst(Rational(0)), var),
+ nm->mkNode(LT, var, pi));
+ }
+
+ Kind rk = k == ARCSINE
+ ? SINE
+ : (k == ARCCOSINE
+ ? COSINE
+ : (k == ARCTANGENT
+ ? TANGENT
+ : (k == ARCCOSECANT
+ ? COSECANT
+ : (k == ARCSECANT ? SECANT
+ : COTANGENT))));
+ Node invTerm = nm->mkNode(rk, var);
+ lem = nm->mkNode(AND, rlem, invTerm.eqNode(node[0]));
+ }
+ Assert(!lem.isNull());
+ Node ret = sm->mkSkolem(
+ var,
+ lem,
+ "tfk",
+ "Skolem to eliminate a non-standard transcendental function");
+ ret = SkolemManager::getWitnessForm(ret);
+ d_nlin_inverse_skolem[node] = ret;
+ return ret;
+ }
+ return (*it).second;
+ break;
+ }
+
+ default: break;
+ }
+ return node;
+}
+
+Node OperatorElim::getArithSkolem(ArithSkolemId asi)
+{
+ std::map<ArithSkolemId, Node>::iterator it = d_arith_skolem.find(asi);
+ if (it == d_arith_skolem.end())
+ {
+ NodeManager* nm = NodeManager::currentNM();
+
+ TypeNode tn;
+ std::string name;
+ std::string desc;
+ switch (asi)
+ {
+ case ArithSkolemId::DIV_BY_ZERO:
+ tn = nm->realType();
+ name = std::string("divByZero");
+ desc = std::string("partial real division");
+ break;
+ case ArithSkolemId::INT_DIV_BY_ZERO:
+ tn = nm->integerType();
+ name = std::string("intDivByZero");
+ desc = std::string("partial int division");
+ break;
+ case ArithSkolemId::MOD_BY_ZERO:
+ tn = nm->integerType();
+ name = std::string("modZero");
+ desc = std::string("partial modulus");
+ break;
+ case ArithSkolemId::SQRT:
+ tn = nm->realType();
+ name = std::string("sqrtUf");
+ desc = std::string("partial sqrt");
+ break;
+ default: Unhandled();
+ }
+
+ Node skolem;
+ if (options::arithNoPartialFun())
+ {
+ // partial function: division
+ skolem = nm->mkSkolem(name, tn, desc, NodeManager::SKOLEM_EXACT_NAME);
+ }
+ else
+ {
+ // partial function: division
+ skolem = nm->mkSkolem(name,
+ nm->mkFunctionType(tn, tn),
+ desc,
+ NodeManager::SKOLEM_EXACT_NAME);
+ }
+ d_arith_skolem[asi] = skolem;
+ return skolem;
+ }
+ return it->second;
+}
+
+Node OperatorElim::getArithSkolemApp(Node n, ArithSkolemId asi)
+{
+ Node skolem = getArithSkolem(asi);
+ if (!options::arithNoPartialFun())
+ {
+ skolem = NodeManager::currentNM()->mkNode(APPLY_UF, skolem, n);
+ }
+ return skolem;
+}
+
+} // namespace arith
+} // namespace theory
+} // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback