summaryrefslogtreecommitdiff
path: root/src/theory/arith/nl/nl_model.cpp
diff options
context:
space:
mode:
authorAndrew Reynolds <andrew.j.reynolds@gmail.com>2020-06-01 14:31:48 -0500
committerGitHub <noreply@github.com>2020-06-01 14:31:48 -0500
commit4ac66d3aee2a0571c169e4ce2d6049ea311462ce (patch)
tree27b16c3b6973dd9da6c54cd0dea2a89a16badfa6 /src/theory/arith/nl/nl_model.cpp
parenta6c8c9a293eca7cd753368d7f23f9978deb2b2d5 (diff)
Move non-linear files to src/theory/arith/nl (#4548)
Also makes CVC4::theory::arith::nl namespace. This includes some formatting changes.
Diffstat (limited to 'src/theory/arith/nl/nl_model.cpp')
-rw-r--r--src/theory/arith/nl/nl_model.cpp1349
1 files changed, 1349 insertions, 0 deletions
diff --git a/src/theory/arith/nl/nl_model.cpp b/src/theory/arith/nl/nl_model.cpp
new file mode 100644
index 000000000..d5df96bd8
--- /dev/null
+++ b/src/theory/arith/nl/nl_model.cpp
@@ -0,0 +1,1349 @@
+/********************* */
+/*! \file nl_model.cpp
+ ** \verbatim
+ ** Top contributors (to current version):
+ ** Andrew Reynolds
+ ** This file is part of the CVC4 project.
+ ** Copyright (c) 2009-2019 by the authors listed in the file AUTHORS
+ ** in the top-level source directory) and their institutional affiliations.
+ ** All rights reserved. See the file COPYING in the top-level source
+ ** directory for licensing information.\endverbatim
+ **
+ ** \brief Model object for the non-linear extension class
+ **/
+
+#include "theory/arith/nl/nl_model.h"
+
+#include "expr/node_algorithm.h"
+#include "options/arith_options.h"
+#include "theory/arith/arith_msum.h"
+#include "theory/arith/arith_utilities.h"
+#include "theory/rewriter.h"
+
+using namespace CVC4::kind;
+
+namespace CVC4 {
+namespace theory {
+namespace arith {
+namespace nl {
+
+NlModel::NlModel(context::Context* c) : d_used_approx(false)
+{
+ d_true = NodeManager::currentNM()->mkConst(true);
+ d_false = NodeManager::currentNM()->mkConst(false);
+ d_zero = NodeManager::currentNM()->mkConst(Rational(0));
+ d_one = NodeManager::currentNM()->mkConst(Rational(1));
+ d_two = NodeManager::currentNM()->mkConst(Rational(2));
+}
+
+NlModel::~NlModel() {}
+
+void NlModel::reset(TheoryModel* m, std::map<Node, Node>& arithModel)
+{
+ d_model = m;
+ d_mv[0].clear();
+ d_mv[1].clear();
+ d_arithVal.clear();
+ // process arithModel
+ std::map<Node, Node>::iterator it;
+ for (const std::pair<const Node, Node>& m2 : arithModel)
+ {
+ d_arithVal[m2.first] = m2.second;
+ }
+}
+
+void NlModel::resetCheck()
+{
+ d_used_approx = false;
+ d_check_model_solved.clear();
+ d_check_model_bounds.clear();
+ d_check_model_vars.clear();
+ d_check_model_subs.clear();
+}
+
+Node NlModel::computeConcreteModelValue(Node n)
+{
+ return computeModelValue(n, true);
+}
+
+Node NlModel::computeAbstractModelValue(Node n)
+{
+ return computeModelValue(n, false);
+}
+
+Node NlModel::computeModelValue(Node n, bool isConcrete)
+{
+ unsigned index = isConcrete ? 0 : 1;
+ std::map<Node, Node>::iterator it = d_mv[index].find(n);
+ if (it != d_mv[index].end())
+ {
+ return it->second;
+ }
+ Trace("nl-ext-mv-debug") << "computeModelValue " << n << ", index=" << index
+ << std::endl;
+ Node ret;
+ Kind nk = n.getKind();
+ if (n.isConst())
+ {
+ ret = n;
+ }
+ else if (!isConcrete && hasTerm(n))
+ {
+ // use model value for abstraction
+ ret = getRepresentative(n);
+ }
+ else if (n.getNumChildren() == 0)
+ {
+ // we are interested in the exact value of PI, which cannot be computed.
+ // hence, we return PI itself when asked for the concrete value.
+ if (nk == PI)
+ {
+ ret = n;
+ }
+ else
+ {
+ ret = getValueInternal(n);
+ }
+ }
+ else
+ {
+ // otherwise, compute true value
+ TheoryId ctid = theory::kindToTheoryId(nk);
+ if (ctid != THEORY_ARITH && ctid != THEORY_BOOL && ctid != THEORY_BUILTIN)
+ {
+ // we directly look up terms not belonging to arithmetic
+ ret = getValueInternal(n);
+ }
+ else
+ {
+ std::vector<Node> children;
+ if (n.getMetaKind() == metakind::PARAMETERIZED)
+ {
+ children.push_back(n.getOperator());
+ }
+ for (unsigned i = 0, nchild = n.getNumChildren(); i < nchild; i++)
+ {
+ Node mc = computeModelValue(n[i], isConcrete);
+ children.push_back(mc);
+ }
+ ret = NodeManager::currentNM()->mkNode(nk, children);
+ ret = Rewriter::rewrite(ret);
+ }
+ }
+ Trace("nl-ext-mv-debug") << "computed " << (index == 0 ? "M" : "M_A") << "["
+ << n << "] = " << ret << std::endl;
+ d_mv[index][n] = ret;
+ return ret;
+}
+
+bool NlModel::hasTerm(Node n) const
+{
+ return d_arithVal.find(n) != d_arithVal.end();
+}
+
+Node NlModel::getRepresentative(Node n) const
+{
+ if (n.isConst())
+ {
+ return n;
+ }
+ std::map<Node, Node>::const_iterator it = d_arithVal.find(n);
+ if (it != d_arithVal.end())
+ {
+ AlwaysAssert(it->second.isConst());
+ return it->second;
+ }
+ return d_model->getRepresentative(n);
+}
+
+Node NlModel::getValueInternal(Node n) const
+{
+ if (n.isConst())
+ {
+ return n;
+ }
+ std::map<Node, Node>::const_iterator it = d_arithVal.find(n);
+ if (it != d_arithVal.end())
+ {
+ AlwaysAssert(it->second.isConst());
+ return it->second;
+ }
+ // It is unconstrained in the model, return 0.
+ return d_zero;
+}
+
+int NlModel::compare(Node i, Node j, bool isConcrete, bool isAbsolute)
+{
+ Node ci = computeModelValue(i, isConcrete);
+ Node cj = computeModelValue(j, isConcrete);
+ if (ci.isConst())
+ {
+ if (cj.isConst())
+ {
+ return compareValue(ci, cj, isAbsolute);
+ }
+ return 1;
+ }
+ return cj.isConst() ? -1 : 0;
+}
+
+int NlModel::compareValue(Node i, Node j, bool isAbsolute) const
+{
+ Assert(i.isConst() && j.isConst());
+ int ret;
+ if (i == j)
+ {
+ ret = 0;
+ }
+ else if (!isAbsolute)
+ {
+ ret = i.getConst<Rational>() < j.getConst<Rational>() ? 1 : -1;
+ }
+ else
+ {
+ ret = (i.getConst<Rational>().abs() == j.getConst<Rational>().abs()
+ ? 0
+ : (i.getConst<Rational>().abs() < j.getConst<Rational>().abs()
+ ? 1
+ : -1));
+ }
+ return ret;
+}
+
+bool NlModel::checkModel(const std::vector<Node>& assertions,
+ const std::vector<Node>& false_asserts,
+ unsigned d,
+ std::vector<Node>& lemmas,
+ std::vector<Node>& gs)
+{
+ Trace("nl-ext-cm-debug") << " solve for equalities..." << std::endl;
+ for (const Node& atom : false_asserts)
+ {
+ // see if it corresponds to a univariate polynomial equation of degree two
+ if (atom.getKind() == EQUAL)
+ {
+ if (!solveEqualitySimple(atom, d, lemmas))
+ {
+ // no chance we will satisfy this equality
+ Trace("nl-ext-cm") << "...check-model : failed to solve equality : "
+ << atom << std::endl;
+ }
+ }
+ }
+
+ // all remaining variables are constrained to their exact model values
+ Trace("nl-ext-cm-debug") << " set exact bounds for remaining variables..."
+ << std::endl;
+ std::unordered_set<TNode, TNodeHashFunction> visited;
+ std::vector<TNode> visit;
+ TNode cur;
+ for (const Node& a : assertions)
+ {
+ visit.push_back(a);
+ do
+ {
+ cur = visit.back();
+ visit.pop_back();
+ if (visited.find(cur) == visited.end())
+ {
+ visited.insert(cur);
+ if (cur.getType().isReal() && !cur.isConst())
+ {
+ Kind k = cur.getKind();
+ if (k != MULT && k != PLUS && k != NONLINEAR_MULT
+ && !isTranscendentalKind(k))
+ {
+ // if we have not set an approximate bound for it
+ if (!hasCheckModelAssignment(cur))
+ {
+ // set its exact model value in the substitution
+ Node curv = computeConcreteModelValue(cur);
+ Trace("nl-ext-cm")
+ << "check-model-bound : exact : " << cur << " = ";
+ printRationalApprox("nl-ext-cm", curv);
+ Trace("nl-ext-cm") << std::endl;
+ bool ret = addCheckModelSubstitution(cur, curv);
+ AlwaysAssert(ret);
+ }
+ }
+ }
+ for (const Node& cn : cur)
+ {
+ visit.push_back(cn);
+ }
+ }
+ } while (!visit.empty());
+ }
+
+ Trace("nl-ext-cm-debug") << " check assertions..." << std::endl;
+ std::vector<Node> check_assertions;
+ for (const Node& a : assertions)
+ {
+ // don't have to check tautological literals
+ if (d_tautology.find(a) != d_tautology.end())
+ {
+ continue;
+ }
+ if (d_check_model_solved.find(a) == d_check_model_solved.end())
+ {
+ Node av = a;
+ // apply the substitution to a
+ if (!d_check_model_vars.empty())
+ {
+ av = arithSubstitute(av, d_check_model_vars, d_check_model_subs);
+ av = Rewriter::rewrite(av);
+ }
+ // simple check literal
+ if (!simpleCheckModelLit(av))
+ {
+ Trace("nl-ext-cm") << "...check-model : assertion failed : " << a
+ << std::endl;
+ check_assertions.push_back(av);
+ Trace("nl-ext-cm-debug")
+ << "...check-model : failed assertion, value : " << av << std::endl;
+ }
+ }
+ }
+
+ if (!check_assertions.empty())
+ {
+ Trace("nl-ext-cm") << "...simple check failed." << std::endl;
+ // TODO (#1450) check model for general case
+ return false;
+ }
+ Trace("nl-ext-cm") << "...simple check succeeded!" << std::endl;
+
+ // must assert and re-check if produce models is true
+ if (options::produceModels())
+ {
+ NodeManager* nm = NodeManager::currentNM();
+ // model guard whose semantics is "the model we constructed holds"
+ Node mg = nm->mkSkolem("model", nm->booleanType());
+ gs.push_back(mg);
+ // assert the constructed model as assertions
+ for (const std::pair<const Node, std::pair<Node, Node>> cb :
+ d_check_model_bounds)
+ {
+ Node l = cb.second.first;
+ Node u = cb.second.second;
+ Node v = cb.first;
+ Node pred = nm->mkNode(AND, nm->mkNode(GEQ, v, l), nm->mkNode(GEQ, u, v));
+ pred = nm->mkNode(OR, mg.negate(), pred);
+ lemmas.push_back(pred);
+ }
+ }
+ return true;
+}
+
+bool NlModel::addCheckModelSubstitution(TNode v, TNode s)
+{
+ // should not substitute the same variable twice
+ Trace("nl-ext-model") << "* check model substitution : " << v << " -> " << s
+ << std::endl;
+ // should not set exact bound more than once
+ if (std::find(d_check_model_vars.begin(), d_check_model_vars.end(), v)
+ != d_check_model_vars.end())
+ {
+ Trace("nl-ext-model") << "...ERROR: already has value." << std::endl;
+ // this should never happen since substitutions should be applied eagerly
+ Assert(false);
+ return false;
+ }
+ // if we previously had an approximate bound, the exact bound should be in its
+ // range
+ std::map<Node, std::pair<Node, Node>>::iterator itb =
+ d_check_model_bounds.find(v);
+ if (itb != d_check_model_bounds.end())
+ {
+ if (s.getConst<Rational>() >= itb->second.first.getConst<Rational>()
+ || s.getConst<Rational>() <= itb->second.second.getConst<Rational>())
+ {
+ Trace("nl-ext-model")
+ << "...ERROR: already has bound which is out of range." << std::endl;
+ return false;
+ }
+ }
+ std::vector<Node> varsTmp;
+ varsTmp.push_back(v);
+ std::vector<Node> subsTmp;
+ subsTmp.push_back(s);
+ for (unsigned i = 0, size = d_check_model_subs.size(); i < size; i++)
+ {
+ Node ms = d_check_model_subs[i];
+ Node mss = arithSubstitute(ms, varsTmp, subsTmp);
+ if (mss != ms)
+ {
+ mss = Rewriter::rewrite(mss);
+ }
+ d_check_model_subs[i] = mss;
+ }
+ d_check_model_vars.push_back(v);
+ d_check_model_subs.push_back(s);
+ return true;
+}
+
+bool NlModel::addCheckModelBound(TNode v, TNode l, TNode u)
+{
+ Trace("nl-ext-model") << "* check model bound : " << v << " -> [" << l << " "
+ << u << "]" << std::endl;
+ if (l == u)
+ {
+ // bound is exact, can add as substitution
+ return addCheckModelSubstitution(v, l);
+ }
+ // should not set a bound for a value that is exact
+ if (std::find(d_check_model_vars.begin(), d_check_model_vars.end(), v)
+ != d_check_model_vars.end())
+ {
+ Trace("nl-ext-model")
+ << "...ERROR: setting bound for variable that already has exact value."
+ << std::endl;
+ Assert(false);
+ return false;
+ }
+ Assert(l.isConst());
+ Assert(u.isConst());
+ Assert(l.getConst<Rational>() <= u.getConst<Rational>());
+ d_check_model_bounds[v] = std::pair<Node, Node>(l, u);
+ if (Trace.isOn("nl-ext-cm"))
+ {
+ Trace("nl-ext-cm") << "check-model-bound : approximate : ";
+ printRationalApprox("nl-ext-cm", l);
+ Trace("nl-ext-cm") << " <= " << v << " <= ";
+ printRationalApprox("nl-ext-cm", u);
+ Trace("nl-ext-cm") << std::endl;
+ }
+ return true;
+}
+
+bool NlModel::hasCheckModelAssignment(Node v) const
+{
+ if (d_check_model_bounds.find(v) != d_check_model_bounds.end())
+ {
+ return true;
+ }
+ return std::find(d_check_model_vars.begin(), d_check_model_vars.end(), v)
+ != d_check_model_vars.end();
+}
+
+void NlModel::setUsedApproximate() { d_used_approx = true; }
+
+bool NlModel::usedApproximate() const { return d_used_approx; }
+
+void NlModel::addTautology(Node n)
+{
+ // ensure rewritten
+ n = Rewriter::rewrite(n);
+ std::unordered_set<TNode, TNodeHashFunction> visited;
+ std::vector<TNode> visit;
+ TNode cur;
+ visit.push_back(n);
+ do
+ {
+ cur = visit.back();
+ visit.pop_back();
+ if (visited.find(cur) == visited.end())
+ {
+ visited.insert(cur);
+ if (cur.getKind() == AND)
+ {
+ // children of AND are also implied
+ for (const Node& cn : cur)
+ {
+ visit.push_back(cn);
+ }
+ }
+ else
+ {
+ // is this an arithmetic literal?
+ Node atom = cur.getKind() == NOT ? cur[0] : cur;
+ if ((atom.getKind() == EQUAL && atom[0].getType().isReal())
+ || atom.getKind() == LEQ)
+ {
+ // Add to tautological literals if it does not contain
+ // non-linear multiplication. We cannot consider literals
+ // with non-linear multiplication to be tautological since this
+ // model object is responsible for checking whether they hold.
+ // (TODO, cvc4-projects #113: revisit this).
+ if (!expr::hasSubtermKind(NONLINEAR_MULT, atom))
+ {
+ Trace("nl-taut") << "Tautological literal: " << atom << std::endl;
+ d_tautology.insert(cur);
+ }
+ }
+ }
+ }
+ } while (!visit.empty());
+}
+
+bool NlModel::solveEqualitySimple(Node eq,
+ unsigned d,
+ std::vector<Node>& lemmas)
+{
+ Node seq = eq;
+ if (!d_check_model_vars.empty())
+ {
+ seq = arithSubstitute(eq, d_check_model_vars, d_check_model_subs);
+ seq = Rewriter::rewrite(seq);
+ if (seq.isConst())
+ {
+ if (seq.getConst<bool>())
+ {
+ d_check_model_solved[eq] = Node::null();
+ return true;
+ }
+ return false;
+ }
+ }
+ Trace("nl-ext-cms") << "simple solve equality " << seq << "..." << std::endl;
+ Assert(seq.getKind() == EQUAL);
+ std::map<Node, Node> msum;
+ if (!ArithMSum::getMonomialSumLit(seq, msum))
+ {
+ Trace("nl-ext-cms") << "...fail, could not determine monomial sum."
+ << std::endl;
+ return false;
+ }
+ bool is_valid = true;
+ // the variable we will solve a quadratic equation for
+ Node var;
+ Node a = d_zero;
+ Node b = d_zero;
+ Node c = d_zero;
+ NodeManager* nm = NodeManager::currentNM();
+ // the list of variables that occur as a monomial in msum, and whose value
+ // is so far unconstrained in the model.
+ std::unordered_set<Node, NodeHashFunction> unc_vars;
+ // the list of variables that occur as a factor in a monomial, and whose
+ // value is so far unconstrained in the model.
+ std::unordered_set<Node, NodeHashFunction> unc_vars_factor;
+ for (std::pair<const Node, Node>& m : msum)
+ {
+ Node v = m.first;
+ Node coeff = m.second.isNull() ? d_one : m.second;
+ if (v.isNull())
+ {
+ c = coeff;
+ }
+ else if (v.getKind() == NONLINEAR_MULT)
+ {
+ if (v.getNumChildren() == 2 && v[0].isVar() && v[0] == v[1]
+ && (var.isNull() || var == v[0]))
+ {
+ // may solve quadratic
+ a = coeff;
+ var = v[0];
+ }
+ else
+ {
+ is_valid = false;
+ Trace("nl-ext-cms-debug")
+ << "...invalid due to non-linear monomial " << v << std::endl;
+ // may wish to set an exact bound for a factor and repeat
+ for (const Node& vc : v)
+ {
+ unc_vars_factor.insert(vc);
+ }
+ }
+ }
+ else if (!v.isVar() || (!var.isNull() && var != v))
+ {
+ Trace("nl-ext-cms-debug")
+ << "...invalid due to factor " << v << std::endl;
+ // cannot solve multivariate
+ if (is_valid)
+ {
+ is_valid = false;
+ // if b is non-zero, then var is also an unconstrained variable
+ if (b != d_zero)
+ {
+ unc_vars.insert(var);
+ unc_vars_factor.insert(var);
+ }
+ }
+ // if v is unconstrained, we may turn this equality into a substitution
+ unc_vars.insert(v);
+ unc_vars_factor.insert(v);
+ }
+ else
+ {
+ // set the variable to solve for
+ b = coeff;
+ var = v;
+ }
+ }
+ if (!is_valid)
+ {
+ // see if we can solve for a variable?
+ for (const Node& uv : unc_vars)
+ {
+ Trace("nl-ext-cm-debug") << "check subs var : " << uv << std::endl;
+ // cannot already have a bound
+ if (uv.isVar() && !hasCheckModelAssignment(uv))
+ {
+ Node slv;
+ Node veqc;
+ if (ArithMSum::isolate(uv, msum, veqc, slv, EQUAL) != 0)
+ {
+ Assert(!slv.isNull());
+ // Currently do not support substitution-with-coefficients.
+ // We also ensure types are correct here, which avoids substituting
+ // a term of non-integer type for a variable of integer type.
+ if (veqc.isNull() && !expr::hasSubterm(slv, uv)
+ && slv.getType().isSubtypeOf(uv.getType()))
+ {
+ Trace("nl-ext-cm")
+ << "check-model-subs : " << uv << " -> " << slv << std::endl;
+ bool ret = addCheckModelSubstitution(uv, slv);
+ if (ret)
+ {
+ Trace("nl-ext-cms") << "...success, model substitution " << uv
+ << " -> " << slv << std::endl;
+ d_check_model_solved[eq] = uv;
+ }
+ return ret;
+ }
+ }
+ }
+ }
+ // see if we can assign a variable to a constant
+ for (const Node& uvf : unc_vars_factor)
+ {
+ Trace("nl-ext-cm-debug") << "check set var : " << uvf << std::endl;
+ // cannot already have a bound
+ if (uvf.isVar() && !hasCheckModelAssignment(uvf))
+ {
+ Node uvfv = computeConcreteModelValue(uvf);
+ Trace("nl-ext-cm") << "check-model-bound : exact : " << uvf << " = ";
+ printRationalApprox("nl-ext-cm", uvfv);
+ Trace("nl-ext-cm") << std::endl;
+ bool ret = addCheckModelSubstitution(uvf, uvfv);
+ // recurse
+ return ret ? solveEqualitySimple(eq, d, lemmas) : false;
+ }
+ }
+ Trace("nl-ext-cms") << "...fail due to constrained invalid terms."
+ << std::endl;
+ return false;
+ }
+ else if (var.isNull() || var.getType().isInteger())
+ {
+ // cannot solve quadratic equations for integer variables
+ Trace("nl-ext-cms") << "...fail due to variable to solve for." << std::endl;
+ return false;
+ }
+
+ // we are linear, it is simple
+ if (a == d_zero)
+ {
+ if (b == d_zero)
+ {
+ Trace("nl-ext-cms") << "...fail due to zero a/b." << std::endl;
+ Assert(false);
+ return false;
+ }
+ Node val = nm->mkConst(-c.getConst<Rational>() / b.getConst<Rational>());
+ Trace("nl-ext-cm") << "check-model-bound : exact : " << var << " = ";
+ printRationalApprox("nl-ext-cm", val);
+ Trace("nl-ext-cm") << std::endl;
+ bool ret = addCheckModelSubstitution(var, val);
+ if (ret)
+ {
+ Trace("nl-ext-cms") << "...success, solved linear." << std::endl;
+ d_check_model_solved[eq] = var;
+ }
+ return ret;
+ }
+ Trace("nl-ext-quad") << "Solve quadratic : " << seq << std::endl;
+ Trace("nl-ext-quad") << " a : " << a << std::endl;
+ Trace("nl-ext-quad") << " b : " << b << std::endl;
+ Trace("nl-ext-quad") << " c : " << c << std::endl;
+ Node two_a = nm->mkNode(MULT, d_two, a);
+ two_a = Rewriter::rewrite(two_a);
+ Node sqrt_val = nm->mkNode(
+ MINUS, nm->mkNode(MULT, b, b), nm->mkNode(MULT, d_two, two_a, c));
+ sqrt_val = Rewriter::rewrite(sqrt_val);
+ Trace("nl-ext-quad") << "Will approximate sqrt " << sqrt_val << std::endl;
+ Assert(sqrt_val.isConst());
+ // if it is negative, then we are in conflict
+ if (sqrt_val.getConst<Rational>().sgn() == -1)
+ {
+ Node conf = seq.negate();
+ Trace("nl-ext-lemma") << "NlModel::Lemma : quadratic no root : " << conf
+ << std::endl;
+ lemmas.push_back(conf);
+ Trace("nl-ext-cms") << "...fail due to negative discriminant." << std::endl;
+ return false;
+ }
+ if (hasCheckModelAssignment(var))
+ {
+ Trace("nl-ext-cms") << "...fail due to bounds on variable to solve for."
+ << std::endl;
+ // two quadratic equations for same variable, give up
+ return false;
+ }
+ // approximate the square root of sqrt_val
+ Node l, u;
+ if (!getApproximateSqrt(sqrt_val, l, u, 15 + d))
+ {
+ Trace("nl-ext-cms") << "...fail, could not approximate sqrt." << std::endl;
+ return false;
+ }
+ d_used_approx = true;
+ Trace("nl-ext-quad") << "...got " << l << " <= sqrt(" << sqrt_val
+ << ") <= " << u << std::endl;
+ Node negb = nm->mkConst(-b.getConst<Rational>());
+ Node coeffa = nm->mkConst(Rational(1) / two_a.getConst<Rational>());
+ // two possible bound regions
+ Node bounds[2][2];
+ Node diff_bound[2];
+ Node m_var = computeConcreteModelValue(var);
+ Assert(m_var.isConst());
+ for (unsigned r = 0; r < 2; r++)
+ {
+ for (unsigned b2 = 0; b2 < 2; b2++)
+ {
+ Node val = b2 == 0 ? l : u;
+ // (-b +- approx_sqrt( b^2 - 4ac ))/2a
+ Node approx = nm->mkNode(
+ MULT, coeffa, nm->mkNode(r == 0 ? MINUS : PLUS, negb, val));
+ approx = Rewriter::rewrite(approx);
+ bounds[r][b2] = approx;
+ Assert(approx.isConst());
+ }
+ if (bounds[r][0].getConst<Rational>() > bounds[r][1].getConst<Rational>())
+ {
+ // ensure bound is (lower, upper)
+ Node tmp = bounds[r][0];
+ bounds[r][0] = bounds[r][1];
+ bounds[r][1] = tmp;
+ }
+ Node diff =
+ nm->mkNode(MINUS,
+ m_var,
+ nm->mkNode(MULT,
+ nm->mkConst(Rational(1) / Rational(2)),
+ nm->mkNode(PLUS, bounds[r][0], bounds[r][1])));
+ Trace("nl-ext-cm-debug") << "Bound option #" << r << " : ";
+ printRationalApprox("nl-ext-cm-debug", bounds[r][0]);
+ Trace("nl-ext-cm-debug") << "...";
+ printRationalApprox("nl-ext-cm-debug", bounds[r][1]);
+ Trace("nl-ext-cm-debug") << std::endl;
+ diff = Rewriter::rewrite(diff);
+ Assert(diff.isConst());
+ diff = nm->mkConst(diff.getConst<Rational>().abs());
+ diff_bound[r] = diff;
+ Trace("nl-ext-cm-debug") << "...diff from model value (";
+ printRationalApprox("nl-ext-cm-debug", m_var);
+ Trace("nl-ext-cm-debug") << ") is ";
+ printRationalApprox("nl-ext-cm-debug", diff_bound[r]);
+ Trace("nl-ext-cm-debug") << std::endl;
+ }
+ // take the one that var is closer to in the model
+ Node cmp = nm->mkNode(GEQ, diff_bound[0], diff_bound[1]);
+ cmp = Rewriter::rewrite(cmp);
+ Assert(cmp.isConst());
+ unsigned r_use_index = cmp == d_true ? 1 : 0;
+ Trace("nl-ext-cm") << "check-model-bound : approximate (sqrt) : ";
+ printRationalApprox("nl-ext-cm", bounds[r_use_index][0]);
+ Trace("nl-ext-cm") << " <= " << var << " <= ";
+ printRationalApprox("nl-ext-cm", bounds[r_use_index][1]);
+ Trace("nl-ext-cm") << std::endl;
+ bool ret =
+ addCheckModelBound(var, bounds[r_use_index][0], bounds[r_use_index][1]);
+ if (ret)
+ {
+ d_check_model_solved[eq] = var;
+ Trace("nl-ext-cms") << "...success, solved quadratic." << std::endl;
+ }
+ return ret;
+}
+
+bool NlModel::simpleCheckModelLit(Node lit)
+{
+ Trace("nl-ext-cms") << "*** Simple check-model lit for " << lit << "..."
+ << std::endl;
+ if (lit.isConst())
+ {
+ Trace("nl-ext-cms") << " return constant." << std::endl;
+ return lit.getConst<bool>();
+ }
+ NodeManager* nm = NodeManager::currentNM();
+ bool pol = lit.getKind() != kind::NOT;
+ Node atom = lit.getKind() == kind::NOT ? lit[0] : lit;
+
+ if (atom.getKind() == EQUAL)
+ {
+ // x = a is ( x >= a ^ x <= a )
+ for (unsigned i = 0; i < 2; i++)
+ {
+ Node lit2 = nm->mkNode(GEQ, atom[i], atom[1 - i]);
+ if (!pol)
+ {
+ lit2 = lit2.negate();
+ }
+ lit2 = Rewriter::rewrite(lit2);
+ bool success = simpleCheckModelLit(lit2);
+ if (success != pol)
+ {
+ // false != true -> one conjunct of equality is false, we fail
+ // true != false -> one disjunct of disequality is true, we succeed
+ return success;
+ }
+ }
+ // both checks passed and polarity is true, or both checks failed and
+ // polarity is false
+ return pol;
+ }
+ else if (atom.getKind() != GEQ)
+ {
+ Trace("nl-ext-cms") << " failed due to unknown literal." << std::endl;
+ return false;
+ }
+ // get the monomial sum
+ std::map<Node, Node> msum;
+ if (!ArithMSum::getMonomialSumLit(atom, msum))
+ {
+ Trace("nl-ext-cms") << " failed due to get msum." << std::endl;
+ return false;
+ }
+ // simple interval analysis
+ if (simpleCheckModelMsum(msum, pol))
+ {
+ return true;
+ }
+ // can also try reasoning about univariate quadratic equations
+ Trace("nl-ext-cms-debug")
+ << "* Try univariate quadratic analysis..." << std::endl;
+ std::vector<Node> vs_invalid;
+ std::unordered_set<Node, NodeHashFunction> vs;
+ std::map<Node, Node> v_a;
+ std::map<Node, Node> v_b;
+ // get coefficients...
+ for (std::pair<const Node, Node>& m : msum)
+ {
+ Node v = m.first;
+ if (!v.isNull())
+ {
+ if (v.isVar())
+ {
+ v_b[v] = m.second.isNull() ? d_one : m.second;
+ vs.insert(v);
+ }
+ else if (v.getKind() == NONLINEAR_MULT && v.getNumChildren() == 2
+ && v[0] == v[1] && v[0].isVar())
+ {
+ v_a[v[0]] = m.second.isNull() ? d_one : m.second;
+ vs.insert(v[0]);
+ }
+ else
+ {
+ vs_invalid.push_back(v);
+ }
+ }
+ }
+ // solve the valid variables...
+ Node invalid_vsum = vs_invalid.empty() ? d_zero
+ : (vs_invalid.size() == 1
+ ? vs_invalid[0]
+ : nm->mkNode(PLUS, vs_invalid));
+ // substitution to try
+ std::vector<Node> qvars;
+ std::vector<Node> qsubs;
+ for (const Node& v : vs)
+ {
+ // is it a valid variable?
+ std::map<Node, std::pair<Node, Node>>::iterator bit =
+ d_check_model_bounds.find(v);
+ if (!expr::hasSubterm(invalid_vsum, v) && bit != d_check_model_bounds.end())
+ {
+ std::map<Node, Node>::iterator it = v_a.find(v);
+ if (it != v_a.end())
+ {
+ Node a = it->second;
+ Assert(a.isConst());
+ int asgn = a.getConst<Rational>().sgn();
+ Assert(asgn != 0);
+ Node t = nm->mkNode(MULT, a, v, v);
+ Node b = d_zero;
+ it = v_b.find(v);
+ if (it != v_b.end())
+ {
+ b = it->second;
+ t = nm->mkNode(PLUS, t, nm->mkNode(MULT, b, v));
+ }
+ t = Rewriter::rewrite(t);
+ Trace("nl-ext-cms-debug") << "Trying to find min/max for quadratic "
+ << t << "..." << std::endl;
+ Trace("nl-ext-cms-debug") << " a = " << a << std::endl;
+ Trace("nl-ext-cms-debug") << " b = " << b << std::endl;
+ // find maximal/minimal value on the interval
+ Node apex = nm->mkNode(
+ DIVISION, nm->mkNode(UMINUS, b), nm->mkNode(MULT, d_two, a));
+ apex = Rewriter::rewrite(apex);
+ Assert(apex.isConst());
+ // for lower, upper, whether we are greater than the apex
+ bool cmp[2];
+ Node boundn[2];
+ for (unsigned r = 0; r < 2; r++)
+ {
+ boundn[r] = r == 0 ? bit->second.first : bit->second.second;
+ Node cmpn = nm->mkNode(GT, boundn[r], apex);
+ cmpn = Rewriter::rewrite(cmpn);
+ Assert(cmpn.isConst());
+ cmp[r] = cmpn.getConst<bool>();
+ }
+ Trace("nl-ext-cms-debug") << " apex " << apex << std::endl;
+ Trace("nl-ext-cms-debug")
+ << " lower " << boundn[0] << ", cmp: " << cmp[0] << std::endl;
+ Trace("nl-ext-cms-debug")
+ << " upper " << boundn[1] << ", cmp: " << cmp[1] << std::endl;
+ Assert(boundn[0].getConst<Rational>()
+ <= boundn[1].getConst<Rational>());
+ Node s;
+ qvars.push_back(v);
+ if (cmp[0] != cmp[1])
+ {
+ Assert(!cmp[0] && cmp[1]);
+ // does the sign match the bound?
+ if ((asgn == 1) == pol)
+ {
+ // the apex is the max/min value
+ s = apex;
+ Trace("nl-ext-cms-debug") << " ...set to apex." << std::endl;
+ }
+ else
+ {
+ // it is one of the endpoints, plug in and compare
+ Node tcmpn[2];
+ for (unsigned r = 0; r < 2; r++)
+ {
+ qsubs.push_back(boundn[r]);
+ Node ts = arithSubstitute(t, qvars, qsubs);
+ tcmpn[r] = Rewriter::rewrite(ts);
+ qsubs.pop_back();
+ }
+ Node tcmp = nm->mkNode(LT, tcmpn[0], tcmpn[1]);
+ Trace("nl-ext-cms-debug")
+ << " ...both sides of apex, compare " << tcmp << std::endl;
+ tcmp = Rewriter::rewrite(tcmp);
+ Assert(tcmp.isConst());
+ unsigned bindex_use = (tcmp.getConst<bool>() == pol) ? 1 : 0;
+ Trace("nl-ext-cms-debug")
+ << " ...set to " << (bindex_use == 1 ? "upper" : "lower")
+ << std::endl;
+ s = boundn[bindex_use];
+ }
+ }
+ else
+ {
+ // both to one side of the apex
+ // we figure out which bound to use (lower or upper) based on
+ // three factors:
+ // (1) whether a's sign is positive,
+ // (2) whether we are greater than the apex of the parabola,
+ // (3) the polarity of the constraint, i.e. >= or <=.
+ // there are 8 cases of these factors, which we test here.
+ unsigned bindex_use = (((asgn == 1) == cmp[0]) == pol) ? 0 : 1;
+ Trace("nl-ext-cms-debug")
+ << " ...set to " << (bindex_use == 1 ? "upper" : "lower")
+ << std::endl;
+ s = boundn[bindex_use];
+ }
+ Assert(!s.isNull());
+ qsubs.push_back(s);
+ Trace("nl-ext-cms") << "* set bound based on quadratic : " << v
+ << " -> " << s << std::endl;
+ }
+ }
+ }
+ if (!qvars.empty())
+ {
+ Assert(qvars.size() == qsubs.size());
+ Node slit = arithSubstitute(lit, qvars, qsubs);
+ slit = Rewriter::rewrite(slit);
+ return simpleCheckModelLit(slit);
+ }
+ return false;
+}
+
+bool NlModel::simpleCheckModelMsum(const std::map<Node, Node>& msum, bool pol)
+{
+ Trace("nl-ext-cms-debug") << "* Try simple interval analysis..." << std::endl;
+ NodeManager* nm = NodeManager::currentNM();
+ // map from transcendental functions to whether they were set to lower
+ // bound
+ bool simpleSuccess = true;
+ std::map<Node, bool> set_bound;
+ std::vector<Node> sum_bound;
+ for (const std::pair<const Node, Node>& m : msum)
+ {
+ Node v = m.first;
+ if (v.isNull())
+ {
+ sum_bound.push_back(m.second.isNull() ? d_one : m.second);
+ }
+ else
+ {
+ Trace("nl-ext-cms-debug") << "- monomial : " << v << std::endl;
+ // --- whether we should set a lower bound for this monomial
+ bool set_lower =
+ (m.second.isNull() || m.second.getConst<Rational>().sgn() == 1)
+ == pol;
+ Trace("nl-ext-cms-debug")
+ << "set bound to " << (set_lower ? "lower" : "upper") << std::endl;
+
+ // --- Collect variables and factors in v
+ std::vector<Node> vars;
+ std::vector<unsigned> factors;
+ if (v.getKind() == NONLINEAR_MULT)
+ {
+ unsigned last_start = 0;
+ for (unsigned i = 0, nchildren = v.getNumChildren(); i < nchildren; i++)
+ {
+ // are we at the end?
+ if (i + 1 == nchildren || v[i + 1] != v[i])
+ {
+ unsigned vfact = 1 + (i - last_start);
+ last_start = (i + 1);
+ vars.push_back(v[i]);
+ factors.push_back(vfact);
+ }
+ }
+ }
+ else
+ {
+ vars.push_back(v);
+ factors.push_back(1);
+ }
+
+ // --- Get the lower and upper bounds and sign information.
+ // Whether we have an (odd) number of negative factors in vars, apart
+ // from the variable at choose_index.
+ bool has_neg_factor = false;
+ int choose_index = -1;
+ std::vector<Node> ls;
+ std::vector<Node> us;
+ // the relevant sign information for variables with odd exponents:
+ // 1: both signs of the interval of this variable are positive,
+ // -1: both signs of the interval of this variable are negative.
+ std::vector<int> signs;
+ Trace("nl-ext-cms-debug") << "get sign information..." << std::endl;
+ for (unsigned i = 0, size = vars.size(); i < size; i++)
+ {
+ Node vc = vars[i];
+ unsigned vcfact = factors[i];
+ if (Trace.isOn("nl-ext-cms-debug"))
+ {
+ Trace("nl-ext-cms-debug") << "-- " << vc;
+ if (vcfact > 1)
+ {
+ Trace("nl-ext-cms-debug") << "^" << vcfact;
+ }
+ Trace("nl-ext-cms-debug") << " ";
+ }
+ std::map<Node, std::pair<Node, Node>>::iterator bit =
+ d_check_model_bounds.find(vc);
+ // if there is a model bound for this term
+ if (bit != d_check_model_bounds.end())
+ {
+ Node l = bit->second.first;
+ Node u = bit->second.second;
+ ls.push_back(l);
+ us.push_back(u);
+ int vsign = 0;
+ if (vcfact % 2 == 1)
+ {
+ vsign = 1;
+ int lsgn = l.getConst<Rational>().sgn();
+ int usgn = u.getConst<Rational>().sgn();
+ Trace("nl-ext-cms-debug")
+ << "bound_sign(" << lsgn << "," << usgn << ") ";
+ if (lsgn == -1)
+ {
+ if (usgn < 1)
+ {
+ // must have a negative factor
+ has_neg_factor = !has_neg_factor;
+ vsign = -1;
+ }
+ else if (choose_index == -1)
+ {
+ // set the choose index to this
+ choose_index = i;
+ vsign = 0;
+ }
+ else
+ {
+ // ambiguous, can't determine the bound
+ Trace("nl-ext-cms")
+ << " failed due to ambiguious monomial." << std::endl;
+ return false;
+ }
+ }
+ }
+ Trace("nl-ext-cms-debug") << " -> " << vsign << std::endl;
+ signs.push_back(vsign);
+ }
+ else
+ {
+ Trace("nl-ext-cms-debug") << std::endl;
+ Trace("nl-ext-cms")
+ << " failed due to unknown bound for " << vc << std::endl;
+ // should either assign a model bound or eliminate the variable
+ // via substitution
+ Assert(false);
+ return false;
+ }
+ }
+ // whether we will try to minimize/maximize (-1/1) the absolute value
+ int setAbs = (set_lower == has_neg_factor) ? 1 : -1;
+ Trace("nl-ext-cms-debug")
+ << "set absolute value to " << (setAbs == 1 ? "maximal" : "minimal")
+ << std::endl;
+
+ std::vector<Node> vbs;
+ Trace("nl-ext-cms-debug") << "set bounds..." << std::endl;
+ for (unsigned i = 0, size = vars.size(); i < size; i++)
+ {
+ Node vc = vars[i];
+ unsigned vcfact = factors[i];
+ Node l = ls[i];
+ Node u = us[i];
+ bool vc_set_lower;
+ int vcsign = signs[i];
+ Trace("nl-ext-cms-debug")
+ << "Bounds for " << vc << " : " << l << ", " << u
+ << ", sign : " << vcsign << ", factor : " << vcfact << std::endl;
+ if (l == u)
+ {
+ // by convention, always say it is lower if they are the same
+ vc_set_lower = true;
+ Trace("nl-ext-cms-debug")
+ << "..." << vc << " equal bound, set to lower" << std::endl;
+ }
+ else
+ {
+ if (vcfact % 2 == 0)
+ {
+ // minimize or maximize its absolute value
+ Rational la = l.getConst<Rational>().abs();
+ Rational ua = u.getConst<Rational>().abs();
+ if (la == ua)
+ {
+ // by convention, always say it is lower if abs are the same
+ vc_set_lower = true;
+ Trace("nl-ext-cms-debug")
+ << "..." << vc << " equal abs, set to lower" << std::endl;
+ }
+ else
+ {
+ vc_set_lower = (la > ua) == (setAbs == 1);
+ }
+ }
+ else if (signs[i] == 0)
+ {
+ // we choose this index to match the overall set_lower
+ vc_set_lower = set_lower;
+ }
+ else
+ {
+ vc_set_lower = (signs[i] != setAbs);
+ }
+ Trace("nl-ext-cms-debug")
+ << "..." << vc << " set to " << (vc_set_lower ? "lower" : "upper")
+ << std::endl;
+ }
+ // check whether this is a conflicting bound
+ std::map<Node, bool>::iterator itsb = set_bound.find(vc);
+ if (itsb == set_bound.end())
+ {
+ set_bound[vc] = vc_set_lower;
+ }
+ else if (itsb->second != vc_set_lower)
+ {
+ Trace("nl-ext-cms")
+ << " failed due to conflicting bound for " << vc << std::endl;
+ return false;
+ }
+ // must over/under approximate based on vc_set_lower, computed above
+ Node vb = vc_set_lower ? l : u;
+ for (unsigned i2 = 0; i2 < vcfact; i2++)
+ {
+ vbs.push_back(vb);
+ }
+ }
+ if (!simpleSuccess)
+ {
+ break;
+ }
+ Node vbound = vbs.size() == 1 ? vbs[0] : nm->mkNode(MULT, vbs);
+ sum_bound.push_back(ArithMSum::mkCoeffTerm(m.second, vbound));
+ }
+ }
+ // if the exact bound was computed via simple analysis above
+ // make the bound
+ Node bound;
+ if (sum_bound.size() > 1)
+ {
+ bound = nm->mkNode(kind::PLUS, sum_bound);
+ }
+ else if (sum_bound.size() == 1)
+ {
+ bound = sum_bound[0];
+ }
+ else
+ {
+ bound = d_zero;
+ }
+ // make the comparison
+ Node comp = nm->mkNode(kind::GEQ, bound, d_zero);
+ if (!pol)
+ {
+ comp = comp.negate();
+ }
+ Trace("nl-ext-cms") << " comparison is : " << comp << std::endl;
+ comp = Rewriter::rewrite(comp);
+ Assert(comp.isConst());
+ Trace("nl-ext-cms") << " returned : " << comp << std::endl;
+ return comp == d_true;
+}
+
+bool NlModel::getApproximateSqrt(Node c, Node& l, Node& u, unsigned iter) const
+{
+ Assert(c.isConst());
+ if (c == d_one || c == d_zero)
+ {
+ l = c;
+ u = c;
+ return true;
+ }
+ Rational rc = c.getConst<Rational>();
+
+ Rational rl = rc < Rational(1) ? rc : Rational(1);
+ Rational ru = rc < Rational(1) ? Rational(1) : rc;
+ unsigned count = 0;
+ Rational half = Rational(1) / Rational(2);
+ while (count < iter)
+ {
+ Rational curr = half * (rl + ru);
+ Rational curr_sq = curr * curr;
+ if (curr_sq == rc)
+ {
+ rl = curr;
+ ru = curr;
+ break;
+ }
+ else if (curr_sq < rc)
+ {
+ rl = curr;
+ }
+ else
+ {
+ ru = curr;
+ }
+ count++;
+ }
+
+ NodeManager* nm = NodeManager::currentNM();
+ l = nm->mkConst(rl);
+ u = nm->mkConst(ru);
+ return true;
+}
+
+void NlModel::printModelValue(const char* c, Node n, unsigned prec) const
+{
+ if (Trace.isOn(c))
+ {
+ Trace(c) << " " << n << " -> ";
+ for (int i = 1; i >= 0; --i)
+ {
+ std::map<Node, Node>::const_iterator it = d_mv[i].find(n);
+ Assert(it != d_mv[i].end());
+ if (it->second.isConst())
+ {
+ printRationalApprox(c, it->second, prec);
+ }
+ else
+ {
+ Trace(c) << "?";
+ }
+ Trace(c) << (i == 1 ? " [actual: " : " ]");
+ }
+ Trace(c) << std::endl;
+ }
+}
+
+void NlModel::getModelValueRepair(
+ std::map<Node, Node>& arithModel,
+ std::map<Node, std::pair<Node, Node>>& approximations)
+{
+ Trace("nl-model") << "NlModel::getModelValueRepair:" << std::endl;
+
+ // Record the approximations we used. This code calls the
+ // recordApproximation method of the model, which overrides the model
+ // values for variables that we solved for, using techniques specific to
+ // this class.
+ NodeManager* nm = NodeManager::currentNM();
+ for (const std::pair<const Node, std::pair<Node, Node>>& cb :
+ d_check_model_bounds)
+ {
+ Node l = cb.second.first;
+ Node u = cb.second.second;
+ Node pred;
+ Node v = cb.first;
+ if (l != u)
+ {
+ pred = nm->mkNode(AND, nm->mkNode(GEQ, v, l), nm->mkNode(GEQ, u, v));
+ Trace("nl-model") << v << " approximated as " << pred << std::endl;
+ Node witness;
+ if (options::modelWitnessValue())
+ {
+ // witness is the midpoint
+ witness = nm->mkNode(
+ MULT, nm->mkConst(Rational(1, 2)), nm->mkNode(PLUS, l, u));
+ witness = Rewriter::rewrite(witness);
+ Trace("nl-model") << v << " witness is " << witness << std::endl;
+ }
+ approximations[v] = std::pair<Node, Node>(pred, witness);
+ }
+ else
+ {
+ // overwrite
+ arithModel[v] = l;
+ Trace("nl-model") << v << " exact approximation is " << l << std::endl;
+ }
+ }
+ // Also record the exact values we used. An exact value can be seen as a
+ // special kind approximation of the form (witness x. x = exact_value).
+ // Notice that the above term gets rewritten such that the choice function
+ // is eliminated.
+ for (size_t i = 0, num = d_check_model_vars.size(); i < num; i++)
+ {
+ Node v = d_check_model_vars[i];
+ Node s = d_check_model_subs[i];
+ // overwrite
+ arithModel[v] = s;
+ Trace("nl-model") << v << " solved is " << s << std::endl;
+ }
+
+ // multiplication terms should not be given values; their values are
+ // implied by the monomials that they consist of
+ std::vector<Node> amErase;
+ for (const std::pair<const Node, Node>& am : arithModel)
+ {
+ if (am.first.getKind() == NONLINEAR_MULT)
+ {
+ amErase.push_back(am.first);
+ }
+ }
+ for (const Node& ae : amErase)
+ {
+ arithModel.erase(ae);
+ }
+}
+
+} // namespace nl
+} // namespace arith
+} // namespace theory
+} // namespace CVC4
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback