summaryrefslogtreecommitdiff
path: root/src/proof/uf_proof.cpp
diff options
context:
space:
mode:
authorLiana Hadarean <lianahady@gmail.com>2016-01-26 16:04:26 -0800
committerLiana Hadarean <lianahady@gmail.com>2016-01-26 16:04:26 -0800
commit42b665f2a00643c81b42932fab1441987628c5a5 (patch)
treeaa851e1fc4828f5a4d94ce0c11fa6d2d1199636f /src/proof/uf_proof.cpp
parent7006d5ba2f68c01638a2ab2c98a86b41dcf4467c (diff)
Merged bit-vector and uf proof branch.
Diffstat (limited to 'src/proof/uf_proof.cpp')
-rw-r--r--src/proof/uf_proof.cpp804
1 files changed, 804 insertions, 0 deletions
diff --git a/src/proof/uf_proof.cpp b/src/proof/uf_proof.cpp
new file mode 100644
index 000000000..ec0d90ae7
--- /dev/null
+++ b/src/proof/uf_proof.cpp
@@ -0,0 +1,804 @@
+/********************* */
+/*! \file uf_proof.cpp
+** \verbatim
+** Original author: Liana Hadarean
+** Major contributors: none
+** Minor contributors (to current version): none
+** This file is part of the CVC4 project.
+** Copyright (c) 2009-2014 New York University and The University of Iowa
+** See the file COPYING in the top-level source directory for licensing
+** information.\endverbatim
+**
+** \brief [[ Add one-line brief description here ]]
+**
+** [[ Add lengthier description here ]]
+** \todo document this file
+**/
+
+#include "proof/theory_proof.h"
+#include "proof/proof_manager.h"
+#include "proof/uf_proof.h"
+#include "theory/uf/theory_uf.h"
+#include <stack>
+
+using namespace CVC4;
+using namespace CVC4::theory;
+using namespace CVC4::theory::uf;
+
+
+inline static Node eqNode(TNode n1, TNode n2) {
+ return NodeManager::currentNM()->mkNode(n1.getType().isBoolean() ? kind::IFF : kind::EQUAL, n1, n2);
+}
+
+// congrence matching term helper
+inline static bool match(TNode n1, TNode n2) {
+ Debug("mgd") << "match " << n1 << " " << n2 << std::endl;
+ if(ProofManager::currentPM()->hasOp(n1)) {
+ n1 = ProofManager::currentPM()->lookupOp(n1);
+ }
+ if(ProofManager::currentPM()->hasOp(n2)) {
+ n2 = ProofManager::currentPM()->lookupOp(n2);
+ }
+ Debug("mgd") << "+ match " << n1 << " " << n2 << std::endl;
+ if(n1 == n2) {
+ return true;
+ }
+ if(n1.getType().isFunction() && n2.hasOperator()) {
+ if(ProofManager::currentPM()->hasOp(n2.getOperator())) {
+ return n1 == ProofManager::currentPM()->lookupOp(n2.getOperator());
+ } else {
+ return n1 == n2.getOperator();
+ }
+ }
+ if(n2.getType().isFunction() && n1.hasOperator()) {
+ if(ProofManager::currentPM()->hasOp(n1.getOperator())) {
+ return n2 == ProofManager::currentPM()->lookupOp(n1.getOperator());
+ } else {
+ return n2 == n1.getOperator();
+ }
+ }
+ if(n1.hasOperator() && n2.hasOperator() && n1.getOperator() != n2.getOperator()) {
+ return false;
+ }
+ for(size_t i = 0; i < n1.getNumChildren() && i < n2.getNumChildren(); ++i) {
+ if(n1[i] != n2[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+void ProofUF::toStream(std::ostream& out) {
+ Trace("theory-proof-debug") << "; Print UF proof..." << std::endl;
+ //AJR : carry this further?
+ LetMap map;
+ toStreamLFSC(out, ProofManager::getUfProof(), d_proof, map);
+}
+
+void ProofUF::toStreamLFSC(std::ostream& out, TheoryProof * tp, theory::eq::EqProof * pf, const LetMap& map) {
+ Debug("lfsc-uf") << "Printing uf proof in LFSC : " << std::endl;
+ pf->debug_print("lfsc-uf");
+ Debug("lfsc-uf") << std::endl;
+ toStreamRecLFSC( out, tp, pf, 0, map );
+}
+
+Node ProofUF::toStreamRecLFSC(std::ostream& out, TheoryProof * tp, theory::eq::EqProof * pf, unsigned tb, const LetMap& map) {
+ Debug("gk::proof") << std::endl << std::endl << "toStreamRecLFSC called. tb = " << tb << " . proof:" << std::endl;
+ pf->debug_print("gk::proof");
+ Debug("gk::proof") << std::endl;
+
+ if(tb == 0) {
+ Assert(pf->d_id == eq::MERGED_THROUGH_TRANS);
+ Assert(!pf->d_node.isNull());
+ Assert(pf->d_children.size() >= 2);
+
+ int neg = -1;
+ theory::eq::EqProof subTrans;
+ subTrans.d_id = eq::MERGED_THROUGH_TRANS;
+ subTrans.d_node = pf->d_node;
+
+ size_t i = 0;
+ while (i < pf->d_children.size()) {
+ // Look for the negative clause, with which we will form a contradiction.
+ if(!pf->d_children[i]->d_node.isNull() && pf->d_children[i]->d_node.getKind() == kind::NOT) {
+ Assert(neg < 0);
+ neg = i;
+ ++i;
+ }
+
+ // Handle congruence closures over equalities.
+ else if (pf->d_children[i]->d_id==eq::MERGED_THROUGH_CONGRUENCE && pf->d_children[i]->d_node.isNull()) {
+ Debug("gk::proof") << "Handling congruence over equalities" << std::endl;
+
+ // Gather the sequence of consecutive congruence closures.
+ std::vector<const theory::eq::EqProof *> congruenceClosures;
+ unsigned count;
+ Debug("gk::proof") << "Collecting congruence sequence" << std::endl;
+ for (count = 0;
+ i + count < pf->d_children.size() &&
+ pf->d_children[i + count]->d_id==eq::MERGED_THROUGH_CONGRUENCE &&
+ pf->d_children[i + count]->d_node.isNull();
+ ++count) {
+ Debug("gk::proof") << "Found a congruence: " << std::endl;
+ pf->d_children[i+count]->debug_print("gk::proof");
+ congruenceClosures.push_back(pf->d_children[i+count]);
+ }
+
+ Debug("gk::proof") << "Total number of congruences found: " << congruenceClosures.size() << std::endl;
+
+ // Determine if the "target" of the congruence sequence appears right before or right after the sequence.
+ bool targetAppearsBefore = true;
+ bool targetAppearsAfter = true;
+
+ if ((i == 0) || (i == 1 && neg == 0)) {
+ Debug("gk::proof") << "Target does not appear before" << std::endl;
+ targetAppearsBefore = false;
+ }
+
+ if ((i + count >= pf->d_children.size()) ||
+ (!pf->d_children[i + count]->d_node.isNull() &&
+ pf->d_children[i + count]->d_node.getKind() == kind::NOT)) {
+ Debug("gk::proof") << "Target does not appear after" << std::endl;
+ targetAppearsAfter = false;
+ }
+
+ // Assert that we have precisely one target clause.
+ Assert(targetAppearsBefore != targetAppearsAfter);
+
+ // Begin breaking up the congruences and ordering the equalities correctly.
+ std::vector<theory::eq::EqProof *> orderedEqualities;
+
+
+ // Insert target clause first.
+ if (targetAppearsBefore) {
+ orderedEqualities.push_back(pf->d_children[i - 1]);
+ // The target has already been added to subTrans; remove it.
+ subTrans.d_children.pop_back();
+ } else {
+ orderedEqualities.push_back(pf->d_children[i + count]);
+ }
+
+ // Start with the congruence closure closest to the target clause, and work our way back/forward.
+ if (targetAppearsBefore) {
+ for (unsigned j = 0; j < count; ++j) {
+ if (pf->d_children[i + j]->d_children[0]->d_id != eq::MERGED_THROUGH_REFLEXIVITY)
+ orderedEqualities.insert(orderedEqualities.begin(), pf->d_children[i + j]->d_children[0]);
+ if (pf->d_children[i + j]->d_children[1]->d_id != eq::MERGED_THROUGH_REFLEXIVITY)
+ orderedEqualities.insert(orderedEqualities.end(), pf->d_children[i + j]->d_children[1]);
+ }
+ } else {
+ for (unsigned j = 0; j < count; ++j) {
+ if (pf->d_children[i + count - 1 - j]->d_children[0]->d_id != eq::MERGED_THROUGH_REFLEXIVITY)
+ orderedEqualities.insert(orderedEqualities.begin(), pf->d_children[i + count - 1 - j]->d_children[0]);
+ if (pf->d_children[i + count - 1 - j]->d_children[1]->d_id != eq::MERGED_THROUGH_REFLEXIVITY)
+ orderedEqualities.insert(orderedEqualities.end(), pf->d_children[i + count - 1 - j]->d_children[1]);
+ }
+ }
+
+ // Copy the result into the main transitivity proof.
+ subTrans.d_children.insert(subTrans.d_children.end(), orderedEqualities.begin(), orderedEqualities.end());
+
+ // Increase i to skip over the children that have been processed.
+ i += count;
+ if (targetAppearsAfter) {
+ ++i;
+ }
+ }
+
+ // Else, just copy the child proof as is
+ else {
+ subTrans.d_children.push_back(pf->d_children[i]);
+ ++i;
+ }
+ }
+ Assert(neg >= 0);
+
+ Node n1;
+ std::stringstream ss;
+ //Assert(subTrans.d_children.size() == pf->d_children.size() - 1);
+ Debug("mgdx") << "\nsubtrans has " << subTrans.d_children.size() << " children\n";
+ if(pf->d_children.size() > 2) {
+ n1 = toStreamRecLFSC(ss, tp, &subTrans, 1, map);
+ } else {
+ n1 = toStreamRecLFSC(ss, tp, subTrans.d_children[0], 1, map);
+ Debug("mgdx") << "\nsubTrans unique child " << subTrans.d_children[0]->d_id << " was proven\ngot: " << n1 << std::endl;
+ }
+
+ Node n2 = pf->d_children[neg]->d_node;
+ Assert(n2.getKind() == kind::NOT);
+ out << "(clausify_false (contra _ ";
+ Debug("mgdx") << "\nhave proven: " << n1 << std::endl;
+ Debug("mgdx") << "n2 is " << n2[0] << std::endl;
+
+ if (n2[0].getNumChildren() > 0) { Debug("mgdx") << "\nn2[0]: " << n2[0][0] << std::endl; }
+ if (n1.getNumChildren() > 1) { Debug("mgdx") << "n1[1]: " << n1[1] << std::endl; }
+
+ if(n2[0].getKind() == kind::APPLY_UF) {
+ out << "(trans _ _ _ _ ";
+ out << "(symm _ _ _ ";
+ out << ss.str();
+ out << ") (pred_eq_f _ " << ProofManager::getLitName(n2[0]) << ")) t_t_neq_f))" << std::endl;
+ } else {
+ Assert((n1[0] == n2[0][0] && n1[1] == n2[0][1]) || (n1[1] == n2[0][0] && n1[0] == n2[0][1]));
+ if(n1[1] == n2[0][0]) {
+ out << "(symm _ _ _ " << ss.str() << ")";
+ } else {
+ out << ss.str();
+ }
+ out << " " << ProofManager::getLitName(n2[0]) << "))" << std::endl;
+ }
+ return Node();
+ }
+
+ switch(pf->d_id) {
+ case eq::MERGED_THROUGH_CONGRUENCE: {
+ Debug("mgd") << "\nok, looking at congruence:\n";
+ pf->debug_print("mgd");
+ std::stack<const theory::eq::EqProof*> stk;
+ for(const theory::eq::EqProof* pf2 = pf; pf2->d_id == eq::MERGED_THROUGH_CONGRUENCE; pf2 = pf2->d_children[0]) {
+ Assert(!pf2->d_node.isNull());
+ Assert(pf2->d_node.getKind() == kind::PARTIAL_APPLY_UF || pf2->d_node.getKind() == kind::BUILTIN || pf2->d_node.getKind() == kind::APPLY_UF || pf2->d_node.getKind() == kind::SELECT || pf2->d_node.getKind() == kind::STORE);
+ Assert(pf2->d_children.size() == 2);
+ out << "(cong _ _ _ _ _ _ ";
+ stk.push(pf2);
+ }
+ Assert(stk.top()->d_children[0]->d_id != eq::MERGED_THROUGH_CONGRUENCE);
+ NodeBuilder<> b1(kind::PARTIAL_APPLY_UF), b2(kind::PARTIAL_APPLY_UF);
+ const theory::eq::EqProof* pf2 = stk.top();
+ stk.pop();
+ Assert(pf2->d_id == eq::MERGED_THROUGH_CONGRUENCE);
+ Node n1 = toStreamRecLFSC(out, tp, pf2->d_children[0], tb + 1, map);
+ out << " ";
+ std::stringstream ss;
+ Node n2 = toStreamRecLFSC(ss, tp, pf2->d_children[1], tb + 1, map);
+ Debug("mgd") << "\nok, in FIRST cong[" << stk.size() << "]" << "\n";
+ pf2->debug_print("mgd");
+ Debug("mgd") << "looking at " << pf2->d_node << "\n";
+ Debug("mgd") << " " << n1 << "\n";
+ Debug("mgd") << " " << n2 << "\n";
+ int side = 0;
+ if(match(pf2->d_node, n1[0])) {
+ //if(tb == 1) {
+ Debug("mgd") << "SIDE IS 0\n";
+ //}
+ side = 0;
+ } else {
+ //if(tb == 1) {
+ Debug("mgd") << "SIDE IS 1\n";
+ //}
+ if(!match(pf2->d_node, n1[1])) {
+ Debug("mgd") << "IN BAD CASE, our first subproof is\n";
+ pf2->d_children[0]->debug_print("mgd");
+ }
+ Assert(match(pf2->d_node, n1[1]));
+ side = 1;
+ }
+ if(n1[side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::PARTIAL_APPLY_UF || n1[side].getKind() == kind::SELECT || n1[side].getKind() == kind::STORE) {
+ if(n1[side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::PARTIAL_APPLY_UF) {
+ b1 << n1[side].getOperator();
+ } else {
+ b1 << ProofManager::currentPM()->mkOp(n1[side].getOperator());
+ }
+ b1.append(n1[side].begin(), n1[side].end());
+ } else {
+ b1 << n1[side];
+ }
+ if(n1[1-side].getKind() == kind::PARTIAL_APPLY_UF || n1[1-side].getKind() == kind::APPLY_UF || n1[side].getKind() == kind::SELECT || n1[side].getKind() == kind::STORE) {
+ if(n1[1-side].getKind() == kind::PARTIAL_APPLY_UF || n1[1-side].getKind() == kind::APPLY_UF) {
+ b2 << n1[1-side].getOperator();
+ } else {
+ b2 << ProofManager::currentPM()->mkOp(n1[1-side].getOperator());
+ }
+ b2.append(n1[1-side].begin(), n1[1-side].end());
+ } else {
+ b2 << n1[1-side];
+ }
+ Debug("mgd") << "pf2->d_node " << pf2->d_node << std::endl;
+ Debug("mgd") << "b1.getNumChildren() " << b1.getNumChildren() << std::endl;
+ Debug("mgd") << "n1 " << n1 << std::endl;
+ Debug("mgd") << "n2 " << n2 << std::endl;
+ Debug("mgd") << "side " << side << std::endl;
+ if(pf2->d_node[b1.getNumChildren() - (pf2->d_node.getMetaKind() == kind::metakind::PARAMETERIZED ? 0 : 1)] == n2[side]) {
+ b1 << n2[side];
+ b2 << n2[1-side];
+ out << ss.str();
+ } else {
+ Assert(pf2->d_node[b1.getNumChildren() - (pf2->d_node.getMetaKind() == kind::metakind::PARAMETERIZED ? 0 : 1)] == n2[1-side]);
+ b1 << n2[1-side];
+ b2 << n2[side];
+ out << "(symm _ _ _ " << ss.str() << ")";
+ }
+ out << ")";
+ while(!stk.empty()) {
+ if(tb == 1) {
+ Debug("mgd") << "\nMORE TO DO\n";
+ }
+ pf2 = stk.top();
+ stk.pop();
+ Assert(pf2->d_id == eq::MERGED_THROUGH_CONGRUENCE);
+ out << " ";
+ ss.str("");
+ n2 = toStreamRecLFSC(ss, tp, pf2->d_children[1], tb + 1, map);
+ Debug("mgd") << "\nok, in cong[" << stk.size() << "]" << "\n";
+ Debug("mgd") << "looking at " << pf2->d_node << "\n";
+ Debug("mgd") << " " << n1 << "\n";
+ Debug("mgd") << " " << n2 << "\n";
+ Debug("mgd") << " " << b1 << "\n";
+ Debug("mgd") << " " << b2 << "\n";
+ if(pf2->d_node[b1.getNumChildren()] == n2[side]) {
+ b1 << n2[side];
+ b2 << n2[1-side];
+ out << ss.str();
+ } else {
+ Assert(pf2->d_node[b1.getNumChildren()] == n2[1-side]);
+ b1 << n2[1-side];
+ b2 << n2[side];
+ out << "(symm _ _ _ " << ss.str() << ")";
+ }
+ out << ")";
+ }
+ n1 = b1;
+ n2 = b2;
+ Debug("mgd") << "at end assert, got " << pf2->d_node << " and " << n1 << std::endl;
+ if(pf2->d_node.getKind() == kind::PARTIAL_APPLY_UF) {
+ Assert(n1 == pf2->d_node);
+ }
+ if(n1.getOperator().getType().getNumChildren() == n1.getNumChildren() + 1) {
+ if(ProofManager::currentPM()->hasOp(n1.getOperator())) {
+ b1.clear(ProofManager::currentPM()->lookupOp(n2.getOperator()).getConst<Kind>());
+ } else {
+ b1.clear(kind::APPLY_UF);
+ b1 << n1.getOperator();
+ }
+ b1.append(n1.begin(), n1.end());
+ n1 = b1;
+ Debug("mgd") << "at[2] end assert, got " << pf2->d_node << " and " << n1 << std::endl;
+ if(pf2->d_node.getKind() == kind::APPLY_UF) {
+ Assert(n1 == pf2->d_node);
+ }
+ }
+ if(n2.getOperator().getType().getNumChildren() == n2.getNumChildren() + 1) {
+ if(ProofManager::currentPM()->hasOp(n2.getOperator())) {
+ b2.clear(ProofManager::currentPM()->lookupOp(n2.getOperator()).getConst<Kind>());
+ } else {
+ b2.clear(kind::APPLY_UF);
+ b2 << n2.getOperator();
+ }
+ b2.append(n2.begin(), n2.end());
+ n2 = b2;
+ }
+ Node n = (side == 0 ? eqNode(n1, n2) : eqNode(n2, n1));
+ if(tb == 1) {
+ Debug("mgdx") << "\ncong proved: " << n << "\n";
+ }
+ return n;
+ }
+
+ case eq::MERGED_THROUGH_REFLEXIVITY:
+ Assert(!pf->d_node.isNull());
+ Assert(pf->d_children.empty());
+ out << "(refl _ ";
+ tp->printTerm(NodeManager::currentNM()->toExpr(pf->d_node), out, map);
+ out << ")";
+ return eqNode(pf->d_node, pf->d_node);
+
+ case eq::MERGED_THROUGH_EQUALITY:
+ Assert(!pf->d_node.isNull());
+ Assert(pf->d_children.empty());
+ out << ProofManager::getLitName(pf->d_node.negate());
+ return pf->d_node;
+
+ case eq::MERGED_THROUGH_TRANS: {
+ Assert(!pf->d_node.isNull());
+ Assert(pf->d_children.size() >= 2);
+ std::stringstream ss;
+ Debug("mgd") << "\ndoing trans proof[[\n";
+ pf->debug_print("mgd");
+ Debug("mgd") << "\n";
+ Node n1 = toStreamRecLFSC(ss, tp, pf->d_children[0], tb + 1, map);
+ Debug("mgd") << "\ndoing trans proof, got n1 " << n1 << "\n";
+ if(tb == 1) {
+ Debug("mgdx") << "\ntrans proof[0], got n1 " << n1 << "\n";
+ }
+
+ bool identicalEqualities = false;
+ bool evenLengthSequence;
+ Node nodeAfterEqualitySequence;
+
+ for(size_t i = 1; i < pf->d_children.size(); ++i) {
+ std::stringstream ss1(ss.str()), ss2;
+ ss.str("");
+ Node n2 = toStreamRecLFSC(ss2, tp, pf->d_children[i], tb + 1, map);
+
+ // The following branch is dedicated to handling sequences of identical equalities,
+ // i.e. trans[ a=b, a=b, a=b ].
+ //
+ // There are two cases:
+ // 1. The number of equalities is odd. Then, the sequence can be collapsed to just one equality,
+ // i.e. a=b.
+ // 2. The number of equalities is even. Now, we have two options: a=a or b=b. To determine this,
+ // we look at the node after the equality sequence. If it needs a, we go for a=a; and if it needs
+ // b, we go for b=b. If there is no following node, we look at the goal of the transitivity proof,
+ // and use it to determine which option we need.
+ if(n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) {
+ if (((n1[0] == n2[0]) && (n1[1] == n2[1])) || ((n1[0] == n2[1]) && (n1[1] == n2[0]))) {
+ // We are in a sequence of identical equalities
+
+ Debug("gk::proof") << "Detected identical equalities: " << std::endl << "\t" << n1 << std::endl;
+
+ if (!identicalEqualities) {
+ // The sequence of identical equalities has started just now
+ identicalEqualities = true;
+
+ Debug("gk::proof") << "The sequence is just beginning. Determining length..." << std::endl;
+
+ // Determine whether the length of this sequence is odd or even.
+ evenLengthSequence = true;
+ bool sequenceOver = false;
+ size_t j = i + 1;
+
+ while (j < pf->d_children.size() && !sequenceOver) {
+ std::stringstream dontCare;
+ nodeAfterEqualitySequence = toStreamRecLFSC(dontCare, tp, pf->d_children[j], tb + 1, map );
+
+ if (((nodeAfterEqualitySequence[0] == n1[0]) && (nodeAfterEqualitySequence[1] == n1[1])) ||
+ ((nodeAfterEqualitySequence[0] == n1[1]) && (nodeAfterEqualitySequence[1] == n1[0]))) {
+ evenLengthSequence = !evenLengthSequence;
+ } else {
+ sequenceOver = true;
+ }
+
+ ++j;
+ }
+
+ if (evenLengthSequence) {
+ // If the length is even, we need to apply transitivity for the "correct" hand of the equality.
+
+ Debug("gk::proof") << "Equality sequence of even length" << std::endl;
+ Debug("gk::proof") << "n1 is: " << n1 << std::endl;
+ Debug("gk::proof") << "n2 is: " << n2 << std::endl;
+ Debug("gk::proof") << "pf-d_node is: " << pf->d_node << std::endl;
+ Debug("gk::proof") << "Next node is: " << nodeAfterEqualitySequence << std::endl;
+
+ ss << "(trans _ _ _ _ ";
+
+ // If the sequence is at the very end of the transitivity proof, use pf->d_node to guide us.
+ if (!sequenceOver) {
+ if (match(n1[0], pf->d_node[0])) {
+ n1 = eqNode(n1[0], n1[0]);
+ ss << ss1.str() << " (symm _ _ _ " << ss1.str() << ")";
+ } else if (match(n1[1], pf->d_node[1])) {
+ n1 = eqNode(n1[1], n1[1]);
+ ss << " (symm _ _ _ " << ss1.str() << ")" << ss1.str();
+ } else {
+ Debug("gk::proof") << "Error: identical equalities over, but hands don't match what we're proving."
+ << std::endl;
+ Assert(false);
+ }
+ } else {
+ // We have a "next node". Use it to guide us.
+
+ Assert(nodeAfterEqualitySequence.getKind() == kind::EQUAL ||
+ nodeAfterEqualitySequence.getKind() == kind::IFF);
+
+ if ((n1[0] == nodeAfterEqualitySequence[0]) || (n1[0] == nodeAfterEqualitySequence[1])) {
+
+ // Eliminate n1[1]
+ ss << ss1.str() << " (symm _ _ _ " << ss1.str() << ")";
+ n1 = eqNode(n1[0], n1[0]);
+
+ } else if ((n1[1] == nodeAfterEqualitySequence[0]) || (n1[1] == nodeAfterEqualitySequence[1])) {
+
+ // Eliminate n1[0]
+ ss << " (symm _ _ _ " << ss1.str() << ")" << ss1.str();
+ n1 = eqNode(n1[1], n1[1]);
+
+ } else {
+ Debug("gk::proof") << "Error: even length sequence, but I don't know which hand to keep!" << std::endl;
+ Assert(false);
+ }
+ }
+
+ ss << ")";
+
+ } else {
+ Debug("gk::proof") << "Equality sequence length is odd!" << std::endl;
+ ss.str(ss1.str());
+ }
+
+ Debug("gk::proof") << "Have proven: " << n1 << std::endl;
+ } else {
+ ss.str(ss1.str());
+ }
+
+ // Ignore the redundancy.
+ continue;
+ }
+ }
+
+ if (identicalEqualities) {
+ // We were in a sequence of identical equalities, but it has now ended. Resume normal operation.
+ identicalEqualities = false;
+ }
+
+ Debug("mgd") << "\ndoing trans proof, got n2 " << n2 << "\n";
+ if(tb == 1) {
+ Debug("mgdx") << "\ntrans proof[" << i << "], got n2 " << n2 << "\n";
+ Debug("mgdx") << (n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) << "\n";
+
+ if ((n1.getNumChildren() >= 2) && (n2.getNumChildren() >= 2)) {
+ Debug("mgdx") << n1[0].getId() << " " << n1[1].getId() << " / " << n2[0].getId() << " " << n2[1].getId() << "\n";
+ Debug("mgdx") << n1[0].getId() << " " << n1[0] << "\n";
+ Debug("mgdx") << n1[1].getId() << " " << n1[1] << "\n";
+ Debug("mgdx") << n2[0].getId() << " " << n2[0] << "\n";
+ Debug("mgdx") << n2[1].getId() << " " << n2[1] << "\n";
+ Debug("mgdx") << (n1[0] == n2[0]) << "\n";
+ Debug("mgdx") << (n1[1] == n2[1]) << "\n";
+ Debug("mgdx") << (n1[0] == n2[1]) << "\n";
+ Debug("mgdx") << (n1[1] == n2[0]) << "\n";
+ }
+ }
+ ss << "(trans _ _ _ _ ";
+
+ if((n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) &&
+ (n1.getKind() == kind::EQUAL || n1.getKind() == kind::IFF))
+ // Both elements of the transitivity rule are equalities/iffs
+ {
+ if(n1[0] == n2[0]) {
+ if(tb == 1) { Debug("mgdx") << "case 1\n"; }
+ n1 = eqNode(n1[1], n2[1]);
+ ss << "(symm _ _ _ " << ss1.str() << ") " << ss2.str();
+ } else if(n1[1] == n2[1]) {
+ if(tb == 1) { Debug("mgdx") << "case 2\n"; }
+ n1 = eqNode(n1[0], n2[0]);
+ ss << ss1.str() << " (symm _ _ _ " << ss2.str() << ")";
+ } else if(n1[0] == n2[1]) {
+ if(tb == 1) { Debug("mgdx") << "case 3\n"; }
+ n1 = eqNode(n2[0], n1[1]);
+ ss << ss2.str() << " " << ss1.str();
+ if(tb == 1) { Debug("mgdx") << "++ proved " << n1 << "\n"; }
+ } else if(n1[1] == n2[0]) {
+ if(tb == 1) { Debug("mgdx") << "case 4\n"; }
+ n1 = eqNode(n1[0], n2[1]);
+ ss << ss1.str() << " " << ss2.str();
+ } else {
+ Warning() << "\n\ntrans proof failure at step " << i << "\n\n";
+ Warning() << "0 proves " << n1 << "\n";
+ Warning() << "1 proves " << n2 << "\n\n";
+ pf->debug_print("mgdx",0);
+ //toStreamRec(Warning.getStream(), pf, 0);
+ Warning() << "\n\n";
+ Unreachable();
+ }
+ Debug("mgd") << "++ trans proof[" << i << "], now have " << n1 << std::endl;
+ } else if(n1.getKind() == kind::EQUAL || n1.getKind() == kind::IFF) {
+ // n1 is an equality/iff, but n2 is a predicate
+ if(n1[0] == n2) {
+ n1 = n1[1];
+ ss << "(symm _ _ _ " << ss1.str() << ") (pred_eq_t _ " << ss2.str() << ")";
+ } else if(n1[1] == n2) {
+ n1 = n1[0];
+ ss << ss1.str() << " (pred_eq_t _ " << ss2.str() << ")";
+ } else {
+ Unreachable();
+ }
+ } else if(n2.getKind() == kind::EQUAL || n2.getKind() == kind::IFF) {
+ // n2 is an equality/iff, but n1 is a predicate
+ if(n2[0] == n1) {
+ n1 = n2[1];
+ ss << "(symm _ _ _ " << ss2.str() << ") (pred_eq_t _ " << ss1.str() << ")";
+ } else if(n2[1] == n1) {
+ n1 = n2[0];
+ ss << ss2.str() << " (pred_eq_t _ " << ss1.str() << ")";
+ } else {
+ Unreachable();
+ }
+ } else {
+ // Both n1 and n2 are prediacates. Don't know what to do...
+ Unreachable();
+ }
+
+ ss << ")";
+ }
+ out << ss.str();
+ Debug("mgd") << "\n++ trans proof done, have proven " << n1 << std::endl;
+ return n1;
+ }
+
+ case eq::MERGED_ARRAYS_ROW: {
+ Debug("mgd") << "row lemma: " << pf->d_node << std::endl;
+ Assert(pf->d_node.getKind() == kind::EQUAL);
+ TNode t1, t2, t3, t4;
+ Node ret;
+ if(pf->d_node[1].getKind() == kind::SELECT &&
+ pf->d_node[1][0].getKind() == kind::STORE &&
+ pf->d_node[0].getKind() == kind::SELECT &&
+ pf->d_node[0][0] == pf->d_node[1][0][0] &&
+ pf->d_node[0][1] == pf->d_node[1][1]) {
+ t2 = pf->d_node[1][0][1];
+ t3 = pf->d_node[1][1];
+ t1 = pf->d_node[0][0];
+ t4 = pf->d_node[1][0][2];
+ ret = pf->d_node[1].eqNode(pf->d_node[0]);
+ Debug("mgd") << "t1 " << t1 << "\nt2 " << t2 << "\nt3 " << t3 << "\nt4 " << t4 << "\n";
+ } else {
+ Assert(pf->d_node[0].getKind() == kind::SELECT &&
+ pf->d_node[0][0].getKind() == kind::STORE &&
+ pf->d_node[1].getKind() == kind::SELECT &&
+ pf->d_node[1][0] == pf->d_node[0][0][0] &&
+ pf->d_node[1][1] == pf->d_node[0][1]);
+ t2 = pf->d_node[0][0][1];
+ t3 = pf->d_node[0][1];
+ t1 = pf->d_node[1][0];
+ t4 = pf->d_node[0][0][2];
+ ret = pf->d_node;
+ Debug("mgd") << "t1 " << t1 << "\nt2 " << t2 << "\nt3 " << t3 << "\nt4 " << t4 << "\n";
+ }
+ out << "(row _ _ ";
+ tp->printTerm(t2.toExpr(), out, map);
+ out << " ";
+ tp->printTerm(t3.toExpr(), out, map);
+ out << " ";
+ tp->printTerm(t1.toExpr(), out, map);
+ out << " ";
+ tp->printTerm(t4.toExpr(), out, map);
+ out << " " << ProofManager::getLitName(t2.eqNode(t3)) << ")";
+ return ret;
+ }
+
+ case eq::MERGED_ARRAYS_ROW1: {
+ Debug("mgd") << "row1 lemma: " << pf->d_node << std::endl;
+ Assert(pf->d_node.getKind() == kind::EQUAL);
+ TNode t1, t2, t3;
+ Node ret;
+ if(pf->d_node[1].getKind() == kind::SELECT &&
+ pf->d_node[1][0].getKind() == kind::STORE &&
+ pf->d_node[1][0][1] == pf->d_node[1][1] &&
+ pf->d_node[1][0][2] == pf->d_node[0]) {
+ t1 = pf->d_node[1][0][0];
+ t2 = pf->d_node[1][0][1];
+ t3 = pf->d_node[0];
+ ret = pf->d_node[1].eqNode(pf->d_node[0]);
+ Debug("mgd") << "t1 " << t1 << "\nt2 " << t2 << "\nt3 " << t3 << "\n";
+ } else {
+ Assert(pf->d_node[0].getKind() == kind::SELECT &&
+ pf->d_node[0][0].getKind() == kind::STORE &&
+ pf->d_node[0][0][1] == pf->d_node[0][1] &&
+ pf->d_node[0][0][2] == pf->d_node[1]);
+ t1 = pf->d_node[0][0][0];
+ t2 = pf->d_node[0][0][1];
+ t3 = pf->d_node[1];
+ ret = pf->d_node;
+ Debug("mgd") << "t1 " << t1 << "\nt2 " << t2 << "\nt3 " << t3 << "\n";
+ }
+ out << "(row1 _ _ ";
+ tp->printTerm(t1.toExpr(), out, map);
+ out << " ";
+ tp->printTerm(t2.toExpr(), out, map);
+ out << " ";
+ tp->printTerm(t3.toExpr(), out, map);
+ out << ")";
+ return ret;
+ }
+
+ default:
+ Assert(!pf->d_node.isNull());
+ Assert(pf->d_children.empty());
+ Debug("mgd") << "theory proof: " << pf->d_node << " by rule " << int(pf->d_id) << std::endl;
+ AlwaysAssert(false);
+ return pf->d_node;
+ }
+}
+
+UFProof::UFProof(theory::uf::TheoryUF* uf, TheoryProofEngine* pe)
+ : TheoryProof(uf, pe)
+{}
+
+void UFProof::registerTerm(Expr term) {
+ // already registered
+ if (d_declarations.find(term) != d_declarations.end())
+ return;
+
+ Type type = term.getType();
+ if (type.isSort()) {
+ // declare uninterpreted sorts
+ d_sorts.insert(type);
+ }
+
+ if (term.getKind() == kind::APPLY_UF) {
+ Expr function = term.getOperator();
+ d_declarations.insert(function);
+ }
+
+ if (term.isVariable()) {
+ d_declarations.insert(term);
+ }
+
+ // recursively declare all other terms
+ for (unsigned i = 0; i < term.getNumChildren(); ++i) {
+ // could belong to other theories
+ d_proofEngine->registerTerm(term[i]);
+ }
+}
+
+void LFSCUFProof::printTerm(Expr term, std::ostream& os, const LetMap& map) {
+ Assert (Theory::theoryOf(term) == THEORY_UF);
+
+ if (term.getKind() == kind::VARIABLE ||
+ term.getKind() == kind::SKOLEM) {
+ os << term;
+ return;
+ }
+
+ Assert (term.getKind() == kind::APPLY_UF);
+
+ if(term.getType().isBoolean()) {
+ os << "(p_app ";
+ }
+ Expr func = term.getOperator();
+ for (unsigned i = 0; i < term.getNumChildren(); ++i) {
+ os << "(apply _ _ ";
+ }
+ os << func << " ";
+ for (unsigned i = 0; i < term.getNumChildren(); ++i) {
+ printTerm(term[i], os, map);
+ os << ")";
+ }
+ if(term.getType().isBoolean()) {
+ os << ")";
+ }
+}
+
+void LFSCUFProof::printSort(Type type, std::ostream& os) {
+ Assert (type.isSort());
+ os << type <<" ";
+}
+
+void LFSCUFProof::printTheoryLemmaProof(std::vector<Expr>& lemma, std::ostream& os, std::ostream& paren) {
+ os << " ;; UF Theory Lemma \n;;";
+ for (unsigned i = 0; i < lemma.size(); ++i) {
+ os << lemma[i] <<" ";
+ }
+ os <<"\n";
+ //os << " (clausify_false trust)";
+ UFProof::printTheoryLemmaProof( lemma, os, paren );
+}
+
+void LFSCUFProof::printDeclarations(std::ostream& os, std::ostream& paren) {
+ // declaring the sorts
+ for (TypeSet::const_iterator it = d_sorts.begin(); it != d_sorts.end(); ++it) {
+ os << "(% " << *it << " sort\n";
+ paren << ")";
+ }
+
+ // declaring the terms
+ for (ExprSet::const_iterator it = d_declarations.begin(); it != d_declarations.end(); ++it) {
+ Expr term = *it;
+
+ os << "(% " << ProofManager::sanitize(term) << " ";
+ os << "(term ";
+
+ Type type = term.getType();
+ if (type.isFunction()) {
+ std::ostringstream fparen;
+ FunctionType ftype = (FunctionType)type;
+ std::vector<Type> args = ftype.getArgTypes();
+ args.push_back(ftype.getRangeType());
+ os << "(arrow";
+ for (unsigned i = 0; i < args.size(); i++) {
+ Type arg_type = args[i];
+ os << " " << arg_type;
+ if (i < args.size() - 2) {
+ os << " (arrow";
+ fparen << ")";
+ }
+ }
+ os << fparen.str() << "))\n";
+ } else {
+ Assert (term.isVariable());
+ os << type << ")\n";
+ }
+ paren << ")";
+ }
+}
generated by cgit on debian on lair
contact matthew@masot.net with questions or feedback